Evaluation of the Impact of Land Use Changes on Soil Erosion in the Tropical Maha Oya River Basin, Sri Lanka
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Rainfall Data
2.3. Soil Data
2.4. Digital Elevation Model (DEM)
2.5. Land Use/Land Cover Classification
Accuracy Assessment
2.6. Estimation of Factors in the RUSLE Model
2.6.1. Rainfall-Runoff Erosivity (R) Factor
2.6.2. Soil Erodibility (K) Factor
2.6.3. Slope Length and Steepness (LS) Factor
2.6.4. Cover Management (C) Factor
2.6.5. Support Practice (P) Factor
LU/LC Type | C Factor | P Factor |
---|---|---|
Water Bodies | 0.2 | 0 |
Agricultural Land | 0.43 | 0.15 |
Forest | 0.5 | 0.3 |
Bare Land | 1 | 1 |
Vegetation | 0.51 | 1 |
Exposed Rock | 0.1 | 0 |
Settlement | 0.73 | 0 |
2.6.6. Spatial Analysis of Land Use and Land Cover Changes
3. Results
3.1. Accuracy Assessment of LU/LC Classification
3.2. Spatial Variations in Land Use and Land Cover
3.3. Spatial Variations in Mean Annual Rainfall
3.4. RUSLE Factors
3.4.1. Rainfall-Runoff Erosivity (R) Factor
3.4.2. Soil Erodibility (K) Factor
3.4.3. Slope Length and Steepness (LS) Factor
3.4.4. Cover Management (C) Factor
3.5. Soil Erosion Estimation
3.6. Influence of Slope and Elevation on Soil Erosion
3.7. Impact of Land Use and Land Cover Changes on Soil Erosion
3.8. Extremely High Soil Erosion-Prone Locations Map
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Placemark Number | Location Coordinates | Placemark Number | Location Coordinates |
---|---|---|---|
1 | 7°18′9.30″ N 80°2′16.07″ E | 29 | 7°9′43.34″ N 80°26′12.36″ E |
2 | 7°23′49.07″ N 80°15′14.98″ E | 30 | 7°8′55.90″ N 80°26′17.35″ E |
3 | 7°19′14.83″ N 79°51′4.64″ E | 31 | 7°7′49.82″ N 80°26′26.94″ E |
4 | 7°17′2.48″ N 79°57′13.23″ E | 32 | 7°7′0.35″ N 80°27′6.77″ E |
5 | 7°19′3.48″ N 80°1′20.47″ E | 33 | 7°7′6.66″ N 80°27′51.63″ E |
6 | 7°18′9.23″ N 80°1′53.04″ E | 34 | 7°6′8.44″ N 80°27′25.48″ E |
7 | 7°15′46.03″ N 80°11′5.23″ E | 35 | 7°7′23.58″ N 80°28′57.50″ E |
8 | 7°21′47.34″ N 80°16′47.83″ E | 36 | 7°7′52.71″ N 80°30′6.69″ E |
9 | 7°20′6.52″ N 80°17′16.31″ E | 37 | 7°4′12.54″ N 80°28′43.71″ E |
10 | 7°21′3.06″ N 80°17′36.95″ E | 38 | 7°4′35.30″ N 80°30′17.56″ E |
11 | 7°17′16.52″ N 80°13′58.67″ E | 39 | 7°5′36.77″ N 80°29′44.64″ E |
12 | 7°15′31.60″ N 80°17′0.47″ E | 40 | 7°8′29.84″ N 80°31′21.78″ E |
13 | 7°15′16.69″ N 80°18′13.75″ E | 41 | 7°8′42.75″ N 80°31′2.63″ E |
14 | 7°16′29.39″ N 80°21′16.45″ E | 42 | 7°10′0.08″ N 80°31′42.87″ E |
15 | 7°16′26.95″ N 80°21′7.37″ E | 43 | 7°10′11.09″ N 80°31′31.82″ E |
16 | 7°16′40.52″ N 80°20′59.16″ E | 44 | 7°9′44.05″ N 80°31′49.91″ E |
17 | 7°15′11.78″ N 80°23′43.72″ E | 45 | 7°18′10.81″ N 80°27′38.49″ E |
18 | 7°11′44.58″ N 80°24′55.78″ E | 46 | 7°18′24.82″ N 80°27′22.41″ E |
19 | 7°12′20.92″ N 80°25′14.42″ E | 47 | 7°17′57.75″ N 80°27′10.40″ E |
20 | 7°11′7.30″ N 80°25′47.26″ E | 48 | 7°17′33.79″ N 80°28′23.69″ E |
21 | 7°9′45.44″ N 80°25′50.60″ E | 49 | 7°16′28.51″ N 80°26′22.34″ E |
22 | 7°13′32.23″ N 80°29′23.43″ E | 50 | 7°19′51.89″ N 80°25′54.99″ E |
23 | 7°12′59.17″ N 80°29′23.63″ E | 51 | 7°20′55.02″ N 80°26′2.94″ E |
24 | 7°11′59.17″ N 80°29′27.29″ E | 52 | 7°20′54.29″ N 80°26′44.59″ E |
25 | 7°11′40.13″ N 80°29′19.29″ E | 53 | 7°20′43.03″ N 80°26′29.05″ E |
26 | 7°10′53.92″ N 80°29′11.03″ E | 54 | 7°20′48.13″ N 80°27′44.32″ E |
27 | 7°18′9.30″ N 80° 2′16.07″ E | 55 | 7°16′13.50″ N 80°26′38.42″ E |
28 | 7°23′49.07″ N 80°15′14.98″ E | 56 | 7°17′5.52″ N 80°25′26.73″ E |
Appendix B
Agricultural Land | Bare Land | Exposed Rock | Forest | Settlement | Vegetation | Water Bodies | Total (User) | |
---|---|---|---|---|---|---|---|---|
Agricultural Land | 8 | 0 | 0 | 3 | 0 | 2 | 0 | 13 |
Bare Land | 0 | 4 | 0 | 0 | 0 | 1 | 0 | 5 |
Exposed Rock | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 5 |
Forest | 0 | 1 | 0 | 23 | 0 | 1 | 0 | 25 |
Settlement | 0 | 0 | 1 | 0 | 24 | 0 | 0 | 25 |
Vegetation | 0 | 0 | 0 | 0 | 0 | 18 | 0 | 18 |
Water Bodies | 0 | 0 | 0 | 0 | 0 | 0 | 15 | 15 |
Total (Producer) | 8 | 5 | 6 | 26 | 24 | 22 | 15 | 106 |
LU Type | 1989 | |
---|---|---|
Users Accuracy (%) | Producers Accuracy (%) | |
Vegetation | 100 | 81.82 |
Waterbodies | 100 | 100 |
Forest | 92 | 88.46 |
Agricultural Land | 61.54 | 100 |
Bare Land | 80 | 80 |
Exposed Rocks | 100 | 83.33 |
Settlements | 96 | 100 |
Agricultural Land | Bare Land | Exposed Rock | Forest | Settlement | Vegetation | Water Bodies | Total (User) | |
---|---|---|---|---|---|---|---|---|
Agricultural Land | 9 | 1 | 0 | 0 | 0 | 2 | 0 | 12 |
Bare Land | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 3 |
Exposed Rock | 0 | 0 | 3 | 0 | 0 | 3 | 0 | 6 |
Forest | 0 | 0 | 0 | 4 | 1 | 2 | 0 | 7 |
Settlement | 1 | 2 | 0 | 0 | 19 | 2 | 1 | 25 |
Vegetation | 1 | 0 | 0 | 0 | 0 | 38 | 0 | 39 |
Water Bodies | 0 | 0 | 0 | 0 | 0 | 0 | 17 | 17 |
Total (Producer) | 11 | 6 | 3 | 4 | 20 | 47 | 18 | 109 |
LU Type | 2000 | |
---|---|---|
Users Accuracy (%) | Producers Accuracy (%) | |
Vegetation | 97.44 | 80.85 |
Waterbodies | 100.00 | 94.44 |
Forest | 57.14 | 100.00 |
Agricultural Land | 75.00 | 81.82 |
Bare Land | 100.00 | 50.00 |
Exposed Rocks | 50.00 | 100.00 |
Settlements | 76.00 | 95.00 |
Agricultural Land | Bare Land | Exposed Rock | Forest | Settlement | Vegetation | Water Bodies | Total (User) | |
---|---|---|---|---|---|---|---|---|
Agricultural Land | 23 | 0 | 0 | 0 | 0 | 1 | 0 | 24 |
Bare Land | 0 | 4 | 0 | 0 | 0 | 2 | 0 | 6 |
Exposed Rock | 0 | 0 | 7 | 0 | 0 | 1 | 0 | 8 |
Forest | 0 | 0 | 0 | 14 | 0 | 0 | 0 | 14 |
Settlement | 1 | 0 | 2 | 0 | 17 | 1 | 1 | 22 |
Vegetation | 0 | 0 | 0 | 0 | 0 | 24 | 0 | 24 |
Water Bodies | 0 | 0 | 0 | 0 | 0 | 2 | 13 | 15 |
Total (Producer) | 24 | 4 | 9 | 14 | 17 | 31 | 14 | 113 |
LU Type | 1989 | |
---|---|---|
Users Accuracy (%) | Producers Accuracy (%) | |
Vegetation | 100.00 | 77.42 |
Waterbodies | 86.67 | 92.86 |
Forest | 100.00 | 100.00 |
Agricultural Land | 95.83 | 95.83 |
Bare Land | 66.67 | 100.00 |
Exposed Rocks | 87.50 | 77.78 |
Settlements | 77.27 | 100.00 |
Agricultural Land | Bare Land | Exposed Rock | Forest | Settlement | Vegetation | Water Bodies | Total (User) | |
---|---|---|---|---|---|---|---|---|
Agricultural Land | 27 | 0 | 0 | 0 | 0 | 0 | 0 | 27 |
Bare Land | 2 | 6 | 0 | 0 | 0 | 0 | 0 | 8 |
Exposed Rock | 0 | 1 | 8 | 0 | 0 | 0 | 0 | 9 |
Forest | 0 | 0 | 0 | 18 | 0 | 0 | 0 | 18 |
Settlement | 0 | 1 | 0 | 0 | 31 | 0 | 0 | 32 |
Vegetation | 0 | 0 | 0 | 0 | 0 | 21 | 0 | 21 |
Water Bodies | 0 | 0 | 0 | 0 | 0 | 0 | 16 | 16 |
Total (Producer) | 27 | 8 | 8 | 18 | 31 | 21 | 16 | 131 |
LU Type | 2021 | |
---|---|---|
Users Accuracy (%) | Producers Accuracy (%) | |
Vegetation | 100 | 100 |
Waterbodies | 100 | 100 |
Forest | 100 | 100 |
Agricultural Land | 100 | 100 |
Bare Land | 75 | 75 |
Exposed Rocks | 88.89 | 100 |
Settlements | 96.88 | 100 |
Appendix C
Appendix D
LU/LC Type | Features |
---|---|
Vegetation | Grass, shrubs, herbs, scrub lands, sporadic trees, young trees, and meadow. |
Waterbodies | Streams, canals, minor/major reservoirs, natural ponds, water holes, rivers, lakes, mash, swamp, coastal wetlands, and other water-containing structures. |
Forest | Open forest and dense forest. |
Agricultural Land | Agricultural farms, chena, paddy, rubber, tea, abandoned paddy, cropland, irrigated cropland, and other cultivated lands. |
Bare Land | The land being prepared for cultivation was classified as bare land. |
Exposed Rocks | Rocks that are exposed without any natural protection on the surface and quarries. |
Settlements | Parks, playgrounds, industrial sites, distorted surfaces, expressway, factories, homes, roads, and urban areas. |
Appendix E
Erosion Hazard Classes | Soil Erosion (t ha−1 yr−1) | 1989 | 2000 | 2009 | 2021 | 1989–2021 Net Change (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Area | Mean Soil Erosion (t ha−1 yr−1) | Area | Mean Soil Erosion (t ha−1 yr−1) | Area | Mean Soil Erosion (t ha−1 yr−1) | Area | Mean Soil Erosion (t ha−1 yr−1) | |||||||
(km2) | (%) | (km2) | (%) | (km2) | (%) | (km2) | (%) | |||||||
Low | 0–5 | 1236.92 | 81.34 | 1.06 | 1243.07 | 81.74 | 1.08 | 1256.54 | 82.64 | 1.06 | 1217.73 | 80.08 | 1.04 | −1.26 |
Moderate | 5–12 | 213.59 | 14.05 | 7.56 | 212.01 | 13.94 | 7.48 | 204.18 | 13.43 | 7.46 | 209.99 | 13.81 | 7.57 | −0.24 |
High | 12–25 | 59.72 | 3.93 | 16.10 | 55.83 | 3.67 | 16.14 | 50.46 | 3.32 | 16.15 | 71.85 | 4.73 | 16.56 | 0.8 |
Very High | 25–60 | 9.76 | 0.63 | 33.63 | 9.31 | 0.61 | 33.52 | 8.66 | 0.57 | 33.77 | 18.90 | 1.24 | 34.48 | 0.61 |
Extremely High | >60 | 0.72 | 0.05 | 81.81 | 0.61 | 0.04 | 84.84 | 0.74 | 0.05 | 93.65 | 2.08 | 0.14 | 91.01 | 0.09 |
Total | 1521.00 | 100.00 | 1521.00 | 100.00 | 1521.00 | 100.00 | 1521.00 | 100.00 |
Appendix F
LU/LC Type | 1989 | 2000 | 2009 | 2021 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean Soil Erosion (t ha−1 yr−1) | Annual Soil Loss (ton) | Annual Soil Loss (%) | Mean Soil Erosion (t ha−1 yr−1) | Annual Soil Loss (ton) | Annual Soil Loss (%) | Mean Soil Erosion (t ha−1 yr−1) | Annual Soil Loss (ton) | Annual Soil Loss (%) | Mean Soil Erosion (t ha−1 yr−1) | Annual Soil Loss (ton) | Annual Soil Loss (%) | |
Bare Land | 5.93 | 1467.21 | 0.35 | 6.31 | 1106.91 | 0.27 | 5.66 | 34,188.79 | 8.72 | 7.30 | 86,136.53 | 17.95 |
Settlement | 0.42 | 2604.13 | 0.61 | 0.13 | 745.09 | 0.18 | 0.55 | 3477.74 | 0.89 | 0.58 | 7619.96 | 1.59 |
Agricultural Land | 1.08 | 28,784.79 | 6.77 | 0.69 | 14,689.70 | 3.53 | 0.84 | 17,153.76 | 4.37 | 0.95 | 22,502.59 | 4.69 |
Forest | 2.66 | 152,618.82 | 35.89 | 2.87 | 152,136.90 | 36.57 | 2.72 | 166,151.40 | 42.37 | 3.26 | 163,204.40 | 34.02 |
Vegetation | 4.21 | 239,739.56 | 56.38 | 4.08 | 247,372.60 | 59.46 | 3.72 | 171,212.30 | 43.66 | 4.15 | 200,284.89 | 41.75 |
References
- Feda, H.A. Assessment of Soil Erosion by RUSLE Model Using Remote sensing and GIS Techniques: A Case Study of Huluka Watershed, Central Ethiopia of Science in Remote Sensing and Geo−Informatics. Master’s Thesis, Addis Ababa College of Natural And Computational Sciences School of Earth Sciences, Addis Ababa, Ethiopia, 25 May 2018. [Google Scholar]
- Thapa, P. Spatial estimation of soil erosion using RUSLE modeling: A case study of Dolakha district, Nepal. Environ. Syst. Res. 2020, 9, 15. [Google Scholar] [CrossRef]
- Forkuo, E.K.; Aabeyir, R. Modelling Soil Erosion in the Densu River Basin Using RUSLE and GIS Tools Imapact of Climate and Anthropogenic on Hydrology View Project; 2014, 3, 247–254. Available online: https://www.researchgate.net/publication/297361158 (accessed on 3 June 2022).
- Damaneh, H.E.; Khosravi, H.; Habashi, K.; Damaneh, H.E.; Tiefenbacher, J.P. The Impact of Land Use and Land Cover Changes on Soil Erosion in Western Iran. Nat. Hazards 2021, 110, 2185–2205. [Google Scholar] [CrossRef]
- Koirala, P.; Thakuri, S.; Joshi, S.; Chauhan, R. Estimation of Soil Erosion in Nepal Using a RUSLE Modeling and Geospatial Tool. Geosciences. 2019, 9, 147. [Google Scholar] [CrossRef] [Green Version]
- Ritter, J.; Eng, P. Soil Erosion—Causes and Effects; 2012, 12–53. Available online: http://www.omafra.gov.on.ca/english/engineer/facts/12-053.htm (accessed on 12 August 2022).
- Lin, D.; Shi, P.; Meadows, M.; Yang, H.; Wang, J.; Zhang, G.; Hu, Z. Measuring Compound Soil Erosion by Wind and Water in the Eastern Agro–Pastoral Ecotone of Northern China. Sustainability 2022, 14, 6272. [Google Scholar] [CrossRef]
- Mahabaleshwara, H.; Nagabhushan, H.M. A Study on Soil Erosion and Its Impacts on Floods and Sedimentation. IJRET Int. J. Res. Eng. Technol. 2014, 3, 443–451. [Google Scholar]
- Ozsahin, E.; Duru, U.; Eroglu, I. Land use and land cover changes (LULCC), a key to understand soil erosion intensities in the Maritsa Basin. Water 2018, 10, 335. [Google Scholar] [CrossRef] [Green Version]
- Marondedze, A.K.; Schütt, B. Assessment of soil erosion using the rusle model for the Epworth district of the harare metropolitan province, zimbabwe. Sustainability 2020, 12, 12208531. [Google Scholar] [CrossRef]
- Nut, N.; Mihara, M.; Jeong, J.; Ngo, B.; Sigua, G.; Prasad, P.V.V.; Reyes, M.R. Land use and land cover changes and its impact on soil erosion in stung sangkae catchment of cambodia. Sustainability 2021, 13, 9276. [Google Scholar] [CrossRef]
- Piyathilake, I.D.U.H.; Sumudumali, R.G.I.; Udayakumara, E.P.N.; Ranaweera, L.V.; Jayawardana, J.M.C.K.; Gunatilake, S.K. Modeling predictive assessment of soil erosion related hazards at the Uva province in Sri Lanka. Model. Earth Syst. Environ. 2021, 7, 1947–1962. [Google Scholar] [CrossRef]
- Panditharathne, D.L.D.; Abeysingha, N.S.; Nirmanee, K.G.S.; Mallawatantri, A. Application of revised universal soil loss equation (Rusle) model to assess soil erosion in “kalu Ganga” River Basin in Sri Lanka. Appl. Environ. Soil Sci. 2019, 9, 15. [Google Scholar] [CrossRef] [Green Version]
- Perera, K.H.K.; Udeshani, W.A.C.; Piyathilake, I.D.U.H.; Wimalasiri, G.E.M.; Kadupitiya, H.K.; Udayakumara, E.P.N.; Gunatilake, S.K. Assessing soil quality and soil erosion hazards in the Moneragala District, Sri Lanka. SN Appl. Sci. 2020, 2, 2175. [Google Scholar] [CrossRef]
- Thuraisingham, K.; Weerasinghe, V.P.A. Soil Erosion Study for Bibili Oya Watershed in Kelani River Basin, ArcGIS User Cnference (SLAUC-2015). 2015. Available online: https://www.researchgate.net/publication/281642856_Soil_erosion_study_for_Bibili_Oya_watershed_in_Kelani_river_basin (accessed on 31 May 2022).
- Dissanayake, D.; Morimoto, T.; Ranagalage, M. Accessing the soil erosion rate based on RUSLE model for sustainable land use management: A case study of the Kotmale watershed, Sri Lanka. Model. Earth Syst. Environ. 2019, 5, 291–306. [Google Scholar] [CrossRef]
- Senanayake, S.; Pradhan, B.; Huete, A.; Brennan, J. Assessing soil erosion hazards using land-use change and landslide frequency ratio method: A case study of Sabaragamuwa province, Sri Lanka. Remote Sens. 2020, 12, 1483. [Google Scholar] [CrossRef]
- Fayas, C.M.; Abeysingha, N.S.; Nirmanee, K.G.S.; Samaratunga, D.; Mallawatantri, A. Soil loss estimation using rusle model to prioritize erosion control in KELANI river basin in Sri Lanka. Int. Soil Water Conserv. Res. 2019, 7, 130–137. [Google Scholar] [CrossRef]
- De Silva, S.S.; Abeysingha, N.S.; Nirmanee, K.G.S.; Sandamali Pathirage, P.D.S.; Mallawatantri, A. Effect of land use–land cover and projected rainfall on soil erosion intensities of a tropical catchment in Sri Lanka. Int. J. Environ. Sci. Technol. 2022, 2022, 4606. [Google Scholar] [CrossRef]
- Piyathilake, I.D.U.H.; Udayakumara, E.P.N.; Gunatilake, S.K. Gis and rs based soil erosion modelling in sri lanka: A review. J. Agric. Sci. Sri Lanka 2021, 16, 143–162. [Google Scholar] [CrossRef]
- Bastola, S.; Jeong Seong, Y.; Hyup Lee, S.; Shin, Y. Assessment of Soil Erosion Loss by Using RUSLE and GIS in the Bagmati Basin of Nepal. J. Korean Geo-Environ. Soc. 2019, 20, 5–14. [Google Scholar] [CrossRef]
- Kogo, B.K.; Kumar, L.; Koech, R. Impact of land use/cover changes on soil erosion in western kenya. Sustainability 2020, 12, 12229740. [Google Scholar] [CrossRef]
- Fernando, J. Estimating and Modeling Soil Loss and Sediment Yield in the Maracas-St. Joseph River Catchment with Empirical Models (RUSLE and MUSLE) and a Physically Based Model (EROSION 3D). 2007. Available online: https://www.researchgate.net/publication/30001832_Estimating_and_modeling_soil_loss_and_sediment_yield_in_the_Maracas-St_Joseph_River_Catchment_with_empirical_models_RUSLE_and_MUSLE_and_a_physically_based_model_EROSION_3D (accessed on 21 June 2022).
- Lee, G.-S.; Lee, K.-H. Scaling effect for soil loss in the RUSLE in Korea Scaling effect for estimating soil loss in the RUSLE model using remotely sensed geospatial data in Korea Scaling effect for soil loss in the RUSLE in Korea. Hydrol. Earth Syst. Sci. Discuss. 2006, 3, 135–157. Available online: www.copernicus.org/EGU/hess/hessd/3/135/ (accessed on 10 June 2022).
- Balabathina, V.N.; Raju, R.P.; Mulualem, W.; Tadele, G. Estimation of soil loss using remote sensing and GIS-based universal soil loss equation in northern catchment of Lake Tana Sub-basin, Upper Blue Nile Basin, Northwest Ethiopia. Environ. Syst. Res. 2020, 9, 35. [Google Scholar] [CrossRef]
- Bensekhria, A.; Bouhata, R. Assessment and Mapping Soil Water Erosion Using RUSLE Approach and GIS Tools: Case of Oued el-Hai Watershed, Aurès West, Northeastern of Algeria. ISPRS Int. J. Geo-Inf. 2022, 11, 84. [Google Scholar] [CrossRef]
- Ouma, Y.O.; Lottering, L.; Tateishi, R. Soil Erosion Susceptibility Prediction in Railway Corridors Using RUSLE, Soil Degradation Index and the New Normalized Difference Railway Erosivity Index (NDReLI). Remote Sens. 2022, 14, 348. [Google Scholar] [CrossRef]
- Vanderpooten, P. Assessment and Mapping Soil Erosion Risk Hazard Zones In Anuradhapura, Polonnaruwa and Vavuniya Districts of Sri Lanka. 2016. Available online: http://www.erepo.lib.uwu.ac.lk/bitstream/handle/123456789/6613/UWULD%20EAG%2012%200042-14052019114225.pdf?sequence=1 (accessed on 25 September 2022).
- Raza, A.; Ahrends, H.; Habib-Ur-rahman, M.; Gaiser, T. Modeling approaches to assess soil erosion by water at the field scale with special emphasis on heterogeneity of soils and crops. Land 2021, 10, 422. [Google Scholar] [CrossRef]
- Abdul Rahaman, S.; Aruchamy, S.; Jegankumar, R.; Abdul Ajeez, S. Estimation of Annual Average Soil Loss, Based On Rusle Model In Kallar Watershed, Bhavani Basin, Tamil Nadu, India. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 2, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Amellah, O.; el Morabiti, K. Assessment of soil erosion risk severity using GIS, remote sensing and RUSLE model in Oued Laou Basin (north Morocco). Soil Sci. Annu. 2021, 72, 142530. [Google Scholar] [CrossRef]
- Biswas, S.S.; Pani, P. Estimation of soil erosion using RUSLE and GIS techniques: A case study of Barakar River basin, Jharkhand, India. Model. Earth Syst. Environ. 2015, 1, 42. [Google Scholar] [CrossRef] [Green Version]
- Weerathunghe, C. Trend Analysis of Rainfall Parameters in the Maha Oya Catchment. Ph.D. Thesis, University of Peradeniya, Peradeniya, Sri Lanka, 25 October 2014. [Google Scholar] [CrossRef]
- Kamran, M.; Rajapakse, R.H.L. Effect of Watershed Subdivision and Antecedent Moisture Condition on HEC-HMS Model Performance in the Maha Oya Basin, Sri Lanka. Int. J. Eng. Technol. Sci. 2018, 5, 1004. [Google Scholar] [CrossRef]
- Seevarethnam, M.; Hashim, M.; Rinos, M. River Erosion and Degradation Of Maha Oya River Basin: A Study Based On Selected Areas. 2016. Available online: https://www.researchgate.net/publication/328163697 (accessed on 20 September 2022).
- Herath, M.H.B.C.W.; Wijesekera, N.T.S. Evaluation of HEC-HMS Model for Water Resources Management in Maha Oya Basin in Sri Lanka. Eng. J. Inst. Eng. Sri Lanka 2021, 54, 45. [Google Scholar] [CrossRef]
- Water Quality Monitoring of Ma Oya. 2013. Available online: https://www.cea.lk/web/en/water?id=158 (accessed on 18 August 2022).
- The Study on Extension of the Moragahakanda Agricultural Development Project. 1988. Available online: https://libportal.jica.go.jp/library/Data/DocforEnvironment/RAP-RIP/EastAsia-SouthwesternAsian/Moragahakanda/MoragahakandaRIP.pdf (accessed on 22 October 2022).
- Kyuma, K.; Kawaguchi, K. Major Soils of Southeast Asia and the Classification of Soils Under Rice Cultivation (Paddy Soils). 1966. Available online: https://www.semanticscholar.org/paper/Title-Major-Soils-of-Southeast-Asia-and-the-of-Rice-Kyuma-Kawaguchi/b25ee49ebec5a4dca8ad673354ae57c3dc596778 (accessed on 14 September 2022).
- Moormakn, F.R.; Panäbokkt, C.R.; Moormann, F.R. Soils of Ceylon. A New Approach to the Identification and Classification of the Most Important Soil Groups of Ceylon. Trop. Agric. 1961, 171, 22. [Google Scholar]
- Congalton, R.G. A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Woldemariam, G.W.; Iguala, A.D.; Tekalign, S.; Reddy, R.U. Spatial modeling of soil erosion risk and its implication for conservation planning: The case of the gobele watershed, east hararghe zone, Ethiopia. Land 2018, 7, 25. [Google Scholar] [CrossRef] [Green Version]
- Nigatu, A. Impact of Land Use Land Cover Change On Soil Erosion Risk: The Case Of Denki River Catchment Of Ankober Woreda. 2014. Available online: https://www.academia.edu/39863751/By_Aklile_Nigatu_IMPACT_OF_LAND_USE_LAND_COVER_CHANGE_ON_SOIL_EROSION_RISK_THE_CASE_OF_DENKI_RIVER_CATCHMENT_OF_ANKOBER_WOREDA (accessed on 30 September 2022).
- Uddin, K.; Matin, M.A.; Maharjan, S. Assessment of land cover change and its impact on changes in soil erosion risk in Nepal. Sustainability 2018, 10, 4715. [Google Scholar] [CrossRef]
- Renard, K.G.; Foster, G.R.; McCool, D.K.; Yoder, D.C. Predicting Soil Erosion by Water: A Guide to Conservation Planing With the Revised Universal Soil Loss Equation (RUSLE). 1997. Available online: https://www.semanticscholar.org/paper/Predicting-soil-erosion-by-water-:-a-guide-to-with-Renard-Foster/accb464bac84b9f21b0d82781e7a9f4626873946 (accessed on 3 October 2022).
- Karamage, F.; Zhang, C.; Liu, T.; Maganda, A.; Isabwe, A. Soil erosion risk assessment in Uganda. Forests 2017, 8, 52. [Google Scholar] [CrossRef]
- Chen, P.; Feng, Z.; Mannan, A.; Chen, S.; Ullah, T. Assessment of soil loss from land use/land cover change and disasters in the longmen shan mountains, China. Appl. Ecol. Environ. Res. 2019, 17, 11233–11247. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning. 1978. Available online: https://www.semanticscholar.org/paper/Predicting-rainfall-erosion-losses-:-a-guide-to-Wischmeier-Smith/9e6db1b19ae32724ad07a7e8221099433266df41 (accessed on 27 September 2022).
- Wijesekera, S.; Samarakoon, L. Extraction of Parameters and Modelling Soil Erosion Using Gis In A Grid Environment. 2001. Available online: http://dl.lib.uom.lk/handle/123/8015 (accessed on 20 September 2022).
- Jayasekara, M.J.P.T.M.; Kadupitiya, H.K.; Vitharana, U.W.A. Mapping of soil erosion hazard zones of Sri Lanka. Trop. Agric. Res. 2018, 29, 135. [Google Scholar] [CrossRef] [Green Version]
- S C Jayasinghe, P.K.; Adornado, H.A.; Yoshida, M.; Leelamanie, D.A.A. Web-Based GIS and Remote Sensing Framework for Spatial Information System (SIS): A Case Study in Nuwaraeliya, Sri Lanka. Agric. Inf. Res. 2010, 19, 106–116. [Google Scholar] [CrossRef] [Green Version]
- Girma, R.; Gebre, E. Spatial modeling of erosion hotspots using GIS-RUSLE interface in Omo-Gibe river basin, Southern Ethiopia: Implication for soil and water conservation planning. Environ. Syst. Res. 2020, 9, 19. [Google Scholar] [CrossRef]
- Amado, T.; Reinert, D.; Reichert, J. Selected Papers from the 10th International Soil Conservation Organization Meeting Held May 24–29; 2001. Available online: https://www.researchgate.net/publication/337693421_Selected_papers_from_the_10th_International_Soil_Conservation_Organization_Meeting_held_May_24-29 (accessed on 13 October 2022).
- Govers, G.; Desmet, P.J.J. A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. J. Soil Water Conserv. 1996, 427–433. [Google Scholar]
- Liu, B.Y.; Nearing, M.A.; Shi, P.J.; Jia, Z.W. Slope Length Effects on Soil Loss for Steep Slopes. Soil Sci. Soc. Am. J. 2000, 64, 1759–1763. [Google Scholar] [CrossRef] [Green Version]
- Moore, I.D.; Wilson, J.P. Length-Slope Factors for The Revised Universal Soil Loss Equation: Simplified Method of Estimation. 1992. Available online: www.swcs.org (accessed on 12 October 2022).
- Chadli, K. Estimation of soil loss using RUSLE model for Sebou watershed (Morocco). Model. Earth Syst. Environ. 2016, 2, 51. [Google Scholar] [CrossRef] [Green Version]
- Phinzi, K.; Ngetar, N.S. The assessment of water-borne erosion at catchment level using GIS-based RUSLE and remote sensing: A review. Int. Soil Water Conserv. Res. 2019, 7, 27–46, International Research and Training Center on Erosion and Sedimentation and China Water and Power Press. [Google Scholar] [CrossRef]
- Dias, B.A.R.H.; Udayakumara, E.P.N.; Jayawardana, J.M.C.K.; Malavipathirana, S.; Dissanayake, D.A.T.W.K. Assessment of Soil Erosion in Uma Oya Catchment, Sri Lanka. J. Environ. Prof. Sri Lanka 2019, 8, 39. [Google Scholar] [CrossRef] [Green Version]
- Senanayake, S. Use of Erosion Hazard Assessments for Regional Scale Crop Suitability Mapping in the Uva Province. 2016. Available online: https://www.researchgate.net/publication/331813472 (accessed on 20 October 2022).
- How Intersect Works. 2016. Available online: https://desktop.arcgis.com/en/arcmap/10.3/tools/analysis-toolbox/how-intersect-analysis-works.htm#:~:text=The%20Intersect%20tool%20calculates%20the,to%20the%20output%20feature%20class (accessed on 20 October 2022).
- Premalal, R.; Silva, D.; Wickramasinghe, L.A.; Premalal, R. Development of A Rainstorm Erosivity Map For Sri Lanka Tea Plantation Mapping with Satellite Data View project GIS-Based Soil Erosion Modeling and Application of Remote Sensing on Soil Erosion Assessment. View project Development of A Rainstorm Erosivity Map For Sri Lanka. 1988. Available online: https://www.researchgate.net/publication/265202295 (accessed on 28 October 2022).
- Benavidez, R.; Jackson, B.; Maxwell, D.; Norton, K. A Review of the (Revised) Universal Soil Loss Equation (R/USLE): With a View to Increasing its Global Applicability and Improving Soil Loss Estimates. Hydrol. Earth Syst. Sci. 2018, 22, 6059–6086. [Google Scholar] [CrossRef]
- Langbein, W.B.; Schumm, S.A. Yield of Sediment in Relation to Mean Annual Precipitation. Eos Trans. AGU 1958, 39, 1076–1084. [Google Scholar] [CrossRef] [Green Version]
- Saco, P.M.; Moreno-De Las Heras, M. Ecogeomorphic coevolution of semiarid hillslopes: Emergence of banded and striped vegetation patterns through interaction of biotic and abiotic processes. Water Resour. Res. 2013, 49, 115–126. [Google Scholar] [CrossRef]
- Srivastava, A.; Kumari, N.; Maza, M. Hydrological Response to Agricultural Land Use Heterogeneity Using Variable Infiltration Capacity Model. Water Res. Manag. 2020, 34, 3779–3794. [Google Scholar] [CrossRef]
- Babel, M.S.; Gunathilake, M.B.; Jha, M.K. Evaluation of ecosystem-based adaptation measures for sediment yield in a tropical watershed in Thailand. Water 2021, 13, 2767. [Google Scholar] [CrossRef]
- Sustainable Development Goals (SDGs) and Disability (n.d.). Available online: https://www.un.org/development/desa/disabilities/about-us/sustainable-development-goals-sdgs-and-disability.html (accessed on 18 December 2022).
Rain Gauging Station | Location Coordinates |
---|---|
Ambepussa Govt. Farm | 7°16′48″ N 80°10′12″ E |
Andigama Farm | 7°22′12″ N 80°7′12″ E |
Aranayake Govt. Hospital | 7°10′48″ N 80°28′12″ E |
Eraminigolla | 7°17′60″ N 80°22′48″ E |
Mellawa Estate | 7°19′12″ N 79°57′0″ E |
Slope Class (Degrees) | Susceptibility | Characteristics | Area (km2) | % |
---|---|---|---|---|
0–2 | Very Low | Flat To Very Gently | 290.62 | 19.12 |
2–5 | Low | Sloping | 363.03 | 23.87 |
5–10 | Medium | Gently Sloping | 331.24 | 21.78 |
10–15 | High | Strongly Sloping | 205.61 | 13.52 |
15–30 | Very High | Moderately Sloping | 290.22 | 19.08 |
>30 | Extremely High | Steep | 39.98 | 2.63 |
Total | 1520.7 | 100 |
Base Year | Landsat Type |
---|---|
1989 | Landsat 4–5 TM C1 Level-1 |
2000 | Landsat 7 ETM + C1 Level 1 |
2009 | Landsat 4–5 TM C1 Level-1 |
2021 | Landsat 8 OLI/TIRS C1 Level 1 |
LU/LC Types | 1989 | 2000 | 2009 | 2021 | ||||
---|---|---|---|---|---|---|---|---|
Users Accuracy (%) | Producers Accuracy (%) | Users Accuracy (%) | Producers Accuracy (%) | Users Accuracy (%) | Producers Accuracy (%) | Users Accuracy (%) | Producers Accuracy (%) | |
Vegetation | 100.00 | 81.82 | 97.44 | 80.85 | 100.00 | 77.42 | 100.00 | 100.00 |
Water bodies | 100.00 | 100.00 | 100.00 | 94.44 | 86.67 | 92.86 | 100.00 | 100.00 |
Forest | 92.00 | 88.46 | 57.14 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Agricultural Land | 61.54 | 100.00 | 75.00 | 81.82 | 95.83 | 95.83 | 100.00 | 100.00 |
Bare Land | 80.00 | 80.00 | 100.00 | 50.00 | 66.67 | 100.00 | 75.00 | 75.00 |
Exposed Rocks | 100.00 | 83.33 | 50.00 | 100.00 | 87.50 | 77.78 | 88.89 | 100.00 |
Settlements | 96.00 | 100.00 | 76.00 | 95.00 | 77.27 | 100.00 | 96.88 | 100.00 |
Overall Accuracy (%) | 91.51 | 85.32 | 90.27 | 96.95 | ||||
Kappa Coefficient (%) | 89.64 | 80.72 | 88.24 | 96.33 |
LU/LC Type | 1989 | 2000 | 2009 | 2021 | Net Change | |||||
---|---|---|---|---|---|---|---|---|---|---|
(1989–2021) | ||||||||||
Area | Area (%) | Area | Area (%) | Area | Area (%) | Area | Area | Area | Area (%) | |
(km2) | (km2) | (km2) | (km2) | (%) | (km2) | |||||
Water Bodies | 20.5 | 1.35 | 14.9 | 0.98 | 18.4 | 1.22 | 12.1 | 0.80 | −8.4 | −0.55 |
Bare Land | 2.7 | 0.18 | 9.8 | 0.64 | 86.1 | 5.66 | 120.3 | 7.91 | 117.6 | 7.73 |
Agricultural Land | 268.6 | 17.66 | 216.7 | 14.25 | 235.3 | 15.47 | 240.5 | 15.82 | −28.1 | −1.84 |
Settlement | 64.6 | 4.25 | 69.6 | 4.58 | 83.4 | 5.48 | 135.2 | 8.89 | 70.6 | 4.64 |
Forest | 566.7 | 37.27 | 542.4 | 35.67 | 569.0 | 37.42 | 500.7 | 32.93 | −66.0 | −4.34 |
Exposed Rock | 29.7 | 1.95 | 20.9 | 1.37 | 30.6 | 2.01 | 40.2 | 2.63 | 10.5 | 0.68 |
Vegetation | 567.9 | 37.34 | 609.3 | 40.07 | 497.9 | 32.74 | 471.7 | 31.02 | −96.2 | −6.32 |
Clouds | 0.0 | 0.00 | 37.1 | 2.44 | 0.0 | 0.00 | 0.0 | 0.00 | 0.0 | 0.00 |
Total | 1521.0 | 100.00 | 1521.0 | 100.00 | 1521.0 | 100.00 | 1521.0 | 100.00 | 0.0 | 0.00 |
LU/LC Type | 2021 | Total 1989 | |||||||
---|---|---|---|---|---|---|---|---|---|
Agricultural Land | Bare Land | Exposed Rock | Forest | Settlement | Vegetation | Water Bodies | |||
1989 | Agricultural land | 105.5 | 23.3 | 1.7 | 49.7 | 13.6 | 74.1 | 0.6 | 268.6 |
Bare land | 0.1 | 0.3 | 0.2 | 0.1 | 1.2 | 0.5 | 0.2 | 2.7 | |
Exposed rock | 0.7 | 3.5 | 5.8 | 9.4 | 2.8 | 7.4 | 0.0 | 29.7 | |
Forest | 47.3 | 42.9 | 25.2 | 270.4 | 47.9 | 132.3 | 0.8 | 566.7 | |
Settlement | 6.2 | 8.4 | 2.9 | 6.9 | 23.5 | 15.2 | 1.5 | 64.6 | |
Vegetation | 77.3 | 38.6 | 4.4 | 163.5 | 44.3 | 238.9 | 1.0 | 567.9 | |
Water Bodies | 3.3 | 3.4 | 0.0 | 0.7 | 1.8 | 3.4 | 7.8 | 20.5 | |
Total in 2021 | 240.5 | 120.3 | 40.2 | 500.7 | 135.2 | 471.7 | 12.1 | 1520.7 |
Station | Longitude | Latitude | Mean Annual Precipitation (mm) |
---|---|---|---|
Ambepussa Govt Farm | 80.17 | 7.28 | 2170.80 |
Andigama Farm | 80.12 | 7.37 | 1820.38 |
Aranayake Govt. Hospital | 80.47 | 7.18 | 1878.20 |
Eraminigolla | 80.38 | 7.30 | 2038.60 |
Mellawa Estate | 79.95 | 7.32 | 1651.17 |
Soil Type | K Factor | Area (km2) | Area (%) |
---|---|---|---|
Rock knob plain | 0.10 | 2.42 | 0.16 |
Red-Yellow Podzolic soils; steeply dissected, hilly and rolling terrain | 0.22 | 450.19 | 29.61 |
Alluvial soils of variable drainage and texture; flat terrain | 0.31 | 47.46 | 3.12 |
Red-Yellow Podzolic soils & Mountain Regosols; mountainous terrain | 0.22 | 73.11 | 4.81 |
Steep rockland & Lithosols | 0.25 | 16.03 | 1.05 |
Red-Yellow Podzolic soils with soft or hard laterite; rolling and undulating terrain | 0.22 | 250.90 | 16.50 |
Regosols on Recent beach and dune sands; flat terrain | 0.48 | 1.60 | 0.11 |
Red-Yellow Podzolic soils & Low Humic Gley soils; rolling and undulating terrain | 0.16 | 329.92 | 21.70 |
Latosols and Regosols on old red and yellow sands; flat terrain | 0.41 | 102.33 | 6.72 |
Erosional remnants (Inselbergs) | 0.10 | 0.56 | 0.04 |
Reddish Brown Latosolic soils; steeply dissected, hilly and rolling terrain | 0.17 | 135.66 | 8.92 |
Immature Brown Loams; steeply dissected, hilly and rolling terrain | 0.33 | 110.43 | 7.26 |
Total | 1521 | 100 |
Erosion Hazard Classes | Soil Erosion (t ha−1 yr−1) | Total Annual Soil Loss | |||
---|---|---|---|---|---|
1989 | 2021 | ||||
(ton) | (%) | (ton) | (%) | ||
Low | 0–5 | 131,430.2 | 30.73 | 126,509.0 | 25.89 |
Moderate | 5–12 | 161,406.2 | 37.74 | 158,975.3 | 32.54 |
High | 12–25 | 96,165.2 | 22.48 | 118,956.6 | 24.35 |
Very High | 25–60 | 32,812.8 | 7.67 | 65,162.2 | 13.34 |
Extremely High | >60 | 5895.3 | 1.38 | 18,950.7 | 3.88 |
Total | 427,709.7 | 100 | 488,553.8 | 100 |
Erosion Hazard Classes | Soil Erosion (t ha−1 yr−1) | 1989 | 2021 | Net Change (%) | ||||
---|---|---|---|---|---|---|---|---|
Area | Mean Soil Erosion (t ha−1 yr−1) | Area | Mean Soil Erosion (t ha−1 yr−1) | |||||
(km2) | (%) | (km2) | (%) | |||||
Low | 0–5 | 1236.92 | 81.34 | 1.06 | 1217.73 | 80.08 | 1.04 | −1.26 |
Moderate | 5–12 | 213.59 | 14.05 | 7.56 | 209.99 | 13.81 | 7.57 | −0.24 |
High | 12–25 | 59.72 | 3.93 | 16.10 | 71.85 | 4.73 | 16.56 | 0.8 |
Very High | 25–60 | 9.76 | 0.63 | 33.63 | 18.90 | 1.24 | 34.48 | 0.61 |
Extremely High | >60 | 0.72 | 0.05 | 81.81 | 2.08 | 0.14 | 91.01 | 0.09 |
Total | 1521 | 100 | 1521 | 100 |
No. | Slope Class (Degree) | Area | Soil Loss (t ha−1 yr−1) | Net Change (t ha−1 yr−1) | ||
---|---|---|---|---|---|---|
(km2) | (%) | 1989 | 2021 | |||
1 | 0–2 | 290.62 | 19.11 | 0.78 | 1.02 | 0.23 |
2 | 2–5 | 363.03 | 23.87 | 1.55 | 1.90 | 0.36 |
3 | 5–10 | 331.24 | 21.78 | 2.51 | 2.98 | 0.47 |
4 | 10–15 | 205.61 | 13.52 | 3.81 | 4.07 | 0.26 |
5 | 15–30 | 290.22 | 19.08 | 5.47 | 5.88 | 0.41 |
6 | >30 | 39.98 | 2.63 | 7.18 | 9.21 | 2.03 |
No. | Elevation (m) | Area | Soil Loss (t ha−1 yr−1) | Net Change (t ha−1 yr−1) | ||
---|---|---|---|---|---|---|
(km2) | (%) | 1989 | 2021 | |||
1 | 0–300 | 1315.12 | 86.48 | 2.57 | 2.80 | 0.26 |
2 | 300–600 | 128.90 | 8.48 | 4.99 | 5.25 | 2.85 |
3 | 600–900 | 56.97 | 3.75 | 3.24 | 6.09 | 5.74 |
4 | 900–1200 | 17.44 | 1.15 | 3.41 | 9.14 | 7.19 |
5 | 1200–1500 | 2.27 | 0.15 | 3.20 | 10.39 | 0.23 |
LU/LC Type | 1989 | 2021 | ||||
---|---|---|---|---|---|---|
Mean Soil Erosion (t ha−1 yr−1) | Annual Soil Loss (ton) | Annual Soil Loss (%) | Mean Soil Erosion (t ha−1 yr−1) | Annual Soil Loss (ton) | Annual Soil Loss (%) | |
Bare Land | 5.93 | 1467.21 | 0.34 | 7.30 | 86,136.53 | 17.63 |
Agricultural Land | 1.08 | 28,784.79 | 6.73 | 0.95 | 22,502.59 | 4.61 |
Settlement | 0.42 | 2604.13 | 0.61 | 0.58 | 7619.96 | 1.56 |
Forest | 2.66 | 152,618.82 | 35.69 | 3.26 | 163,204.40 | 33.41 |
Vegetation | 4.21 | 239,739.56 | 56.06 | 4.15 | 200,284.89 | 41.00 |
No. | Primary LU/LC Conversion | Max Soil Erosion Range (t ha−1 yr−1) | Mean Soil Erosion (t ha−1 yr−1) | Changed Area (km2) | Average Annual Soil Loss (ton) | Average Annual Soil Loss (%) |
---|---|---|---|---|---|---|
1 | Agricultural Land—Bare Land | 377.98 | 6.04 | 23.06 | 13,926.35 | 2.85 |
2 | Agricultural Land—Forest | 329.52 | 2.49 | 49.02 | 12,189.32 | 2.50 |
3 | Agricultural Land—Settlement | 121.01 | 0.71 | 13.50 | 953.65 | 0.20 |
4 | Agricultural Land—Vegetation | 252.81 | 3.88 | 73.04 | 28,354.61 | 5.80 |
5 | Forest—Agricultural Land | 414.74 | 1.27 | 46.65 | 5942.78 | 1.22 |
6 | Forest—Bare Land | 612.96 | 8.43 | 41.92 | 35,327.34 | 7.23 |
7 | Forest—Settlement | 196.22 | 0.79 | 47.23 | 3734.07 | 0.76 |
8 | Forest—Vegetation | 427.39 | 5.25 | 148.96 | 78,147.25 | 16.00 |
9 | Settlement—Bare Land | 448.78 | 6.85 | 8.19 | 5608.33 | 1.15 |
10 | Settlement—Vegetation | 256.65 | 4.56 | 14.98 | 6832.21 | 1.40 |
11 | Vegetation—Agricultural Land | 183.88 | 1.06 | 76.04 | 8073.42 | 1.65 |
12 | Vegetation—Bare Land | 210.80 | 5.82 | 38.05 | 22,148.77 | 4.53 |
13 | Vegetation—Forest | 431.03 | 2.72 | 171.81 | 46,760.24 | 9.57 |
14 | Vegetation—Settlement | 118.04 | 0.61 | 43.23 | 2630.94 | 0.54 |
15 | Water Bodies—Bare Land | 407.87 | 5.31 | 3.30 | 1750.52 | 0.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palliyaguru, C.; Basnayake, V.; Makumbura, R.K.; Gunathilake, M.B.; Muttil, N.; Wimalasiri, E.M.; Rathnayake, U. Evaluation of the Impact of Land Use Changes on Soil Erosion in the Tropical Maha Oya River Basin, Sri Lanka. Land 2023, 12, 107. https://doi.org/10.3390/land12010107
Palliyaguru C, Basnayake V, Makumbura RK, Gunathilake MB, Muttil N, Wimalasiri EM, Rathnayake U. Evaluation of the Impact of Land Use Changes on Soil Erosion in the Tropical Maha Oya River Basin, Sri Lanka. Land. 2023; 12(1):107. https://doi.org/10.3390/land12010107
Chicago/Turabian StylePalliyaguru, Chathura, Vindhya Basnayake, Randika K. Makumbura, Miyuru B. Gunathilake, Nitin Muttil, Eranga M. Wimalasiri, and Upaka Rathnayake. 2023. "Evaluation of the Impact of Land Use Changes on Soil Erosion in the Tropical Maha Oya River Basin, Sri Lanka" Land 12, no. 1: 107. https://doi.org/10.3390/land12010107
APA StylePalliyaguru, C., Basnayake, V., Makumbura, R. K., Gunathilake, M. B., Muttil, N., Wimalasiri, E. M., & Rathnayake, U. (2023). Evaluation of the Impact of Land Use Changes on Soil Erosion in the Tropical Maha Oya River Basin, Sri Lanka. Land, 12(1), 107. https://doi.org/10.3390/land12010107