Land Use Transition and Its Ecosystem Resilience Response in China during 1990–2020
Abstract
:1. Introduction
2. Theoretical Analysis of Driving Mechanism
3. Materials and Methods
3.1. Data Collection
3.2. Methodology
3.2.1. Ecosystem Resilience
3.2.2. Landscape Diversity Index
3.2.3. Annual Precipitation Change Rate and Annual Temperature Change Rate
3.2.4. Urbanization Speed
4. Results
4.1. Land Use Transitions in China from 1990 to 2020
4.1.1. The Spatial-Temporal Pattern of Land Use
4.1.2. Land Use Transition Model
4.2. Ecological Resilience Change and Its Response to Land Use
4.2.1. Ecological Resilience Change
4.2.2. The Response of Ecological Resilience to Land Use
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pu, W.; Zhang, A.; Wen, L. Can China’s resource-saving and environmentally friendly society really improve the eficiency of industrial land use? Land 2021, 10, 751. [Google Scholar] [CrossRef]
- Tian, J.; Zeng, S.; Zeng, J.; Wang, S. How urban expansion triggers spatio-temporal differentiation of systemic risk in suburban rural areas: A case study of Tianjin, China. Land 2022, 11, 1877. [Google Scholar] [CrossRef]
- Yang, C.; Liu, H.; Li, Q.; Wang, X.; Ma, W.; Liu, C.; Fang, X.; Tang, Y.; Shi, T.; Wang, Q.; et al. Human expansion into Asian highlands in the 21st Century and its effects. Nat. Commun. 2022, 13, 4955. [Google Scholar] [CrossRef]
- Wang, X.; Pan, T.; Pan, R.; Chi, W.; Ma, C.; Ning, L.; Wang, X.; Zhang, J. Impact of land transition on landscape and ecosystem service value in Northeast Region of China from 2000–2020. Land 2022, 11, 696. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. The State of the World’s Land and Water Resources for Food and Agriculture: Systems at Breaking Point. 2021. Available online: https://www.fao.org/land-water/solaw2021/en/ (accessed on 25 October 2022).
- UNEP-FAO. United Nations Decade on Ecosystem Restoration 2021–2030. Available online: http://aoc.ouc.edu.cn/2021/0618/c9829a338201/page.htm (accessed on 16 June 2021).
- UN Climate Change Conference UK 2021. Glasgow leaders’ Declaration on Forests and Land Use. Available online: https://ukcop26.org/glasgow-leaders-declaration-on-forests-and-land-use/ (accessed on 18 January 2022).
- Walker, B.; Salt, D. Resilience Thinking Sustaining Ecosystems and People in a Changing World; Higher Education Press: Beijing, China, 2010. [Google Scholar]
- Yuan, Y.; Bai, Z.; Zhang, J.; Xu, C. Increasing urban ecological resilience based on ecological security pattern: A case study in a resource-based city. Ecol. Eng. 2022, 175, 106486. [Google Scholar] [CrossRef]
- Holling, C. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Westman, W. Measuring the inertia and resilience of ecosystems. Bioscience 1978, 28, 705–710. [Google Scholar] [CrossRef]
- Walker, B.; Holling, C.; Carpenter, S.; Kinzig, A. Resilience, adaptability and transformability in social-ecological systems. Ecol. Soc. 2004, 9, 5. [Google Scholar] [CrossRef]
- Sasaki, T.; Furukawa, T.; Iwasaki, Y.; Seto, M.; Mori, A. Perspectives for ecosystem management based on ecosystem resilience and ecological thresholds against multiple and stochastic disturbances. Ecol. Indic. 2015, 57, 395–408. [Google Scholar] [CrossRef]
- Gao, J. Exploration of Sustainable Development Theory: Ecological carrying capacity theory, Method and application. China Environ. Sci. Press 2001, 1, 24–25. [Google Scholar]
- Sterk, M.; Gort, G.; Klimkowska, A.; Ruijven, J.; van Teeffelen, A.; Wamelink, G.W.W. Assess ecosystem resilience: Linking respones and effect traits to environmental variability. Ecol. Indic. 2013, 30, 21–27. [Google Scholar] [CrossRef]
- Cote, I.; Darling, E. Rethinking ecosystem resilience in the face of climate change. PLoS Biol. 2010, 8, e1000438. [Google Scholar] [CrossRef]
- Wang, T.; Li, H.; Huang, Y. The complex ecological network’s resilience of the Wuhan metropolitan area. Ecol. Indic. 2021, 130, 108101. [Google Scholar] [CrossRef]
- Anjos, L.; Mann, D.; Silva, L. Measuring resilience and assessing vulnerability of terrestrial ecosystems to climate change in South America. PLoS ONE 2018, 13, e0194654. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Liang, S. Assessing terrestrial ecosystem resilience using satellite leaf area index. Remote Sens. 2020, 12, 595. [Google Scholar] [CrossRef] [Green Version]
- Ponce-Campos, G.E.; Moran, S.M.; Huete, A.; Zhang, Y.; Bresloff, C.; Huxman, T.E.; Eamus, D.; Bosch, D.D.; Buda, A.R.; Gunter, S.A.; et al. Ecosystem resilience despite large-scale altered hydroclimatic conditions. Nature 2013, 494, 349–353. [Google Scholar] [CrossRef]
- Dou, M.; Tang, L.; Xu, X.; Yang, D. The spatial-temporal variations and influence factors of ecological resilience in Anhui Province. Ecol. Sci. 2018, 37, 184–190. [Google Scholar]
- Xiao, W.; Chen, W.; Deng, X. Coupling and coordination of coal mining intensity and social-ecological resilience in china. Ecol. Indic. 2021, 131, 108167. [Google Scholar] [CrossRef]
- Yang, J.; Xie, B.; Zhang, D. Spatial–temporal evolution of ESV and its response to land use change in the Yellow River Basin, China. Sci. Rep. 2022, 12, 13103. [Google Scholar] [CrossRef]
- Cao, J.; Li, M.; Deo, R.; Adamowski, J.; Cerdà, A.; Feng, Q.; Liu, M.; Zhang, J.; Zhu, G.; Zhang, X.; et al. Comparison of social-ecological resilience between two grassland management patterns driven by grassland land contract policy in the Maqu, Qinghai-Tibetan Plateau. Land Use Policy 2018, 74, 88–96. [Google Scholar] [CrossRef] [Green Version]
- Rescia, A.J.; Willaarte, B.A.; Schmitz, M.F.; Aguilera, P.A. Changes in land use and management in two nature reserves in Spain: Evaluating the social ecological resilience of cultural landscapes. Landsc. Urban Plan. 2010, 98, 26–35. [Google Scholar] [CrossRef]
- Lloyd, M.G.; Peel, D.; Duck, R.W. Towards a social-ecological resilience framework for coastal planning. Land Use Policy 2013, 30, 925–933. [Google Scholar] [CrossRef]
- Adger, W.; Hughes, T.; Folke, C.; Carpenter, S.; Rockstrom, J. Social-ecological resilience to coastal disasters. Science 2005, 309, 1036–1039. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Lu, Z.; Tan, F.; Zhang, M.; Zhang, H. Assessment of ecological carrying capacity on the typical resources-based cities: A case study of Tangshan City. Acta Ecologica Sinica 2015, 35, 4852–4859. [Google Scholar]
- Bessey, K.M. Structure and dynamics in an urban landscape: Toward a multiscale view. Ecosystems 2002, 5, 360–375. [Google Scholar] [CrossRef]
- Li, T.; Dong, Y.; Liu, Z. A review of social-ecological system resilience: Mechanism, assessment and management. Sci. Total Environ. 2020, 723, 138113. [Google Scholar] [CrossRef]
- Dong, Z.; Rong, A.; Zhang, J.; Tong, Z.; Han, A.; Zhi, F. Study on the evolutionary features and driving factors of land-use system in Xilingol, China. Land 2022, 11, 526. [Google Scholar] [CrossRef]
- Han, X.; Zuo, D.; Li, P.; Xu, Z.; Gao, X. Spatiotemporal variability of vegetation cover and its response to climate change in Yarlung Zangbo River Basin. Adv. Sci. Technol. Water Resour. 2021, 41, 16–23. [Google Scholar]
- Senay, G.B.; Elliott, R.L. Combining AVHRR-NDVI and landuse data to describe temporal and spatial dynamics of vegetation. For. Ecol. Manag. 2000, 128, 83–91. [Google Scholar] [CrossRef]
- Fu, B.; Zhang, L. Land use change and ecosystem services: Concepts, methods and progress. Prog. Geogr. 2014, 33, 441–446. [Google Scholar]
- Long, H. Land Use Transitions and Rural Restructuring in China; Springer Nature: Singapore, 2020. [Google Scholar]
- Long, H. Theorizing land use transitions: A human geography perspective. Habitat Int. 2022, 128, 102669. [Google Scholar] [CrossRef]
- Niu, X.; Liao, F.; Liu, Z.; Wu, G. Spatial–temporal characteristics and driving mechanisms of land–use transition from the perspective of urban–rural transformation development: A case study of the Yangtze River Delta. Land 2022, 11, 631. [Google Scholar] [CrossRef]
- Janssen, M.; Anderies, J.; Walker, B. Robust strategies for managing rangelands with multiple stable attractors. J. Environ. Econ. Manag. 2004, 47, 140–162. [Google Scholar] [CrossRef]
- Liu, X.; Li, P.; Ren, Z.; Miao, Z.; Zhang, J.; Liu, X.; Li, Z.; Wang, T. Evaluation of ecosystem resilience in Yulin, China. Acta Ecol. Sin. 2016, 36, 7479–7491. [Google Scholar]
- Niu, Q.; Zhou, X.; Zhang, J.; Jiang, X.; Yang, J. Evolution of ecosystem resilience in mountainous cities of Karst—Taking Guiyang Urban Area as an example. Resour. Environ. Yangtze Basin 2019, 28, 722–730. [Google Scholar]
- Zhang, W.; Furtado, K.; Wu, P.; Zhou, T.; Chadwick, R.; Marzin, C.; Rostron, J.; Sexton, D. Increasing precipitation variability on daily-to-multiyear time scales in a warmer world. Sci. Adv. 2021, 7, eabf8021. [Google Scholar] [CrossRef]
- Gong, Y.; Hua, J.; Chen, Y. The analysis of change rate of precipitation and qunatity change of precipitation in the past 50a multiple temporal scales in Tangshan. Chin. Agric. Sci. Bull. 2008, 24, 448–451. [Google Scholar]
- Luo, Z. Discussions about the speed of urbanization and related studies. Urban Plan. Forum 2007, 172, 60–66. [Google Scholar]
- Yang, Q.; Duan, X.; Wang, L.; Wang, Y. Mechanism of interaction between urban land expansion and ecological environment effects in the Yangtze River Delta. Prog. Geogr. 2021, 40, 220–231. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Pijanowski, B.; Pan, L.; Omrani, H.; Liang, A.; Qu, Y. The spatio-temporal pattern and transition mode of recessive cultivated land use morphology in the Huaibei Region of the Jiangsu Province. Land 2022, 11, 1978. [Google Scholar] [CrossRef]
- Long, H.; Kong, X.; Hu, S.; Li, Y. Land use transitions under rapid urbanization: A perspective from developing China. Land 2021, 10, 935. [Google Scholar] [CrossRef]
- Su, H.; Wei, H. The course, inspiration and expectation of China’s urbanization over the past 40 years of reform and opening-up. Reform 2018, 11, 49–59. [Google Scholar]
- Xu, Z.; Zhou, J. The evolution of land use and ecological resilience in Gez River. Soil Water Conserv. China 2021, 11, 49–53. [Google Scholar]
- Zheng, X.; Cheng, Y.; Ren, C.; Zhou, L. Evaluation of ecological resilience in Ordos City. Ecol. Sci. 2019, 38, 185–192. [Google Scholar]
Time | Farmland | Forest Land | Grassland | Waters | Construction Land | Unused Land |
---|---|---|---|---|---|---|
1990 | 18.63 | 24.26 | 29.41 | 3.06 | 1.80 | 22.84 |
2000 | 19.03 | 24.07 | 29.03 | 3.08 | 1.96 | 22.82 |
2010 | 18.89 | 24.19 | 28.24 | 3.03 | 2.47 | 23.18 |
2020 | 18.76 | 23.76 | 28.50 | 3.14 | 2.84 | 23.00 |
1990–2000 | 0.40 | −0.19 | −0.38 | 0.02 | 0.17 | −0.02 |
2000–2010 | −0.14 | 0.12 | −0.79 | −0.05 | 0.51 | 0.36 |
2010–2020 | −0.13 | −0.43 | 0.26 | 0.11 | 0.37 | −0.18 |
1990–2020 | 0.12 | −0.50 | −0.91 | 0.08 | 1.04 | 0.16 |
Land Use Types in 1990 | Land Use Types in 2020 | ||||||
---|---|---|---|---|---|---|---|
Farmland | Forest Land | Grassland | Waters | Construction Land | Unused Land | Total | |
Farmland | 15,996.83 | 356.74 | 248.3 | 143.54 | 851.47 | 51.5 | 17,648.38 |
Forest land | 593.1 | 21,797.65 | 291.64 | 48.1 | 122.64 | 125.03 | 22,978.16 |
Grassland | 723.82 | 361.99 | 26,172.39 | 78.84 | 107.86 | 409.14 | 27,854.04 |
Waters | 119.78 | 25.07 | 40.02 | 2544.92 | 53.67 | 105.28 | 2888.74 |
Construction land | 148.56 | 16.92 | 10.63 | 11.14 | 1506.77 | 6.41 | 1700.43 |
Unused land | 260.84 | 40.39 | 345.28 | 118.72 | 40.13 | 21,184.55 | 21,989.91 |
Total | 17,842.93 | 22,598.76 | 27,108.26 | 2945.26 | 2682.54 | 21,881.91 | 95,059.66 |
Model Summary and F-test | Regression Coefficient and t Test | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Time | R2 | Adjust R2 | Standard Error Estimates | F | Sig. | Unstandardized Coefficients | t | Sig. | ||
B | Standard Error | |||||||||
1990 | 0.937 | 0.905 | 0.017 | 29.60 | 0.032 | constant | 0.623 | 0.083 | 7.480 | 0.017 |
x | −0.794 | 0.146 | −5.440 | 0.032 | ||||||
2000 | 0.90 | 0.847 | 0.023 | 17.60 | 0.052 | constant | 0.707 | 0.117 | 6.048 | 0.026 |
x | −0.871 | 0.208 | −4.195 | 0.052 | ||||||
2010 | 0.945 | 0.921 | 0.028 | 36.034 | 0.027 | constant | 0.770 | 0.082 | 9.332 | 0.011 |
x | −0.908 | 0.151 | −6.003 | 0.027 | ||||||
2020 | 0.915 | 0.872 | 0.027 | 21.432 | 0.044 | constant | 0.578 | 0.075 | 7.671 | 0.017 |
x | −0.642 | 0.139 | −4.629 | 0.044 |
Model Summary and F-test | Regression Coefficient and t Test | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Time | R2 | Adjust R2 | Standard Error Estimates | F | Sig. | Unstandardized Coefficients | t | Sig. | ||
B | Standard Error | |||||||||
Slow speed | 0.449 | 0.339 | 0.006 | 4.074 | 0.100 | constant | 0.411 | 0.166 | 2.470 | 0.057 |
x | −0.641 | 0.317 | −2.018 | 0.100 | ||||||
Normal speed | 0.501 | 0.402 | 0.018 | 5.028 | 0.075 | constant | 3.531 | 1.507 | 2.343 | 0.066 |
x | −5.233 | 2.334 | −2.242 | 0.075 | ||||||
Medium speed | 0.945 | 0.934 | 0.008 | 85.75 | 0.000 | constant | 3.251 | 0.329 | 9.871 | 0.000 |
x | −5.471 | 0.591 | −9.260 | 0.000 | ||||||
High speed | 0.797 | 0.757 | 0.019 | 19.689 | 0.007 | constant | 6.672 | 1.449 | 4.604 | 0.006 |
x | −11.409 | 2.571 | −4.437 | 0.007 | ||||||
Ultra-high speed | 0.673 | 0.608 | 0.037 | 10.289 | 0.024 | constant | 0.769 | 0.138 | 5.557 | 0.003 |
x | −1.022 | 0.319 | −3.208 | 0.024 |
Model Summary and F-test | Regression Coefficient and t Test | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Time | R2 | Adjust R2 | Standard Error Estimates | F | Sig. | Unstandardized Coefficients | t | Sig. | ||
B | Standard Error | |||||||||
1990 | 0.833 | 0.809 | 0.024 | 34.886 | 0.001 | constant | 0.101 | 0.012 | 8.632 | 0.000 |
x | 1.588 | 0.269 | 5.906 | 0.001 | ||||||
2000 | 0.622 | 0.568 | 0.050 | 11.507 | 0.012 | constant | 0.146 | 0.021 | 6.946 | 0.000 |
x | 0.842 | 0.248 | 3.392 | 0.012 | ||||||
2010 | 0.688 | 0.584 | 0.078 | 6.613 | 0.082 | constant | 0.185 | 0.042 | 4.451 | 0.021 |
x | 0.588 | 0.229 | 2.572 | 0.087 | ||||||
2020 | 0.622 | 0.568 | 0.055 | 11.522 | 0.012 | constant | 0.159 | 0.022 | 7.205 | 0.000 |
x | 0.461 | 0.136 | −3.394 | 0.012 |
Time | Types of Urbanization | Proportion of Ecological Land | Proportion of Construction Land | Variable Coefficient |
---|---|---|---|---|
1990 | Slow speed | 53.52 | 0.43 | 0.07 |
Normal speed | 65.08 | 1.47 | 0.11 | |
Medium speed | 56.73 | 1.85 | 0.15 | |
High speed | 56.77 | 3.03 | 0.18 | |
Ultra-high speed | 48.66 | 10.16 | 0.25 | |
2000 | Slow speed | 52.78 | 0.44 | 0.07 |
Normal speed | 64.60 | 1.54 | 0.15 | |
Medium speed | 55.63 | 2.03 | 0.19 | |
High speed | 56.56 | 3.34 | 0.24 | |
Ultra-high speed | 47.08 | 21.47 | 0.30 | |
2010 | Slow speed | 51.51 | 0.58 | 0.09 |
Normal speed | 64.54 | 1.65 | 0.18 | |
Medium speed | 55.11 | 2.36 | 0.24 | |
High speed | 56.09 | 4.29 | 0.29 | |
Ultra-high speed | 39.29 | 40.30 | 0.41 | |
2020 | Slow speed | 51.90 | 0.64 | 0.07 |
Normal speed | 64.14 | 1.86 | 0.15 | |
Medium speed | 55.72 | 2.70 | 0.21 | |
High speed | 56.07 | 5.00 | 0.25 | |
Ultra-high speed | 37.81 | 42.10 | 0.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, L.; Ma, E.; Long, H.; Peng, X. Land Use Transition and Its Ecosystem Resilience Response in China during 1990–2020. Land 2023, 12, 141. https://doi.org/10.3390/land12010141
Liao L, Ma E, Long H, Peng X. Land Use Transition and Its Ecosystem Resilience Response in China during 1990–2020. Land. 2023; 12(1):141. https://doi.org/10.3390/land12010141
Chicago/Turabian StyleLiao, Liuwen, Enpu Ma, Hualou Long, and Xiaojun Peng. 2023. "Land Use Transition and Its Ecosystem Resilience Response in China during 1990–2020" Land 12, no. 1: 141. https://doi.org/10.3390/land12010141
APA StyleLiao, L., Ma, E., Long, H., & Peng, X. (2023). Land Use Transition and Its Ecosystem Resilience Response in China during 1990–2020. Land, 12(1), 141. https://doi.org/10.3390/land12010141