Carbonate Mineral Dissolution and Its Carbon Sink Effect in Chinese Loess
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification Methods of PCM and SCM
2.1.1. Stable Isotope
2.1.2. Thermo-Gravimetric Analysis (TGA) and X-ray Diffraction (XRD) Technology Used in Loess Mineral
2.1.3. Element Pairings
2.2. Methods for Loess Carbon Sink Research
2.2.1. Galy Model and Hydro-Chemical Method
2.2.2. Limestone Tablet Method (LTM)
- ①
- First, process the rock sample to standard dimensions.
- ②
- Rinse the test piece with deionized water, then dry it in a regular oven at 105 °C for 12 h.
- ③
- Weigh, with an accuracy of 0.0001 g.
3. The Influencing Factors of Loess Carbon Sink
3.1. Temporal and Spatial Distribution Characteristics of Soil CO2 in the Loess Region and Its Influencing Factors
- ETC is the amount of CO2 absorbed during carbonate weathering.
- RTC is the total amount of CO2 in atmospheric precipitation.
- STC is the total amount of CO2 lost in groundwater.
3.2. Mineral Chemical Weathering Rate, CO2 Consumption, and Its Influencing Factors Watershed of the Loess Area
4. Conclusions and Further Considerations
- These studies focus on loess as a whole, not touching carbonate’s dissolution process and its reaction mechanism.
- Research methods need to be improved, and new methods more suitable for carbon sink research in loess areas should be established as soon as possible.
- The research on SCM dissolution, which is the main carbon cycle process in loess, is weak, and the dissolution rate, migration law, and the carbon sink flux of SCM needs to be more well known.
- (1)
- The dissolution rate of loess secondary carbonate and its influencing factors;
- (2)
- The migration process and carbon sink mechanism of carbon in the air–soil/mineral–water in the loess area;
- (3)
- The influence of different land-use methods on the dissolution rate and carbon sink of loess secondary carbonate;
- (4)
- The influence of climatic conditions on the secondary carbonate dissolution rate and carbon sink;
- (5)
- An estimation model of carbon sink in small loess watershed and its application in loess areas.
- (1)
- The fate of carbon dioxide uptake by alkaline soils in the loess region is largely unknown, and further accurate assessments of the ability of abiotic uptake of carbon dioxide to contribute to carbon sequestration are required.
- (2)
- How the carbon sink effect of soil changes under different land-use patterns in the loess region.
- (3)
- What is the potential of surface water aquatic organisms to sequester carbon (i.e., BCP effect) in the loess region?
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Butler, J.H.; Montzka, S.A. The NOAA Annual Greenhouse Gas Index (AGGI); NOAA Earth System Research Laboratory: Boulder, CO, USA, 2016. [Google Scholar]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; Matthews, J.B.R.; Berger, S.; et al. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to The Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Broecker, W.S.; Takahashi, T.; Simoson, H.; Peng, T. Fate of fossil fuel carbon dioxide and the global carbon budget. Science 1979, 206, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Tans, P.P.; Fung, I.Y.; Takahashi, T. Observational contrains on the global atmospheric CO2 budget. Science 1990, 247, 1431–1438. [Google Scholar] [CrossRef] [PubMed]
- Sundquist, E.T. The global carbon dioxide budget. Science 1993, 259, 934–941. [Google Scholar] [CrossRef]
- Schindler, D.W. The mysterious missing sink. Nature 1999, 398, 105–107. [Google Scholar] [CrossRef]
- Ciais, P.; Sabine, C.; Bala, G.; Bopp, L.; Brovkin, V.; Canadell, J.; Chhabra, A.; DeFries, R.; Galloway, J.; Heimann, M.; et al. Carbon and other biogeochemical cycles. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014; pp. 465–570. [Google Scholar]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Hauck, J.; Olsen, A.; Peters, G.P.; Peters, W.; Pongratz, J.; Sitch, S.; et al. Global carbon budget 2020. Earth Syst. Sci. Data 2020, 12, 3269–3340. [Google Scholar] [CrossRef]
- Yang, Y.; Shi, Y.; Sun, W.; Chang, J.; Zhu, J.; Chen, L.; Wang, X.; Guo, Y.; Zhang, H.; Yu, L. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Sci. China Life Sci. 2022, 65, 861–895. [Google Scholar] [CrossRef]
- Liu, Z.; Dreybrodt, W.; Wang, H. A new direction in effective accounting for the atmospheric CO2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms. Earth-Sci. Rev. 2010, 99, 162–172. [Google Scholar] [CrossRef]
- Liu, Z.; Macpherson, G.L.; Groves, C.; Martin, J.B. Large and active CO2 uptake by coupled carbonate weathering. Earth-Sci. Rev. 2018, 182, 42–49. [Google Scholar] [CrossRef]
- Jin, Z.; You, C.; Yu, J.; Wu, L.; Zhang, F.; Liu, H. Seasonal contributions of catchment weathering and eolian dust to river water chemistry, northeastern Tibetan Plateau: Chemical and Sr isotopic constraints. J. Geophys. Res. Earth Surf. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Dreybrod, W. Dissolution kinetics of calcium carbonate minerals in H2O–CO2 solutions in turbulent flow: The role of the diffusion boundary layer and the slow reaction H2O+ CO2→ H++ HCO3−. Geochim. Cosmochim. Acta 1997, 61, 2879–2889. [Google Scholar] [CrossRef]
- Dreybrodt, W. Processes in Karst Systems: Physics, Chemistry, and Geology; Springer Science & Business Media: Berlin, Germany, 2012; Volume 4. [Google Scholar]
- Liu, Z.; Dreybrodt, W.; Wang, H. A possible important CO2 sink by the global water cycle. Chin. Sci. Bull. 2008, 53, 402–407. [Google Scholar] [CrossRef]
- Zeng, S.; Liu, Z.; Groves, C. Large-scale CO2 removal by enhanced carbonate weathering from changes in land-use practices. Earth-Sci. Rev. 2022, 225, 103915. [Google Scholar] [CrossRef]
- Liu, Z. Review on the role of terrestrial aquatic photosynthesis in the global carbon cycle. Procedia Earth Planet. Sci. 2013, 7, 513–516. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Dreybrodt., W. Significance of the carbon sink produced by H2O–carbonate–CO2–aquatic phototroph interaction on land. Sci. Bull. 2015, 60, 182–191. [Google Scholar] [CrossRef]
- Derbyshire, E. Geological hazards in loess terrain, with particular reference to the loess regions of China. Earth-Sci. Rev. 2001, 54, 231–260. [Google Scholar] [CrossRef]
- Liu, T. Loess and the Environment; China Ocean Press: Beijing, China, 1985. [Google Scholar]
- Li, Y.; Shi, W.; Aydin, W.; Beroya-Eitne, M.A.; Gao, G. Loess genesis and worldwide distribution. Earth-Sci. Rev. 2020, 201, 102947. [Google Scholar] [CrossRef]
- Wang, Y.; Ishida, S.; Zhao, J. The variation of the Quaternary paleoclimate as reflected by the sporo-pollens in the loess of China. In The Recent Research of Loess in China; Sasajima, S., Wang, Y., Eds.; Kyoto Institute of Natural History: Kyoto, Japan, 1984. [Google Scholar]
- Adnan, M.; Xiao, B.; Xiao, P.; Zhao, P.; Li, R.; Bibi, S. Research Progress on Heavy Metals Pollution in the Soil of Smelting Sites in China. Toxics 2022, 10, 231. [Google Scholar] [CrossRef]
- Lal, R.; Kimble, J. Inorganic carbon and the global carbon cycle: Research and development priorities. In Global Climate Change and Pedogenic Carbonates; CRC Press: Boca Raton, FL, USA, 2000; pp. 291–302. [Google Scholar]
- Gao, Y.; Zhang, P.; Liu, J. One third of the abiotically-absorbed atmospheric CO2 by the loess soil is conserved in the solid phase. Geoderma 2020, 374, 114448. [Google Scholar] [CrossRef]
- Xiao, P.; Xiao, B.; Adnan, M. Effects of Ca2+ on migration of dissolved organic matter in limestone soils of the southwest China karst area. Land Degrad. Dev. 2021, 32, 5069–5082. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, W.; Wu, S.; Shi, Z. Research on the impact of rural population structure changes on the net carbon sink of agricultural production-take Huan county in the Loess hilly region of China as an example. Front. Environ. Sci. 2022, 10, 911403. [Google Scholar] [CrossRef]
- Li, Y.; Quine, T.A.; Yu, H.Q.; Govers, G.; Six, J.; Gong, D.Z.; Wang, Z.; Zhang, Y.Z.; Oost, K.V. Sustained high magnitude erosional forcing generates an organic carbon sink: Test and implications in the Loess Plateau, China. Earth Planet. Sci. Lett. 2015, 411, 281–289. [Google Scholar] [CrossRef]
- Wan, G.; Wang, S. Effects of the atmospheric CO2 in karst area of southern and loess area of northern China. Quat. Sci. 2000, 20, 305–315. [Google Scholar]
- Wen, Q. Chinese Loess Geochemistry; Science Press: Beijing, China, 1989; pp. 115–158. [Google Scholar]
- Wan, G.; Wang, S.; Létolleb, R.; Jusser, C. Major element chemistry of the Huanghe (Yellow River), China-weathering processes and chemical fluxes. J. Hydrol. 1995, 168, 173–203. [Google Scholar]
- Li, G.; Chen, J.; Chen, Y.; Yang, J.; Ji, J.; Liu, L. Dolomite as a tracer for the source regions of Asian dust. J. Geophys. Res. Atmos. 2007, 112, D17201. [Google Scholar] [CrossRef]
- He, S.; Liang, Z.; Han, R.; Wang, Y.; Liu, G. Soil carbon dynamics during grass restoration on abandoned sloping cropland in the hilly area of the Loess Plateau, China. Catena 2016, 137, 679–685. [Google Scholar]
- Li, G.; Chen, J.; Chen, Y. Primary and secondary carbonate in Chinese loess discriminated by trace element composition. Geochim. Cosmochim. Acta 2013, 103, 26–35. [Google Scholar] [CrossRef]
- Cerling, T.E. The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth Planet. Sci. Lett. 1984, 71, 229–240. [Google Scholar] [CrossRef]
- Curl, R.L. Carbon shifted but not sequestered. Science 2012, 335, 655. [Google Scholar] [CrossRef]
- Liu, Z.; Dreybrodt, W.; Liu, H. Atmospheric CO2 sink: Silicate weathering or carbonate weathering? Appl. Geochem. 2011, 26, S292–S294. [Google Scholar] [CrossRef]
- Yadav, S.K.; Chakrapani, G. Dissolution kinetics of rock–water interactions and its implications. Curr. Sci. 2006, 90, 932–937. [Google Scholar]
- Pokrovsky, O.S.; Golubev, S.V.; Schott, J. Dissolution kinetics of calcite, dolomite and magnesite at 25 °C and 0 to 50 atm pCO2. Chem. Geol. 2005, 217, 239–255. [Google Scholar] [CrossRef]
- Waterson, E.J.; Canuel, E.A. Sources of sedimentary organic matter in the Mississippi River and adjacent Gulf of Mexico as revealed by lipid biomarker and δ13CTOC analyses. Org. Geochem. 2008, 39, 422–439. [Google Scholar] [CrossRef]
- Montety, V.; Martin, J.B.; Cohen, M.J.; Foster, C.; Kurza, M.J. Influence of diel biogeochemical cycles on carbonate equilibrium in a karst river. Chem. Geol. 2011, 283, 31–43. [Google Scholar] [CrossRef]
- Yang, L.; Li, G.; Li, B. Modeling and Application of Stable Carbon Isotope of Pedogenic Carbonate. Adv. Earth Sci. 2006, 21, 973. [Google Scholar]
- Liu, J.; Zhong, H. Preliminary study on greenhouse gas components in Weinan loess. Chin. Sci. Bull. 1996, 24, 2257–2260. [Google Scholar]
- Liu, Q.; Liu, J.; Liu, T. Primary research on major greenhouse gases in Zhaitang loess section Beijing. Earth Environ. 2000, 28, 82–86. [Google Scholar]
- Jiang, D.; Huang, G. Study on the filtration rate of soils on the loess plateau of China. Acta Pedol. Sin. 1986, 23, 299–304. [Google Scholar]
- Zhang, Q.; Jin, Z.; Zhang, F.; Xiao, J. Seasonal variation in river water chemistry of the middle reaches of the Yellow River and its controlling factors. J. Geochem. Explor. 2015, 156, 101–113. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, W.; Lu, Y.; Zhang, W.; Wang, Y. Carbon storage dynamics of secondary forest succession in the central loess plateau of China. Forests 2019, 10, 342. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Zhao, Z. Analysis of carbon storage and its contributing factors—A case study in the Loess Plateau (China). Energies 2018, 11, 1596. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Wang, J.; Pu, J.; Yan, J. Bicarbonate Daily Variations in a Karst River: The Carbon Sink Effect of Subaquatic Vegetation Photosynthesis. Acta Geol. Sin. 2012, 86, 973–979. [Google Scholar]
- Di, X.; Xiao, B.; Dong, H.; Wang, S. Implication of different humic acid fractions in soils under karst rocky desertification. Catena 2019, 74, 308–315. [Google Scholar] [CrossRef]
- Shao, M.; Liu, Z.; Sun, H.; Lai, C.; Ma, Z.; He, X.; Fang, Y.; Chai, Q. C-N-P driven changes to phytoplankton community structure and gross primary productivity in river-fed reservoir ecosystems on the Chinese Loess Plateau. J. Hydrol. 2023, 616, 128781. [Google Scholar] [CrossRef]
- Zhang, F.; Jin, Z.; Yu, J.; Zhou, Y. Hydrogeochemical processes between surface and groundwaters on the northeastern Chinese Loess Plateau: Implications for water chemistry and environmental evolutions in semi-arid regions. J. Geochem. Explor. 2015, 159, 115–128. [Google Scholar] [CrossRef]
- Hua, K.; Xiao, J.; Li, S.; Li, Z. Analysis of hydrochemical characteristics and their controlling factors in the Fen River of China. Sustain. Cities Soc. 2020, 52, 101827. [Google Scholar] [CrossRef]
- Shao, M.; Zhang, L.; Liu, P.; Shao, T.; Cao, J.; Qin, X.; Zhang, C. Mineral dissolution and carbon sink effect in a typical small watershed of the Loess Area. Earth Environ. 2019, 47, 575–585. [Google Scholar]
- Bao, Q.; Liu, Z.; Zhao, M.; Hu, Y.; Li, D.; Han, C.; Wei, Y.; Ma, S.; Zhang, Y. Primary productivity and seasonal dynamics of planktonic algae species composition in karst surface waters under different land uses. J. Hydrol. 2020, 591, 125295. [Google Scholar] [CrossRef]
- Zeng, Q.; Liu, Z.; Chen, B.; Hu, Y.; Zeng, S.; Zeng, C.; Yang, R.; He, H.; Zhu, H.; Cai, X.; et al. Carbonate weathering-related carbon sink fluxes under different land uses: A case study from the Shawan Simulation Test Site, Puding, Southwest China. Chem. Geol. 2017, 474, 58–71. [Google Scholar] [CrossRef]
- Chen, J.; Wang, F.; Xia, X.; Zhang, L. Major element chemistry of the Changjiang (Yangtze River). Chem. Geol. 2002, 187, 231–255. [Google Scholar] [CrossRef]
- Stallard, R.; Edmond, J. Geochemistry of the Amazon: 2. The influence of geology and weathering environment on the dissolved load. J. Geophys. Res. Ocean. 1983, 88, 9671–9688. [Google Scholar] [CrossRef]
- Gaillardet, J.; Dupré, B.; Louvat, P.; Allègre, C.J. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 1999, 159, 3–30. [Google Scholar] [CrossRef]
- Wang, Y.; Amunson, R.; Trumbore, S. A model for soil 14CO2 and its implications for using 14C to date pedogenic carbonate. Geochim. Cosmochim. Acta 1994, 58, 393–399. [Google Scholar]
- Chen, J.; Qiu, G.; Yang, J. Sr isotopic composition of loess carbonate and identification of primary and secondary carbonates. Prog. Nat. Sci. 1997, 7, 731–734. [Google Scholar]
- Connin, S.L.; Chamberlain, C.P.; Virginia, R.A. Isotopic study of environmental change from disseminated carbonate in polygenetic soils. Soil Sci. Soc. Am. J. 1997, 61, 1710–1722. [Google Scholar] [CrossRef] [Green Version]
- Khademi, H.; Mermut, A. Submicroscopy and stable isotope geochemistry of carbonates and associated palygorskite in Iranian Aridisols. Eur. J. Soil Sci. 1999, 50, 207–216. [Google Scholar] [CrossRef]
- Huang, C.; Wang, C.; Ai, N. Implication and application of stable carbon and oxygen isotopes of pedogenic carbonates in soils. Adv. Earth Sci. 2003, 18, 619–625. [Google Scholar]
- Ning, Y.; Liu, W.; An, Z. Changes in the carbon isotope difference (△δ13C) between carbonate and organic carbon in the loess-paleosoil profile in Xifeng, Gansu and its paleoenvironmental significance. Chin. Sci. Bull. 2006, 51, 1828–1832. [Google Scholar]
- Cao, J.; Wang, Y.; Zhang, X.; Li, S.; He, J.; Cao, Y.; Li, Y. Carbon isotope analysis of carbonate in the atmosphere and its source indication. Chin. Sci. Bull. 2004, 49, 1785–1788. [Google Scholar]
- Wang, Y.; Cao, J.; Zhang, X.; Shen, Z.; Mei, F. Carbonate content and carbon and oxygen isotopic composition of surface soil in the dust source regions of China. Mar. Geol. Quat. Geol. 2004, 24, 113–117. [Google Scholar]
- Ambrose, S.H.; Sikes, N.E. Soil carbon isotope evidence for Holocene habitat change in the Kenya Rift Valley. Science 1991, 253, 1402–1405. [Google Scholar] [CrossRef]
- Zanchetta, G.; Vito, M.D.; Fallick, A.E.; Sulpizio, R. Stable isotopes of pedogenic carbonates from the Somma–Vesuvius area, southern Italy, over the past 18 kyr: Palaeoclimatic implications. J. Quat. Sci. Publ. Quat. Res. Assoc. 2000, 15, 813–824. [Google Scholar] [CrossRef]
- Heiri, O.; Lotter, A.F.; Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. J. Paleolimnol. 2001, 25, 101–110. [Google Scholar] [CrossRef]
- Kök, M.V.; Smykatz-Kloss, W. Thermal Characterization of Dolomites. J. Therm. Anal. Calorim. 2001, 64, 1271–1275. [Google Scholar] [CrossRef]
- Beaudoin, A. A comparison of two methods for estimating the organic content of sediments. J. Paleolimnol. 2003, 29, 387–390. [Google Scholar] [CrossRef]
- Kooli, F. Thermal stability investigation of organo-acid-activated clays by TG-MS and in situ XRD techniques. Thermochim. Acta 2009, 486, 71–76. [Google Scholar] [CrossRef]
- Liang, L.; Sun, Y.; Jbeets, C.; Song, Y. Characteristics of carbonate minerals in loess and its implication for chemical weathering. Quat. Sci. 2014, 34, 645–653. [Google Scholar]
- Ning, W. Oxygen isotopic compositions of carbonates of modern surface lacustrine sediments and their affecting factors in Tibet Plateau. Quat. Sci. 2008, 28, 591–600. [Google Scholar]
- Liu, Z.; Li, X. Discussion on the Smectite formation in South China Sea Sediments. Quat. Sci. 2011, 31, 199–206. [Google Scholar]
- Zeng, M.; Song, Y. Carbonate minerals of Zhaosu loess section in westerly area and their paleoenvironmental significance. Quat. Sci. 2013, 33, 424–436. [Google Scholar]
- Li, G. Geochemical Tracing Research of East Asian Aeolian Source. Ph.D. Thesis, Nanjing University, Nanjing, China, 2010. [Google Scholar]
- Galy, A.; France-Lanord, C. Weathering processes in the Ganges–Brahmaputra basin and the riverine alkalinity budget. Chem. Geol. 1999, 159, 31–60. [Google Scholar] [CrossRef]
- Han, G.; Liu, C. Water geochemistry controlled by carbonate dissolution: A study of the river waters draining karst-dominated terrain, Guizhou Province, China. Chem. Geol. 2004, 204, 1–21. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, C. Chemical weathering in the upper reaches of Xijiang River draining the Yunnan–Guizhou Plateau, Southwest China. Chem. Geol. 2007, 239, 83–95. [Google Scholar] [CrossRef]
- Moon, S.; Huh, Y.; Qin, H.; Pho, N.V. Chemical weathering in the Hong (Red) River basin: Rates of silicate weathering and their controlling factors. Geochim. Cosmochim. Acta 2007, 71, 1411–1430. [Google Scholar] [CrossRef]
- Zhang, L.; Qin, X.; Liu, P.; Huang, Q. Chemical Denudation Rate and Atmospheric CO2 Consumption by H2CO3 and H2SO4 in the Yangtze River Catchment. Acta Geosci. Sin. 2016, 90, 1933–1944. [Google Scholar]
- Corbel, J. Erosion en terrain calcaire (vitesse d’érosion et morphologie). In Annales de Geographie; Armand Colin: Paris, France, 1959. [Google Scholar]
- Gabrovšek, F. On concepts and methods for the estimation of dissolutional denudation rates in karst areas. Geomorphology 2009, 106, 9–14. [Google Scholar] [CrossRef]
- Stallard, R.; Edmond, J. Geochemistry of the Amazon: 1. Precipitation chemistry and the marine contribution to the dissolved load at the time of peak discharge. J. Geophys. Res. Oceans 1981, 86, 9844–9858. [Google Scholar] [CrossRef]
- Stallard, R.; Edmond, J. Geochemistry of the Amazon: 3. Weathering chemistry and limits to dissolved inputs. J. Geophys. Res. Oceans 1987, 92, 8293–8302. [Google Scholar] [CrossRef]
- Gaillardet, J.; Dupré, B.; Allègre, C.J.; Négrel, P. Chemical and physical denudation in the Amazon River Basin. Chem. Geol. 1997, 142, 141–173. [Google Scholar] [CrossRef]
- Mortatti, J.; Probst, J.L. Silicate rock weathering and atmospheric/soil CO2 uptake in the Amazon basin estimated from river water geochemistry: Seasonal and spatial variations. Chem. Geol. 2003, 197, 177–196. [Google Scholar] [CrossRef] [Green Version]
- Négrel, P.; Allègre, C.J.; Dupré, B.; Lewin, E. Erosion sources determined by inversion of major and trace element ratios and strontium isotopic ratios in river water: The Congo Basin case. Earth Planet. Sci. Lett. 1993, 120, 59–76. [Google Scholar] [CrossRef]
- Dupré, B.; Gaillardet, J.; Rousseau, D.; Allègre, C.J. Major and trace elements of river-borne material: The Congo Basin. Geochim. Cosmochim. Acta 1996, 60, 1301–1321. [Google Scholar] [CrossRef]
- Edmond, J.; Palmer, M.R.; Measures, C.I.; Brown, E.I.; Huh, Y. Fluvial geochemistry of the eastern slope of the northeastern Andes and its foredeep in the drainage of the Orinoco in Colombia and Venezuela. Geochim. Cosmochim. Acta 1996, 60, 2949–2974. [Google Scholar] [CrossRef]
- Millot, R.; Gaillardet, J.; Dupré, B.; Allègre, C.J. The global control of silicate weathering rates and the coupling with physical erosion: New insights from rivers of the Canadian Shield. Earth Planet. Sci. Lett. 2002, 196, 83–98. [Google Scholar] [CrossRef]
- Millot, R.; Gaillardet, J.; Dupré, B.; Allègreet, C.J. Northern latitude chemical weathering rates: Clues from the Mackenzie River Basin, Canada. Geochim. Cosmochim. Acta 2003, 67, 1305–1329. [Google Scholar] [CrossRef]
- Chetelat, B.; Liu, C.; Zhao, Z.; Wang, Q.; Li, S.; Li, J.; Wang, B. Geochemistry of the dissolved load of the Changjiang Basin rivers: Anthropogenic impacts and chemical weathering. Geochim. Cosmochim. Acta 2008, 72, 4254–4277. [Google Scholar] [CrossRef]
- Meybeck, M. Global chemical weathering of surficial rocks estimated from river dissolved loads. Am. J. Sci. 1987, 287, 401–428. [Google Scholar] [CrossRef]
- Plan, L. Factors controlling carbonate dissolution rates quantified in a field test in the Austrian alps. Geomorphology 2005, 68, 201–212. [Google Scholar] [CrossRef]
- Zhang, C. Carbonate rock dissolution rates in different landuses and their carbon sink effect. Chin. Sci. Bull. 2011, 56, 3759–3765. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Yuan, D.; Cao, J.; Qin, X.; He, S.; Zhang, C. A Study of Carbon Sink Capacity of Karst Processes in China. Acta Geosci. Sin. 2012, 33, 129–134. [Google Scholar]
- Shao, M.; Zhang, L.; Liu, P.; Cao, J.; Qin, X.; Huang, Q.; Luo, M.; Zhang, C. Influential factors and spatial suitability of the method of limestone tablets in karst carbon cycle study in China. Carbonates Evaporites 2020, 35, 85. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, W.; Duan, G. Discussion on the result of field corrosion test around Erdos Basin. Carsol. Sin. 2007, 26, 315–320. [Google Scholar]
- Zeng, C.; Zhao, M.; Yang, R.; Liu, Z. Comparison of karst processes-related carbon sink intensity calculated by carbonate rock tablet test and solute load method: A case study in the Chenqi karst spring system. Hydrogeol. Eng. Geol. 2014, 1, 106–111. [Google Scholar]
- Huang, Q.; Qin, X.; Liu, P.; Kang, Z.; Tang, P. Applicability of karst carbon sinks calculation methods in semi-arid climate environment. J. Jilin Univ. 2015, 45, 240–246. [Google Scholar]
- Li, X.; Shen, X.; Zhang, C.; Fu, H. Factors influencing soil respiration in a pea field in the Loess Plateau. Acta Pratacult. Sin. 2014, 23, 24. [Google Scholar]
- Zhou, X.; Zhang, Y.; Nan, Y.; Liu, Q.; Guo, S. Differences in soil respiration between cropland and grassland ecosystems and factors influencing soil respiration on the Loess Plateau. Environ. Sci. 2013, 34, 1026–1033. [Google Scholar]
- Sun, W.; Yang, W.; Gao, X.; Li, L.; Ling, Q.; Li, C. Characteristics of CO2 and N2O Emissions Under Different Land-use Types in Loess Hilly Region of China. Res. Soil Water Conserv. 2017, 24, 68–74. [Google Scholar]
- Qi, L.; Fan, J.; Shao, M.; Wang, W. Seasonal changes in soil respiration under different land use patterns in the water-wind erosion crisscross region of the Loess Plateau. Acta Ecol. Sin. 2008, 28, 5428–5436. [Google Scholar]
- Li, H.; Liu, G.; Wang, H.; Li, W.; Chen, C. Seasonal changes in soil respiration and the driving factors of four woody plant communities in the Loess Plateau. Acta Ecol. Sin. 2008, 28, 4099–4106. [Google Scholar]
- Gao, Y.; Huang, G.; Wang, X.; Jian, M.; Liu, B.; Huang, T. Soil carbon and nitrogen sequestration following cropland to forage grassland conversion and its effect to CO2 and N2O fluxes. Ecol. Environ. 2009, 18, 1071–1076. [Google Scholar]
- Zhang, L.; Sun, X.; Gao, C.; Qiao, Y.; Li, S. CO2 Sequestration in formation and turno-ver of pedogenic carbonate in soil of desert steppe, Inner Mogolia, China. Acta Pedol. Sin. 2011, 48, 578–586. [Google Scholar]
- Zhao, J.B.; Yuan, D.X. Modern karstification and CO2 absorption in the Bahe River Basin, Xi’an. Quat. Sci. 2000, 20, 367–373. [Google Scholar]
- Pinet, P.; Souriau, M. Continental erosion and large scale relief. Tectonics 1988, 7, 563–582. [Google Scholar] [CrossRef]
- Fan, B.; Zhao, Z.; Tao, F.; Liu, B.; Tao, Z.; Gao, S.; Zhang, L. Characteristics of carbonate, evaporite and silicate weathering in Huanghe River basin: A comparison among the upstream, midstream and downstream. J. Asian Earth Sci. 2014, 96, 17–26. [Google Scholar] [CrossRef]
- Liu, C.; Jiang, Y.; Tao, F.; Lang, Y.; Li, S. Chemical weathering of carbonate rocks by sulfuric acid and the carbon cycling in Southwest China. Geochimica 2008, 37, 404–414. [Google Scholar]
- Liu, B.; Zhao, Z.; Li, S.; Liu, C.; Zhang, G.; Hu, J.; Ding, H.; Zhang, C. Characteristics of silicate rock weathering in cold temperate zone: A case study of Nen-jiang River, China. Chin. J. Ecol. 2013, 32, 1006–1016. [Google Scholar]
- Qin, X.; Jiang., Z.; Zhang, L.; Huang, Q.; Liu, P. The difference of the Effects of the weather rate between carbonate rocks and silicate rocks on the atmospheric CO2 consumption in the Pearl River Basin. Geol. Bull. China 2015, 34, 1749–1757. [Google Scholar]
- Li, S.; Lu, X.; Bush, R.T. Chemical weathering and CO2 consumption in the Lower Mekong River. Sci. Total Environ. 2014, 472, 162–177. [Google Scholar] [CrossRef]
- Lǜ, J.; An, Y.; Wu, Q.; Wu, Y. Rock weathering characteristics and atmospheric carbon sink effect in the chemical weathering processes of Qingshui River Basin. Environ. Sci. 2016, 37, 4671–4679. [Google Scholar]
- Zou, Y.E. Consumption of Atmospheric CO2 by Chemical Weathering in the Isthmian River Basin: A Mixed Silicate and Carbonate Catchments; China University of Geosciences (Beijing): Beijing, China, 2016. [Google Scholar]
- Zhang, D.; Qin, Y.; Zhao, Z. Chemical weathering of carbonate rocks by sulfuric acid on small basin in North China. Acta Sci. Circumst. 2015, 35, 3568–3578. [Google Scholar]
- Liu, Z.; Yan, H.; Zeng, S. Increasing autochthonous production in inland waters as a contributor to the missing carbon sink. Front. Earth Sci. 2021, 9, 620513. [Google Scholar] [CrossRef]
- He, H.; Liu, Z.; Chen, C.; Wei, Y.; Bao, Q.; Sun, H.; Yan, H. The sensitivity of the carbon sink by coupled carbonate weathering to climate and land-use changes: Sediment records of the biological carbon pump effect in Fuxian Lake, Yunnan, China, during the past century. Sci. Total Environ. 2020, 720, 137539. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Wang, Y.; Liu, Z.; Bao, Q.; Wei, Y.; Chen, C.; Sun, H. Lake metabolic processes and their effects on the carbonate weathering CO2 sink: Insights from diel variations in the hydrochemistry of a typical karst lake in SW China. Water Res. 2022, 222, 118907. [Google Scholar] [CrossRef] [PubMed]
Study Area | Surface Water Type | HCO3− (mg/L) | pH | Reference |
---|---|---|---|---|
Daihai Lake (Loess area) | groundwater | 274.5 | 7.50–8.23 | [52] |
river | 256.2 | 8.16–8.55 | ||
lake | 628.3 | 9.00–9.03 | ||
Fen river (Loess area) | river (2015) | 529.5 | 8.7 ± 0.4 | [53] |
groundwater (2015) | 481.2 | 7.9 ± 0.4 | ||
river (2017) | 477.9 | 8.2 ± 0.2 | ||
groundwater (2015) | 682.2 | 8.0 ± 0.2 | ||
Qingliangsi river (Loess area) | river | 247.3 | 7.65–8.46 | [54] |
groundwater | 380.1 | 7.55–8.37 | ||
Puding (Karst area) | river | 120–180 | 7.40–9.67 | [55] |
groundwater | 73.2–384.3 | 7.32–8.60 | [56] | |
Yellow River (Via Loess area) | river | 200.1 | [31] | |
Yangtze River | river | 133.8 | [57] | |
Amazon | river | 43.9 | [58] | |
Global Median | 30.5 | [59] |
Watershed | Annual Average Temperature | Annual Annual Rainfall | Carbonate (Mineral) Weathering Rate | Silicate (Mineral) Weathering Rate | Rock (Mineral) Weathering Rate | CO2 Consumption Rate | Reference |
---|---|---|---|---|---|---|---|
°C | mm | t/(km2·a) | t/(km2·a) | t/(km2·a) | 103 mol/(km2·a) | ||
Qingliangsi River (Loess area) | 8.8 | 437.3 | 2.83 | 3.49 | 9.31 | 144.1 | [54] |
Sanchuan River | 9.2 | 467.7 | — | — | 7.84 | 120 | unpublished data |
Yellow River | — | — | 9.92 | 2.02 | 36.46 | 169 | [113] |
Yangtze River | — | — | 55.86 | 5.25 | 64.99 | 611 | [59] |
Songhua River | 4 | 500 | 5.15 | 2.23 | 7.38 | 120 | [114] |
Second Songhua River | 4 | 664 | 13.50 | 4.74 | 18.24 | 268 | [114] |
Nenjiang River | 3 | 455 | 3.31 | 1.39 | 4.70 | 75 | [115] |
Pearl River | 20 | 1000~2000 | 74.53 | 6.87 | — | 620.36 | [116] |
Wujiang River | 14.6 | 1163 | 65 | 6 | 108.5 | 902 | [114] |
Yalong River | 16 | 1000 | 42.0 | 6.5 | — | 281 | [117] |
Qingshui River | 14 | 1050 | 20.16 | 11.77 | 109.97 | 725 | [118] |
Bishuiyan River | 19.9 | 1685.5 | 81.51 | 13.46 | 93.10 | 853.02 | [119] |
Qin River | 14.4 | 578.5 | 8.47 | 0.07 | 16.92 | 146 | [120] |
Amazon River | — | — | 11.08 | 13.04 | 49.15 | 157 | [89] |
Global Median | — | — | — | — | 36 | 246 | [59] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, M.; Adnan, M.; Zhang, L.; Liu, P.; Cao, J.; Qin, X. Carbonate Mineral Dissolution and Its Carbon Sink Effect in Chinese Loess. Land 2023, 12, 133. https://doi.org/10.3390/land12010133
Shao M, Adnan M, Zhang L, Liu P, Cao J, Qin X. Carbonate Mineral Dissolution and Its Carbon Sink Effect in Chinese Loess. Land. 2023; 12(1):133. https://doi.org/10.3390/land12010133
Chicago/Turabian StyleShao, Mingyu, Muhammad Adnan, Liankai Zhang, Pengyu Liu, Jianhua Cao, and Xiaoqun Qin. 2023. "Carbonate Mineral Dissolution and Its Carbon Sink Effect in Chinese Loess" Land 12, no. 1: 133. https://doi.org/10.3390/land12010133
APA StyleShao, M., Adnan, M., Zhang, L., Liu, P., Cao, J., & Qin, X. (2023). Carbonate Mineral Dissolution and Its Carbon Sink Effect in Chinese Loess. Land, 12(1), 133. https://doi.org/10.3390/land12010133