Effect of Barometric Pressure Fluctuations on Gas Transport over Soil Surfaces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Gas Transport Equation
2.2. Flux Calculation
2.2.1. Diffusion Flux
2.2.2. Advection Flux
2.2.3. Total Flux
2.3. Pressure Attenuation Model (PAM)
2.4. Soil Medium
2.5. Trace Gas
2.6. Experimental Setup
2.7. Pump Height
2.8. Experimental Protocol
2.8.1. PAM Model Validation
2.8.2. Concentration Change Response
3. Results
3.1. Model Reliability
3.2. Calculation and Comparison of CO2 Response and Flux
3.3. Response of Soil Physical Properties to Pressure Difference
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Forde, O.N.; Cahill, A.G.; Beckie, R.D.; Mayer, K.U. Barometric-pumping controls fugitive gas emissions from a vadose zone natural gas release. Sci. Rep. 2019, 9, 14080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hutchinson, G.L.; Livingston, G.P.; Healy, R.W.; Striegl, R.G. Chamber measurement of surface-atmosphere trace gas exchange: Numerical evaluation of dependence on soil, interfacial layer, and source/sink properties. J. Geophys. Res. Atmos. 2000, 105, 8865–8875. [Google Scholar] [CrossRef]
- Knorr, W.; Prentice, I.C.; House, J.I.; Holland, E.A. Long-term sensitivity of soil carbon turnover to warming. Nature 2005, 433, 298–301. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, B.K.; Mayya, Y.S. Two dimensional diffusion theory of trace gas emission into soil chambers for flux measurements. Agric. For. Meteorol. 2010, 150, 1211–1224. [Google Scholar] [CrossRef]
- Hamamoto, S.; Moldrup, P.; Kawamoto, K.; Komatsu, T. Effect of Particle Size and Soil Compaction on Gas Transport Parameters in Variably Saturated, Sandy Soils. Vadose Zone J. 2009, 8, 986–995. [Google Scholar] [CrossRef] [Green Version]
- Kuang, X.; Jiao, J.J.; Li, H. Review on airflow in unsaturated zones induced by natural forcings. Water Resour. Res. 2013, 49, 6137–6165. [Google Scholar] [CrossRef]
- Levintal, E.; Dragila, M.I.; Weisbrod, N. Impact of wind speed and soil permeability on aeration time in the upper vadose zone. Agric. For. Meteorol. 2019, 269–270, 294–304. [Google Scholar] [CrossRef]
- Kristensen, A.H.; Thorbjørn, A.; Jensen, M.P.; Pedersen, M.; Moldrup, P. Gas-phase diffusivity and tortuosity of structured soils. J. Contam. Hydrol. 2010, 115, 26–33. [Google Scholar] [CrossRef]
- Costanza-Robinson, M.S.; Brusseau, M.L. Gas phase advection and dispersion in unsaturated porous media. Water Resour. Res. 2002, 38, 7–1–7–9. [Google Scholar] [CrossRef]
- Nield, D.A.; Bejan, A. Convection in Porous Media; Springer: Cham, Switzerland, 2006; Volume 3. [Google Scholar]
- Ganot, Y.; Dragila, M.I.; Weisbrod, N. Impact of thermal convection on CO2 flux across the earth–atmosphere boundary in high-permeability soils. Agric. For. Meteorol. 2014, 184, 12–24. [Google Scholar] [CrossRef]
- Kamai, T.; Weisbrod, N.; Dragila, M.I. Impact of ambient temperature on evaporation from surface-exposed fractures. Water Resour. Res. 2009, 45, W02417. [Google Scholar] [CrossRef]
- Lahmira, B.; Lefebvre, R.; Hockley, D.; Phillip, M. Atmospheric Controls on Gas Flow Directions in a Waste Rock Dump. Vadose Zone J. 2014, 13, 1–17. [Google Scholar] [CrossRef]
- Nachshon, U.; Weisbrod, N.; Dragila, M.I. Quantifying Air Convection through Surface-Exposed Fractures: A Laboratory Study. Vadose Zone J. 2008, 7, 948–956. [Google Scholar] [CrossRef]
- Nield, D.; Kuznetsov, A.V. An historical and topical note on convection in porous media. J. Heat Transf. 2013, 135, 061201. [Google Scholar] [CrossRef]
- Weisbrod, N.; Dragila, M.I.; Nachshon, U.; Pillersdorf, M. Falling through the cracks: The role of fractures in Earth-atmosphere gas exchange. Geophys. Res. Lett. 2009, 36, L02401. [Google Scholar] [CrossRef]
- Kimball, B.A.; Lemon, E.R. Air Turbulence Effects upon Soil Gas Exchange. Soil Sci. Soc. Am. J. 1971, 35, 16–21. [Google Scholar] [CrossRef]
- Nachshon, U.; Dragila, M.; Weisbrod, N. From atmospheric winds to fracture ventilation: Cause and effect. J. Geophys. Res. Biogeosci. 2012, 117, G02016. [Google Scholar] [CrossRef] [Green Version]
- Pourbakhtiar, A.; Poulsen, T.G.; Faghihinia, M.; Papadikis, K.; Wilkinson, S. Relating wind-induced gas transport in porous media to wind speed and medium characteristics. J. Pet. Sci. Eng. 2020, 194, 107550. [Google Scholar] [CrossRef]
- Pourbakhtiar, A.; Poulsen, T.G.; Wilkinson, S.; Bridge, J.W. Effect of wind turbulence on gas transport in porous media: Experimental method and preliminary results. Eur. J. Soil Sci. 2017, 68, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Cañete, E.P.; Oyonarte, C.; Serrano-Ortiz, P.; Curiel Yuste, J.; Pérez-Priego, O.; Domingo, F.; Kowalski, A.S. Winds induce CO2 exchange with the atmosphere and vadose zone transport in a karstic ecosystem. J. Geophys. Res. Biogeosci. 2016, 121, 2049–2063. [Google Scholar] [CrossRef]
- Clements, W.E.; Wilkening, M.H. Atmospheric pressure effects on 222Rn transport across the Earth-air interface. J. Geophys. Res. 1974, 79, 5025–5029. [Google Scholar] [CrossRef]
- Massmann, J.; Farrier, D.F. Effects of atmospheric pressures on gas transport in the vadose zone. Water Resour. Res. 1992, 28, 777–791. [Google Scholar] [CrossRef]
- Sánchez-Cañete, E.P.; Kowalski, A.S.; Serrano-Ortiz, P.; Pérez-Priego, O.; Domingo, F. Deep CO2 soil inhalation/exhalation induced by synoptic pressure changes and atmospheric tides in a carbonated semiarid steppe. Biogeosciences 2013, 10, 6591–6600. [Google Scholar] [CrossRef] [Green Version]
- Hinton, E.M.; Woods, A.W. Shear dispersion in a porous medium. Part 1. An intrusion with a steady shape. J. Fluid Mech. 2020, 899, A38. [Google Scholar] [CrossRef]
- Webster, I.T.; Taylor, J.H. Rotational dispersion in porous media due to fluctuating flows. Water Resour. Res. 1992, 28, 109–119. [Google Scholar] [CrossRef]
- Alzaydi, A.A.; Moore, C.A.; Rai, I.S. Combined pressure and diffusional transition region flow of gases in porous media. AIChE J. 1978, 24, 35–43. [Google Scholar] [CrossRef]
- Bowling, D.R.; Massman, W.J. Persistent wind-induced enhancement of diffusive CO2 transport in a mountain forest snowpack. J. Geophys. Res. Biogeosci. 2011, 116, G04006. [Google Scholar] [CrossRef]
- Maier, M.; Schack-Kirchner, H.; Aubinet, M.; Goffin, S.; Longdoz, B.; Parent, F. Turbulence Effect on Gas Transport in Three Contrasting Forest Soils. Soil Sci. Soc. Am. J. 2012, 76, 1518–1528. [Google Scholar] [CrossRef] [Green Version]
- Poulsen, T.G.; Møldrup, P. Evaluating effects of wind-induced pressure fluctuations on soil-atmosphere gas exchange at a landfill using stochastic modelling. Waste Manag. Res. 2006, 24, 473–481. [Google Scholar] [CrossRef]
- Mohr, M.; Laemmel, T.; Maier, M.; Schindler, D. Analysis of Air Pressure Fluctuations and Topsoil Gas Concentrations within a Scots Pine Forest. Atmosphere 2016, 7, 125. [Google Scholar] [CrossRef]
- Bain, W.G.; Hutyra, L.; Patterson, D.C.; Bright, A.V.; Daube, B.C.; Munger, J.W.; Wofsy, S.C. Wind-induced error in the measurement of soil respiration using closed dynamic chambers. Agric. For. Meteorol. 2005, 131, 225–232. [Google Scholar] [CrossRef]
- Xu, L.; Furtaw, M.D.; Madsen, R.A.; Garcia, R.L.; Anderson, D.J.; McDermitt, D.K. On maintaining pressure equilibrium between a soil CO2 flux chamber and the ambient air. J. Geophys. Res. Atmos. 2006, 111, D08S10. [Google Scholar] [CrossRef] [Green Version]
- Takle, E.S.; Massman, W.J.; Brandle, J.R.; Schmidt, R.A.; Zhou, X.; Litvina, I.V.; Garcia, R.; Doyle, G.; Rice, C.W. Influence of high-frequency ambient pressure pumping on carbon dioxide efflux from soil. Agric. For. Meteorol. 2004, 124, 193–206. [Google Scholar] [CrossRef]
- Laemmel, T.; Mohr, M.; Schack-Kirchner, H.; Schindler, D.; Maier, M. 1D Air Pressure Fluctuations Cannot Fully Explain the Natural Pressure-Pumping Effect on Soil Gas Transport. Soil Sci. Soc. Am. J. 2019, 83, 1044–1053. [Google Scholar] [CrossRef]
- Poulsen, T.G.; Sharma, P. Apparent Porous Media Gas Dispersion in Response to Rapid Pressure Fluctuations. Soil Sci. 2011, 176, 635–641. [Google Scholar] [CrossRef]
- Scooter, D.R.; Thurtell, G.W.; Raats, P.A.C. NOTE: Dispersion Resulting from Sinusoidal Gas Flow in Porous Materials. Soil Sci. 1967, 104, 306–308. [Google Scholar] [CrossRef]
- Scotter, D.R.; Raats, P.A.C. Dispersion in Porous Mediums Due to Oscillating Flow. Water Resour. Res. 1968, 4, 1201–1206. [Google Scholar] [CrossRef]
- Millington, R.J.; Quirk, J.P. Permeability of porous solids. Trans. Faraday Soc. 1961, 57, 1200–1207. [Google Scholar] [CrossRef]
- Schery, S.D.; Gaeddert, D.H.; Wilkening, M.H. Factors affecting exhalation of radon from a gravelly sandy loam. J. Geophys. Res. Atmos. 1984, 89, 7299–7309. [Google Scholar] [CrossRef]
- Bear, J. Dynamics of Fluids in Porous Media; Courier Corporation: Chelmsford, MA, USA, 1988. [Google Scholar]
- Kowalski, A.S.; Sánchez-Cañete, E.P. A New Definition of the Virtual Temperature, Valid for the Atmosphere and the CO2-Rich Air of the Vadose Zone. J. Appl. Meteorol. Climatol. 2010, 49, 1692–1695. [Google Scholar] [CrossRef]
- Angert, A.; Yakir, D.; Rodeghiero, M.; Preisler, Y.; Davidson, E.A.; Weiner, T. Using O2 to study the relationships between soil CO2 efflux and soil respiration. Biogeosciences 2015, 12, 2089–2099. [Google Scholar] [CrossRef] [Green Version]
- Schlichting, H.; Kestin, J. Boundary Layer Theory; Springer: Berlin/Heidelberg, Germany, 1961; Volume 121. [Google Scholar]
- Bekku, Y.; Koizumi, H.; Nakadai, T.; Iwaki, H. Measurement of soil respiration using closed chamber method: An IRGA technique. Ecol. Res. 1995, 10, 369–373. [Google Scholar] [CrossRef]
- Rochette, P.; Hutchinson, G.L. Measurement of soil respiration in situ: Chamber techniques. In Micrometeorology in Agricultural Systems; American Society of Agronomy: Madison, WI, USA, 2005; pp. 247–286. [Google Scholar]
- Amundson, R.G.; Davidson, E.A. Carbon dioxide and nitrogenous gases in the soil atmosphere. J. Geochem. Explor. 1990, 38, 13–41. [Google Scholar] [CrossRef]
Soil Medium | Particle Size /mm | Total Porosity /m3·m−3 | Permeability /m2 |
---|---|---|---|
Loam | 0.053 | 0.470 | 2.5 × 10−11 |
Sandy loam | 0.075 | 0.353 | 4.5 × 10−11 |
Sand | 0.150 | 0.372 | 3.9 × 10−10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, J.; Gu, K.; Xu, J.; Li, Y.; Le, Y.; Hu, J. Effect of Barometric Pressure Fluctuations on Gas Transport over Soil Surfaces. Land 2023, 12, 161. https://doi.org/10.3390/land12010161
Jiang J, Gu K, Xu J, Li Y, Le Y, Hu J. Effect of Barometric Pressure Fluctuations on Gas Transport over Soil Surfaces. Land. 2023; 12(1):161. https://doi.org/10.3390/land12010161
Chicago/Turabian StyleJiang, Junjie, Kechen Gu, Jiahui Xu, Yao Li, Yang Le, and Junguo Hu. 2023. "Effect of Barometric Pressure Fluctuations on Gas Transport over Soil Surfaces" Land 12, no. 1: 161. https://doi.org/10.3390/land12010161
APA StyleJiang, J., Gu, K., Xu, J., Li, Y., Le, Y., & Hu, J. (2023). Effect of Barometric Pressure Fluctuations on Gas Transport over Soil Surfaces. Land, 12(1), 161. https://doi.org/10.3390/land12010161