Land Consumption Dynamics and Urban–Rural Continuum Mapping in Italy for SDG 11.3.1 Indicator Assessment
Abstract
:1. Introduction
1.1. Effects of Urban Growth and Insights on Urbanization Dynamics in Italy
1.2. Existing Data for the Representation of Urban Areas
1.2.1. Global Data—Global Human Settlement Layer (GHSL) SMOD
1.2.2. European Data—Copernicus Land Monitoring Service Data
1.2.3. European Data—European Settlement Map
1.2.4. National Data—Degree of Artificialization and Degree of Urbanization
1.3. Describe Urban–Rural Continuum Using National Data
2. Materials and Methods
2.1. Overview
- Creation of a spatialized population layer based on ISTAT demographic data.
- 2.
- Classification of the urban–rural continuum on a national scale starting from the spatialized population data.
- 3.
- Application of the classification of the urban–rural continuum for the calculation of SDG indicator 11.3.1.
2.2. Spatialization of the Population
2.3. Classification of the Urban–Rural Continuum
- Class 1, with over 2000 inhabitants per km2;
- Class 2, for areas with between 500 and 2000 inhabitants per km2;
- Class 3, for areas with between 100 and 500 inhabitants per km2;
- Class 4, with less than 100 inhabitants per km2.
- Urban Centers with over 2000 inhabitants per km2 and a population of over 10,000 inhabitants;
- Dense Urban Clusters with over 2000 inhabitants per km2 and a population of less than 10,000 inhabitants.
- Suburban cells, for areas contiguous to class 1 and with a population density between 500 and 2000 inhabitants per km2;
- Semi-dense Urban Clusters, for areas not contiguous to class 1 and with a population density between 500 and 2000 inhabitants per km2 and a total population of over 5000 inhabitants;
- Rural Clusters with population density between 500 and 2000 inhabitants per km2 and a population of less than 5000 inhabitants.
2.4. Calculation of the SDG 11.3.1 Indicator
2.4.1. SDG 11.3.1 Indicator
2.4.2. Normalized Difference of Consumed Land
- Urban Infill, where land consumption mainly affects urban areas, thus filling the gaps between the existing urban fabric.
- Periurban Infill, when land consumption is concentrated in periurban areas on the edge of the dense urban fabric.
- Dispersion, when low-density land consumption occurs in rural areas.
3. Results
3.1. Spatialization of the Population
3.2. Classification of the Urban–Rural Continuum
3.3. Calculation of the SDG 11.3.1 Indicator
- In 571 municipalities (51.3% of those with LCR > 0), the indicator has values less than 0. In these areas, the increase in land consumption corresponds to a decrease in population. In detail, in the 397 municipalities with SDG values between 0 and −1, the rate of population decrease is significantly higher than the rate of increase in land consumption, while in the 174 municipalities with SDG < −1, the increase in land consumption is higher than the population decrease.
- The SDG has positive values in 541 municipalities (48.6% of urban municipalities with increasing land consumption). About two thirds of them have values between 0 and 1, i.e., a rate of increase in the population higher than the rate of increase in land consumption, while in the remaining 164 municipalities, the population increases less than the increase in land consumption.
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mahtta, R.; Fragkias, M.; Güneralp, B.; Mahendra, A.; Reba, M.; Wentz, E.A.; Seto, K.C. Urban Land Expansion: The Role of Population and Economic Growth for 300+ Cities. Npj Urban Sustain. 2022, 2, 5. [Google Scholar] [CrossRef]
- Mahendra, A.; Seto, K.C. Upward and Outward Growth: Managing Urban Expansion for More Equitable Cities in the Global South; WRI: World Resources Institute: Washington, DC, USA, 2019. [Google Scholar]
- United Nations. Department of Economic and Social Affairs. Population Division World Urbanization Prospects The 2018 Revision; United Nations: New York, NY, USA, 2019.
- Alberti, M. The Effects of Urban Patterns on Ecosystem Function. Int. Reg. Sci. Rev. 2005, 28, 168–192. [Google Scholar] [CrossRef]
- Jacobson, C.R. Identification and Quantification of the Hydrological Impacts of Imperviousness in Urban Catchments: A Review. J. Environ. Manag. 2011, 92, 1438–1448. [Google Scholar] [CrossRef] [PubMed]
- Ceccarelli, T.; Bajocco, S.; LUIGI, P.L.; Luca, S.L. Urbanisation and Land Take of High Quality Agricultural Soils-Exploring Long-Term Land Use Changes and Land Capability in Northern Italy. Int. J. Environ. Res. 2014, 8, 181–192. [Google Scholar]
- Churkina, G. The Role of Urbanization in the Global Carbon Cycle. Front. Ecol. Evol. 2016, 3, 144. [Google Scholar] [CrossRef] [Green Version]
- Crippa, M.; Guizzardi, D.; Pisoni, E.; Solazzo, E.; Guion, A.; Muntean, M.; Florczyk, A.; Schiavina, M.; Melchiorri, M.; Hutfilter, A.F. Global Anthropogenic Emissions in Urban Areas: Patterns, Trends, and Challenges. Environ. Res. Lett. 2021, 16, 074033. [Google Scholar] [CrossRef]
- Heinonen, J.; Junnila, S. Case Study on the Carbon Consumption of Two Metropolitan Cities. Int. J. Life Cycle Assess. 2011, 16, 569–579. [Google Scholar] [CrossRef]
- UN-Habitat. Cities and Pandemics: Towards a More Just, Green and Healthy Future; UN-Habitat: Nairobi, Kenya, 2021; ISBN 9789211328776. [Google Scholar]
- EEA. Ensuring Quality of Life in Europe’s Cities and Towns Tackling the Environmental Challenges Driven by European and Global Change; EEA Report 05/2009; EEA: Copenhagen, Denmark, 2009.
- Haines-Young, R. Land Use and Biodiversity Relationships. Land Use Policy 2009, 26, S178–S186. [Google Scholar] [CrossRef]
- Ferri, N. United Nations General Assembly. Int. J. Mar. Coast. Law 2010, 25, 271–287. [Google Scholar] [CrossRef]
- Akuraju, V.; Pradhan, P.; Haase, D.; Kropp, J.P.; Rybski, D. Relating SDG11 Indicators and Urban Scaling—An Exploratory Study. Sustain. Cities Soc. 2020, 52, 101853. [Google Scholar] [CrossRef]
- UN-Habitat. Utilisation Efficace Des Terres; UN-Habitat: Nairobi, Kenya, 2022. [Google Scholar]
- United Nations. Department of Economic and Social Affairs.SDG Indicators Metadata Repository. Available online: https://unstats.un.org/sdgs/metadata/files/Metadata-11-03-01.pdf (accessed on 11 May 2022).
- Laituri, M.; Davis, D.; Sternlieb, F.; Galvin, K. Sdg Indicator 11.3.1 and Secondary Cities: An Analysis and Assessment. ISPRS Int. J. Geo-Inf. 2021, 10, 713. [Google Scholar] [CrossRef]
- Paganini, M.; Petiteville, I.; Ward, S.; Dyke, G.; Steventon, M.; Harry, J. Satellite earth observations in support of the sustainable development goals. In The CEOS Earth Observation Handbook, 2018th ed.; Earth Observation Graphic Bureau (ESA): Venice, Italy, 2018. [Google Scholar]
- European Environment Agency. Urban Sprawl in Europe; EEA Report 11/2016; EEA: Luxembourg, 2016.
- Ewing, R.H. Characteristics, Causes, and Effects of Sprawl: A Literature Review. Environ. Urban Stud. 1994, 21, 519–535. [Google Scholar]
- Romano, B.; Zullo, F.; Ciabò, S.; Fiorini, L.; Marucci, A. Il Modello Italiano Di Dispersione Urbana: La Sfida Dello “Sprinkling”. Sentieri Urbani 2016, 19, 15–22. [Google Scholar]
- Romano, B.; Zullo, F.; Fiorini, L.; Ciabò, S.; Marucci, A. Sprinkling: An Approach to Describe Urbanization Dynamics in Italy. Sustainability 2017, 9, 2. [Google Scholar] [CrossRef] [Green Version]
- Romano, B.; Fiorini, L.; Marucci, A. Italy without Urban “Sprinkling”. A Uchronia for a Country That Needs a Retrofit of Its Urban and Landscape Planning. Sustainability 2019, 11, 3469. [Google Scholar] [CrossRef] [Green Version]
- Manganelli, B.; Murgante, B.; Saganeiti, L. The Social Cost of Urban Sprinkling. Sustainability 2020, 12, 2236. [Google Scholar] [CrossRef] [Green Version]
- Silvia, V.; Andrea, A.; Carlo Alberto, B.; Francesco Domenico, M. Sul Consumo Di Suolo, Roma, Italy, 2018.
- Palazzo, A.L.; Aristone, O. Né Città Né Campagna. La Nuova “Forma Città”. Agriregionieuropa 2016, 12, 7–9. [Google Scholar]
- Pagliacci, F. Measuring EU Urban-Rural Continuum Through Fuzzy Logic. Tijdschr. Voor Econ. En Soc. Geogr. 2017, 108, 157–174. [Google Scholar] [CrossRef]
- Urso, G. Metropolisation and the Challenge of Rural-Urban Dichotomies. Urban Geogr. 2021, 42, 37–57. [Google Scholar] [CrossRef]
- Cattivelli, V. Planning Peri-Urban Areas at Regional Level: The Experience of Lombardy and Emilia-Romagna (Italy). Land Use Policy 2021, 103, 105282. [Google Scholar] [CrossRef]
- Van Vliet, J.; Birch-Thomsen, T.; Gallardo, M.; Hemerijckx, L.M.; Hersperger, A.M.; Li, M.; Tumwesigye, S.; Twongyirwe, R.; van Rompaey, A. Bridging the Rural-Urban Dichotomy in Land Use Science. J. Land Use Sci. 2020, 15, 585–591. [Google Scholar] [CrossRef]
- Florczyk, A.; Corbane, C.; Ehrlich, D.; Carneiro Freire, S.M.; Kemper, T.; Maffenini, L.; Melchiorri, M.; Pesaresi, M.; Politis, P.; Schiavina, M.; et al. GHSL Data Package 2019: Public Release GHS P2019; Publications Office of the European Union: Luxembourg, 2019; Volume JRC117104, ISBN 978-92-76-13186-1. [Google Scholar]
- European Commission; Statistical Office of the European Union; Organisation for Economic Co-Operation and Development; Food and Agriculture Organization of the United Nations; United Nations Human Settlements Programme; World Bank. Applying the Degree of Urbanisation: A Methodological Manual to Define Cities, Towns and Rural Areas for International Comparisons: 2021 Edition; Eurostat: Luxembourg, 2021; ISBN 9789276203063.
- Büttner, G.; Kosztra, B.; Maucha, G.; Pataki, R.; Kleeschulte, S.; Hazeu, G.; Vittek, M.; Littkopf, A. Copernicus Land Monitoring Service CORINE Land Cover Product User Manual (Version 1.0); Copernicus Publications: Göttingen, Germany, 2021. [Google Scholar]
- Diaz-Pacheco, J.; Gutiérrez, J. Exploring the Limitations of CORINE Land Cover for Monitoring Urban Land-Use Dynamics in Metropolitan Areas. J. Land Use Sci. 2014, 9, 243–259. [Google Scholar] [CrossRef]
- Bielecka, E.; Jenerowicz, A. Intellectual Structure of CORINE Land Cover Research Applications in Web of Science: A Europe-Wide Review. Remote Sens. 2019, 11, 2017. [Google Scholar] [CrossRef] [Green Version]
- EC. Mapping Guide v6.2 for a European Urban Atlas Regional Policy; European Commission: Brussels, Belgium, 2020.
- EEA. GMES Initial Operations/Copernicus Land Monitoring Services-Validation of Products European Settlement Map 2016 VALIDATION REPORT; EEA: Copenhagen, Denmark, 2017.
- Sabo, F.; Corbane, C.; Politis, P.; Kemper, T. The European Settlement Map 2019 Release Application of the Symbolic Machine Learning to Copernicus VHR imagery; Publications Office: Luxembourg, 2019. [Google Scholar] [CrossRef]
- Luti, T.; De Fioravante, P.; Marinosci, I.; Strollo, A.; Riitano, N.; Falanga, V.; Mariani, L.; Congedo, L.; Munafò, M. Land Consumption Monitoring with SAR Data and Multispectral Indices. Remote Sens. 2021, 13, 1586. [Google Scholar] [CrossRef]
- Strollo, A.; Smiraglia, D.; Bruno, R.; Assennato, F.; Congedo, L.; De Fioravante, P.; Giuliani, C.; Marinosci, I.; Riitano, N.; Munafò, M. Land Consumption in Italy. J. Maps 2020, 16, 113–123. [Google Scholar] [CrossRef]
- De Fioravante, P.; Luti, T.; Cavalli, A.; Giuliani, C.; Dichicco, P.; Marchetti, M.; Chirici, G.; Congedo, L.; Munafò, M. Multispectral Sentinel-2 and Sar Sentinel-1 Integration for Automatic Land Cover Classification. Land 2021, 10, 611. [Google Scholar] [CrossRef]
- Munafò, M. Consumo Di Suolo, Dinamiche Territoriali e Servizi Ecosistemici, 2022nd ed. Report SNPA, 32/22. 2022. Available online: https://www.snpambiente.it/wp-content/uploads/2022/07/Rapporto_consumo_di_suolo_2022.pdf (accessed on 24 October 2022).
- Wang, Y.; Huang, C.; Feng, Y.; Zhao, M.; Gu, J. Using Earth Observation for Monitoring SDG 11.3.1-Ratio of Land Consumption Rate to Population Growth Rate in Mainland China. Remote Sens. 2020, 12, 357. [Google Scholar] [CrossRef] [Green Version]
- Bai, Z.; Wang, J.; Yang, F. Research Progress in Spatialization of Population Data. Prog. Geogr. 2013, 32, 1692–1702. [Google Scholar]
- ISTAT. Ricostruzione Della Popolazione Residente per Sesso, Età e Comune; ISTAT: Rome, Italy, 2021. [Google Scholar]
- ISTAT. Descrizione Dei Dati Geografici e Delle Variabili Censuarie Delle Basi Territoriali per i Censimenti: Anni 1991, 2001, 2011; ISTAT: Rome, Italy, 2016. [Google Scholar]
- Guerri, G.; Crisci, A.; Congedo, L.; Munafò, M.; Morabito, M. A Functional Seasonal Thermal Hot-Spot Classification: Focus on Industrial Sites. Sci. Total Environ. 2022, 806, 151383. [Google Scholar] [CrossRef]
- Branislav, B.; Nikola, K.; Mileva, S.-P.; Milan, K. Dasymetric Modelling of Population Dynamics in Urban Areas. Geod. Vestn. 2013, 57, 777–792. [Google Scholar]
- Frick, S.A.; Rodríguez-Pose, A. Big or Small Cities? On City Size and Economic Growth. Growth Change 2018, 49, 4–32. [Google Scholar] [CrossRef]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global Forecasts of Urban Expansion to 2030 and Direct Impacts on Biodiversity and Carbon Pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zitti, M.; Ferrara, C.; Perini, L.; Carlucci, M.; Salvati, L. Long-Term Urban Growth and Land Use Efficiency in Southern Europe: Implications for Sustainable Land Management. Sustainability 2015, 7, 3359–3385. [Google Scholar] [CrossRef] [Green Version]
- Fiorini, L.; Zullo, F.; Marucci, A.; Romano, B. Land Take and Landscape Loss: Effect of Uncontrolled Urbanization in Southern Italy. J. Urban Manag. 2019, 8, 42–56. [Google Scholar] [CrossRef]
- Cecili, G.; De Fioravante, P.; Congedo, L.; Marchetti, M.; Munafò, M. Land Consumption Mapping with Convolutional Neural Network: Case Study in Italy. Land 2022, 11, 1919. [Google Scholar] [CrossRef]
- De Fioravante, P.; Strollo, A.; Assennato, F.; Marinosci, I.; Congedo, L.; Munafò, M. High Resolution Land Cover Integrating Copernicus Products: A 2012–2020 Map of Italy. Land 2022, 11, 35. [Google Scholar] [CrossRef]
- Munafò, M.; Marinosci, I. Territorio Processi e Trasformazioni in Italia; ISPRA: Roma, Italy, 2018. [Google Scholar]
- AS Ddl n.1131 Misure per La Rigenerazione Urbana. XVIII Legislatura. 2019. Available online: https://upel.va.it/wp-content/uploads/2021/04/51435.pdf (accessed on 24 October 2022).
- Ministero della Transizione Ecologica. Strategia Nazionale Biodiversità 2030. 2022. Available online: https://www.isprambiente.gov.it/it/archivio/notizie-e-novita-normative/notizie-ispra/2022/04/consultazione-pubblica-della-strategia-nazionale-biodiversita-2030 (accessed on 24 October 2022).
- Clifton, K.; Ewing, R.; Knaap, G.J.; Song, Y. Quantitative Analysis of Urban Form: A Multidisciplinary Review. J. Urban. 2008, 1, 17–45. [Google Scholar] [CrossRef]
- Schirmer, P.M.; Axhausen, K.W. A Multiscale Classification of the Urban Morphology. J. Transp. Land Use 2015, 9, 101–130. [Google Scholar] [CrossRef] [Green Version]
- Ronchi, S.; Salata, S.; Arcidiacono, A. An Indicator of Urban Morphology for Landscape Planning in Lombardy (Italy); Emerald Publishing Limited: Bingley, UK, 2018. [Google Scholar]
- Duany, A.; Talen, E. Transect Planning; American Planning Association: Chicago, IL, USA, 2002; Volume 68. [Google Scholar]
- Southworth, M.; Owens, P.M. The Evolving Metropolis Studies of Community, Neighborhood, and Street Form at the Urban Edge. J. Am. Plan. Assoc. 1993, 59, 271–287. [Google Scholar] [CrossRef]
- Wheeler, S.M. Built Landscapes of Metropolitan Regions: An International Typology. J. Am. Plan. Assoc. 2015, 81, 167–190. [Google Scholar] [CrossRef] [Green Version]
- Rashid, M. The Evolving Metropolis after Three Decades: A Study of Community, Neighbourhood and Street Form at the Urban Edge. J. Urban Des. 2018, 23, 624–653. [Google Scholar] [CrossRef]
- Case Scheer, B.; Petkov, M. Edge City Morphology. A Comparision of Commercial Centers. J. Am. Plan. 1998, 64, 298–310. [Google Scholar]
- Comitato per lo Sviluppo del Verde. Strategia Nazionale Del Verde Urbano; Ministero dell’Ambiente e della Tutela del Territorio e del Mare (MATTM): Roma, Italy, 2018. [Google Scholar]
- Sallustio, L.; Lasserre, B.; Blasi, C.; Marchetti, M. Infrastrutture Verdi Contro Il Consumo Di Suolo. Reticula 2020, 25, 21–31. [Google Scholar]
- Marando, F.; Salvatori, E.; Sebastiani, A.; Fusaro, L.; Manes, F. Regulating Ecosystem Services and Green Infrastructure: Assessment of Urban Heat Island Effect Mitigation in the Municipality of Rome, Italy. Ecol. Modell. 2019, 392, 92–102. [Google Scholar] [CrossRef]
- Guerri, G.; Crisci, A.; Messeri, A.; Congedo, L.; Munafò, M.; Morabito, M. Thermal Summer Diurnal Hot-Spot Analysis: The Role of Local Urban Features Layers. Remote Sens. 2021, 13, 538. [Google Scholar] [CrossRef]
- Zambrano, L.; Aronson, M.F.J.; Fernandez, T. The Consequences of Landscape Fragmentation on Socio-Ecological Patterns in a Rapidly Developing Urban Area: A Case Study of the National Autonomous University of Mexico. Front. Environ. Sci. 2019, 7, 152. [Google Scholar] [CrossRef]
Code | Definition | Eurostat/JRC Thresholds | Proposed Thresholds | ||
---|---|---|---|---|---|
Pop. Density | Pop. Size | Pop. Density | Pop. Size | ||
30 | Urban Centers | ≥1500 | ≥50,000 | ≥2000 | >10,000 |
23 | Dense urban cluster | ≥1500 | 5000–49,999 | ≥2000 | ≤10,000 |
22 | Semi-dense urban cluster | 300–1500 | 5000–49,999 | 500–2000 | >5000 |
21 | Suburban cells | 300–1500 | - | 500–2000 | - |
13 | Rural cluster | 300–1500 | 500–4999 | 500–2000 | ≤5000 |
12 | Rural low density | 50–300 | - | 100–500 | - |
11 | Rural very low-density | <50 | - | <100 | - |
50 | Industrial, commercial and services | n.a. | n.a. | - | - |
60 | Water | 0 | 0 | - | - |
LCR | PGR | RLCRPGR | Description |
---|---|---|---|
>0 | >0 | >1 | Land consumption grows much more than population |
0–1 | Population grows much more than land consumption | ||
<0 | 0–−1 | Population decreases significantly and land consumption increases | |
<−1 | Population decreases and land consumption increases significantly | ||
<0 | >0 | <−1 | Population grows while land consumption decreases significantly |
−1–0 | Population grows significantly while land consumption decreases | ||
<0 | 0–1 | Population decreases much more than land consumption | |
<−1 | Land consumption decrease much more than population | ||
0 | >0, <0 | 0 | - |
Area (ha) | Percentage (%) | |||||
---|---|---|---|---|---|---|
On Total National Area | On LCMC onsumed Land | On LCM Built-Up Area | ||||
Consumed land | 2,130,088 | 7.06 | - | - | ||
Built-up-class 1 | 689,645 | - | 2.37 | - | ||
Built-up-class 111 | 536,579 | - | 25.19 | - | ||
Residential | 875,794 | - | - | 71.42 | ||
Non residential | 350,430 | - | - | 28.57 |
Classes | URCC | GHS-SMOD | ||
---|---|---|---|---|
ha | % | ha | % | |
Urban center | 478,965 | 1.59 | 421,293 | 1.39 |
Dense urban cluster | 161,683 | 0.54 | 412,635 | 1.36 |
Semi-dense urban cluster | 44,219 | 0.15 | 253,155 | 0.83 |
Suburban cells | 1,400,857 | 4.65 | 1,315,428 | 4.33 |
Rural cluster | 660,323 | 2.19 | 800,973 | 2.64 |
Rural low density | 5,921,639 | 19.65 | 4,555,108 | 15.00 |
Rural very low-density | 20,855,863 | 69.20 | 22,381,960 | 73.70 |
Industrial, commercial, and services | 441,594 | 1.47 | - | - |
Water | 173,558 | 0.58 | 227,783 | 0.75 |
Total | 30,138,702 | 100.00 | 30,368,335 | 100.00 |
Large Urban Center | Dense Urban Cluster | Semi-Dense Urban Cluster | Largest Urban Center | LUCPI | ||||
---|---|---|---|---|---|---|---|---|
Count | ha | Count | ha | Count | ha | ha | % | |
Piedmont | 32 | 29,926 | 138 | 10,646 | 3 | 2515 | 14,809 | 34.37 |
Aosta Valley | 1 | 730 | 3 | 290 | 0 | 0 | 730 | 71.56 |
Lombardy | 66 | 108,648 | 452 | 34,143 | 4 | 2817 | 48,016 | 32.98 |
Trentino A.A. | 6 | 5291 | 48 | 3273 | 0 | 0 | 1509 | 17.62 |
Veneto | 23 | 27,278 | 197 | 17,286 | 12 | 6780 | 5299 | 10.32 |
Friuli V.G. | 28 | 8674 | 33 | 2265 | 6 | 4162 | 2903 | 19.22 |
Liguria | 119 | 14,626 | 44 | 3524 | 1 | 601 | 7623 | 40.66 |
Emilia-Romagna | 27 | 27,843 | 154 | 9975 | 2 | 1263 | 6737 | 17.24 |
Tuscany | 33 | 29,906 | 109 | 7720 | 5 | 3472 | 8833 | 21.49 |
Umbria | 4 | 3007 | 26 | 1628 | 4 | 3124 | 1289 | 16.61 |
Marche | 18 | 8193 | 50 | 4258 | 2 | 1333 | 1438 | 10.43 |
Latium | 37 | 52,989 | 142 | 13,173 | 5 | 5140 | 39,061 | 54.78 |
Abruzzo | 14 | 8277 | 33 | 2735 | 0 | 0 | 4226 | 38.38 |
Molise | 2 | 1393 | 9 | 685 | 0 | 0 | 836 | 40.24 |
Campania | 125 | 74,469 | 103 | 7859 | 3 | 2176 | 49,065 | 58.06 |
Apulia | 80 | 24,305 | 157 | 13,710 | 6 | 4530 | 4280 | 10.06 |
Basilicata | 2 | 1381 | 21 | 2115 | 0 | 0 | 770 | 22.02 |
Calabria | 15 | 7553 | 79 | 6260 | 1 | 812 | 2253 | 15.41 |
Sicily | 74 | 36,482 | 177 | 14,231 | 5 | 4898 | 11,089 | 19.94 |
Sardinia | 13 | 8289 | 71 | 5987 | 1 | 598 | 4181 | 28.11 |
ITALY | 719 | 476,837 | 2046 | 161,762 | 60 | 44,219 | - | - |
Municipality | ||
---|---|---|
Classes | n. | % |
Urban center | 605 | 7.65 |
Dense urban cluster | 470 | 5.94 |
Semi-dense urban cluster | 56 | 0.71 |
Suburban cells | 1216 | 15.38 |
Rural cluster | 1640 | 20.74 |
Rural low density | 2777 | 35.13 |
Rural very low-density | 1142 | 14.44 |
CLASSES | ha | % | ha | % |
---|---|---|---|---|
Urban center | 2172 | 19.45 | 2628 | 23.53 |
Dense urban cluster | 347 | 3.11 | ||
Semi-dense urban cluster | 108 | 0.97 | ||
Periurban/suburban area | 2819 | 25.24 | 2819 | 25.24 |
Rural cluster | 278 | 2.49 | 3749 | 33.57 |
Rural low density | 2170 | 19.43 | ||
Rural very low-density | 1301 | 11.65 | ||
Industrial, commercial, and services | 1972 | 17.66 | 1972 | 17.66 |
Water | - | - | - | - |
Total | 11,169 | 100.00 | 11,169 | 100.00 |
CLASSES | Count | % |
---|---|---|
Urban Infill | 321 | 28.38 |
Periurban Infill | 317 | 28.03 |
Dispersion | 493 | 43.59 |
Total | 1131 | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cimini, A.; De Fioravante, P.; Riitano, N.; Dichicco, P.; Calò, A.; Scarascia Mugnozza, G.; Marchetti, M.; Munafò, M. Land Consumption Dynamics and Urban–Rural Continuum Mapping in Italy for SDG 11.3.1 Indicator Assessment. Land 2023, 12, 155. https://doi.org/10.3390/land12010155
Cimini A, De Fioravante P, Riitano N, Dichicco P, Calò A, Scarascia Mugnozza G, Marchetti M, Munafò M. Land Consumption Dynamics and Urban–Rural Continuum Mapping in Italy for SDG 11.3.1 Indicator Assessment. Land. 2023; 12(1):155. https://doi.org/10.3390/land12010155
Chicago/Turabian StyleCimini, Angela, Paolo De Fioravante, Nicola Riitano, Pasquale Dichicco, Annagrazia Calò, Giuseppe Scarascia Mugnozza, Marco Marchetti, and Michele Munafò. 2023. "Land Consumption Dynamics and Urban–Rural Continuum Mapping in Italy for SDG 11.3.1 Indicator Assessment" Land 12, no. 1: 155. https://doi.org/10.3390/land12010155
APA StyleCimini, A., De Fioravante, P., Riitano, N., Dichicco, P., Calò, A., Scarascia Mugnozza, G., Marchetti, M., & Munafò, M. (2023). Land Consumption Dynamics and Urban–Rural Continuum Mapping in Italy for SDG 11.3.1 Indicator Assessment. Land, 12(1), 155. https://doi.org/10.3390/land12010155