Spatio-Temporal Variation of the Ecosystem Service Value in Qilian Mountain National Park (Gansu Area) Based on Land Use
Abstract
:1. Introduction
2. Overview of the Study Area
3. Materials and Methods
3.1. Data Sources and Processing
3.2. Research Methods
3.2.1. Analysis of Degree of Land Use and Change Characteristics
- Composite Index of Land Use
- 2.
- Analysis of land use change characteristics
3.2.2. Approaches to Valuing Ecosystem Services
3.2.3. Sensitivity Analysis
4. Results
4.1. Change Characteristics of Land Use Degree
4.1.1. Land Use Change Characteristics
4.1.2. Land Use Change Characteristics
4.2. The Value of Ecosystem Services
4.2.1. The Temporal Variation Characteristics of the Total Value of the Service
4.2.2. Spatial Variation Characteristics of the Total Service Value
4.2.3. The Function of the Service and the Changing Characteristics of the Value of the Individual Service
4.3. Sensitivity Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, Q.; Wang, X.H. Evaluating relationship between water projects and ecological protection from the respect of Dujiang Weir. China Water Resour. 2020, 3, 22–24. [Google Scholar]
- Xu, L.L.; Yu, H. Research progress of international landscape evaluation, protection, and utilization of national parks and implications to China. Resour. Sci. 2022, 44, 1520–1532. [Google Scholar] [CrossRef]
- Wang, S.K.; Jiao, Y. On realization of the concept of ‘benefit to all’ in legislation on national parks. J. Southeast Univ. (Philos. Soc. Sci.) 2021, 23, 50–59. [Google Scholar]
- Qiu, X.; Xiao, Y.; Shi, L.; Wang, H.M.; Liu, Y.H.; Sun, H.L. Assessment of ecological conservation benefit in the Inner Mongolia based on ecological assets. Acta Ecol. Sin. 2022, 42, 5255–5263. [Google Scholar]
- Lv, Z.X.; Zhao, T.W. Pluralistic Co-governance System Construction of Qilian Mountain National Park. J. Northwest Minzu Univ. (Philos. Soc. Sci.) 2021, 4, 82–88. [Google Scholar]
- Chang, Z.Q.; Xu, B.L.; Wang, J.Y.; Chang, X.X.; Wang, Y.L. Forest Grazing Ecosystem and the Sustainable Management in Qilian Mountains. J. Northwest For. Univ. 2001, S1, 66–69. [Google Scholar]
- Wang, Y.Z.; Zeng, G. Research on the construction of the Silk Road Cultural Heritage Corridor from the spatial perspective—A case of Gansu section. World Reg. Stud. 2022, 31, 862–871. [Google Scholar]
- Dong, S.C.; Li, B.; Xue, M.; Li, Z.H. Comparative analysis and discussion on tourism development between Gansu and six neighboring provinces and regions. Gansu Soc. Sci. 2008, 1, 240–243. [Google Scholar]
- Daily, G.C. Nature’s Service: Societal Dependence on Natural Ecosystems, 4th ed.; Island Press: Washington, DC, USA, 1997; pp. 49–68. [Google Scholar]
- Xie, G.D.; Xiao, Y.; Zhen, L.; Lu, C.X. Study on ecosystem services value of food production in China. Chin. J. Eco-Agric. 2005, 3, 10–13. [Google Scholar]
- Wen, Y.L.; Zhang, X.L.; Wei, J.H.; Wang, X.L.; Cai, Y.J. Temporal and spatial variation of ecosystem service value and its trade-offs and synergies in the peripheral region of the Poyang Lake. Sci. Geogr. Sin. 2022, 42, 1229–1238. [Google Scholar]
- Yang, Y.T.; Yin, Y.; Jiang, K.D. Ecological security pattern planning of coastal zone in Maoming city from land-sea integration perspectives. Mar. Environ. Sci. 2022, 41, 705–713. [Google Scholar]
- Ouyang, Z.Y.; Wang, X.K.; Miao, H. A primary study on Chinese terrestrial ecosystem services and their ecological-economic values. Acta Ecol. Sin. 1999, 19, 19–25. [Google Scholar]
- Frelichova, J.; Vackar, D.; Lorencova, E. Integrated assessment of ecosystem services in the Czech Republic. Ecosyst. Serv. 2014, 8, 110–117. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; DeGroot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; ONeill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- DeGroot, R.S.; Wilson, M.A.; Boumans, R.M. A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol. Econ. 2002, 41, 393–408. [Google Scholar] [CrossRef] [Green Version]
- Small, N.; Munday, M.; Durance, I. The challenge of valuing ecosystem services that have no material benefits. Glob. Environ. Chang.-Hum. Policy Dimens. 2017, 44, 57–67. [Google Scholar] [CrossRef]
- Grabowski, J.H.; Brumbaugh, R.D.; Conrad, R.F.; Keeler, A.G.; Opaluch, J.J.; Peterson, C.H.; Piehler, M.F.; Powers, S.P.; Smyth, A.R. Economic Valuation of Ecosystem Services Provided by Oyster Reefs. Bioscience 2012, 62, 900–909. [Google Scholar] [CrossRef] [Green Version]
- Ding, M.M.; Liu, W.; Xiao, L.; Zhong, F.X.; Lu, N.; Zhang, J.; Zhang, Z.H.; Xu, X.L.; Wang, K.L. Construction and optimization strategy of ecological security pattern in a rapidly urbanizing region: A case study in central-south China. Ecol. Indic. 2022, 136, 108604. [Google Scholar] [CrossRef]
- Morshed, S.R.; Fattah, M.A.; Haque, M.N.; Morshed, S.Y. Future ecosystem service value modeling with land cover dynamics by using machine learning based Artificial Neural Network model for Jashore city, Bangladesh. Phys. Chem. Earth 2022, 126, 103021. [Google Scholar] [CrossRef]
- Sutton, P.C.; Duncan, S.L.; Anderson, S.J. Valuing Our National Parks: An Ecological Economics Perspective. Land 2019, 8, 54. [Google Scholar] [CrossRef] [Green Version]
- Chan, K.M.A.; Satterfield, T.; Goldstein, J. Rethinking ecosystem services to better address and navigate cultural values. Ecol. Econ. 2012, 74, 8–18. [Google Scholar] [CrossRef]
- Castro, A.J.; Verburg, P.H.; Martin-Lopez, B.; Garcia-Llorente, M.; Cabello, J.; Vaughn, C.; Lopez, E. Ecosystem service trade-offs from supply to social demand: A landscape-scale spatial analysis. Landsc. Urban Plan. 2014, 132, 102–110. [Google Scholar] [CrossRef]
- Zeng, Y.X.; Zhong, L.S.; Yu, H.; Zhou, B. The structure of recreational ecosystem services: A case study of the Sanjiangyuan National Park. Acta Ecol. Sin. 2022, 42, 5653–5664. [Google Scholar]
- Li, J.H.; Huang, L.; Cao, W.; Wu, D. Accounting of gains and losses of ecological assets in counties of key ecological function regions in Yangtze River Delta. J. Nat. Resour. 2022, 37, 1946–1960. [Google Scholar] [CrossRef]
- Guo, F.Y.; Tong, L.J.; Qiu, F.D.; Li, Y.M. Spatio-temporal differentiation characteristics and influencing factors of green development in the eco-economic corridor of the Yellow River Basin. Acta Geogr. Sin. 2021, 76, 726–739. [Google Scholar]
- Lu, C.P.; Hou, M.C.; Liu, Z.L.; Li, H.J.; Lu, C.Y. Variation Characteristic of NDVI and its Response to Climate Change in the Middle and Upper Reaches of Yellow River Basin, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8484–8496. [Google Scholar] [CrossRef]
- Wang, S.L.; Qu, Y.B.; Zong, H.N.; Zhang, Y.J.; Guan, M.; Zhang, Y. Research on multi-dimensional decomposition and conduction path of territory spatial pattern at the municipal level. J. Nat. Resour. 2022, 37, 2803–2818. [Google Scholar] [CrossRef]
- Wu, D.T.; Wang, X.; Liu, H.H.; Hu, J.; Wang, G.Q. Building a National Park System Based on World Natural Heritage Sites. Study Nat. Cult. Herit. 2022, 7, 61–70. [Google Scholar]
- Fan, Z.L.; Li, N.; Li, W.M. Assessment of ecosystem service value in Qilian Mountain National Park, Gansu Province. Contemp. Econ. 2021, 12, 70–77. [Google Scholar]
- Wang, Z.Y.; Shi, P.J.; Zhang, X.B.; Yao, L.T.; Tong, H.L. Grid-scale-based ecological security assessment and ecological restoration: A case study of Suzhou district, Jiuquan. J. Nat. Resour. 2022, 37, 2736–2749. [Google Scholar]
- Su, J.D.; Pu, J.L.; Li, G.X.; Zhao, X.J. Study on ecosystem benefit evaluation of Qilian Mountains National Nature Reserve of Gansu Province. Ecol. Sci. 2021, 40, 89–94. [Google Scholar]
- Zhang, C.Y.; Bai, Y.P.; Yang, X.D.; Li, L.W.; Liang, J.S.; Wang, Q.; Chen, Z.J. Identification of ecosystem service bundles in Ningxia Plain under multi-scenario simulation. Geogr. Res. 2022, 41, 3364–3382. [Google Scholar]
- Zhang, N.L. Dynamic Changes of Land Use and Ecosystem Services Value in Altai Mountains. Chin. J. Soil Sci. 2022, 53, 1286–1294. [Google Scholar]
- Wang, J.; Zhou, S.K.; Meng, F.L.; Zhang, L. Impacts of Land Use Evolution on the Evaluation of Ecosystem Service Value and Temporal Variation in the Lugu Lake Basin. J. West China For. Sci. 2022, 51, 34–42. [Google Scholar]
- Cheng, G.B.; Ju, X.Q. Response of Ecosystem Service Value to Land Use Change Based on RS and GIS Technology: Taking Urumqi City Circle as an Example. J. Nat. Resour. 2021, 37, 169–175. [Google Scholar]
- Zhu, H.; Li, X. Discussion on the Index Method of Regional Land Use Change. Acta Geogr. Sin. 2003, 58, 643–650. [Google Scholar]
- Tan, Z.; Guan, Q.Y.; Lin, J.K.; Yang, L.Q.; Luo, H.P.; Ma, Y.R.; Tian, J.; Wang, Q.Z.; Wang, N. The response and simulation of ecosystem services value to land use/land cover in an oasis, Northwest China. Ecol. Indic. 2020, 118, 106711. [Google Scholar] [CrossRef]
- Xie, G.D.; Zhen, L.; Lu, C.X.; Xiao, Y.; Chen, C. Expert Knowledge Based Valuation Method of Ecosystem Services in China. J. Nat. Resour. 2008, 5, 911–919. [Google Scholar]
- Sutton, P.C.; Costanza, R. Global estimates of market and non-market values derived from nighttime satellite imagery, land cover, and ecosystem service valuation. Ecol. Econ. 2002, 41, 509–527. [Google Scholar] [CrossRef]
- Xie, G.D.; Lu, C.X.; Cheng, S.K. Progress in Evaluating the Global Ecosystem services. Resour. Sci. 2001, 6, 5–9. [Google Scholar]
- Zhang, F.; Yusufujiang, R.S.L.; Aierken, T.E.S. Spatio-temporal change of ecosystem service value in Bosten Lake Watershed based on land use. Acta Ecol. Sin. 2021, 41, 5254–5265. [Google Scholar]
- Huang, M.Y.; Fang, B.; Yue, W.Z.; Feng, S.R. Spatial differentiation of ecosystem service values and its geographical detection in Chaohu Basin during 1995–2017. Geogr. Res. 2019, 38, 2790–2803. [Google Scholar]
- Zhuang, D.F.; Liu, J.Y. Study on the Model of Regional of differentiation of Land Use Degree in China. J. Nat. Resour. 1997, 2, 10–16. [Google Scholar]
- Wang, Z.F.; Xu, J. Impacts of land use evolution on ecosystem service value of national parks: Take Sanjiangyuan National Park as an example. Acta Ecol. Sin. 2022, 42, 6948–6958. [Google Scholar]
- Zheng, D.F.; Hao, S.; Lv, L.T.; Xu, W.J.; Wang, Y.Y.; Wang, H. Spatial-temporal change and trade-off/synergy relationships among multiple ecosystem services in Three-River-Source National Park. Geogr. Res. 2020, 39, 64–78. [Google Scholar]
- Wu, P.; Zhang, H. Assessment of Appropriate Standards for Ecological Compensation in Sanjiangyuan National Park: Based on the Perspective of Value Supply of Ecosystem Services. Qinghai Soc. Sci. 2022, 1, 50–58. [Google Scholar]
County (District) | Major Indicators | ||||||
---|---|---|---|---|---|---|---|
Area 1 | Population 2 | GDP | Value of the Primary | Value of the Secondary | Value of the Tertiary Output | Fixed Investment | |
sq. km. | tp | Billion USD | Billion USD | Billion USD | Billion USD | Billion USD | |
Subei mongolian prefecture | 667 | 15.1 | 0.236 | 0.016 | 0.099 | 0.121 | 0.6 |
Akesai kazak autonomous county | 314 | 11.0 | 0.149 | 0.012 | 0.046 | 0.091 | 0.416 |
Minle county | 37 | 192.5 | 0.851 | 0.275 | 0.163 | 0.413 | 0.793 |
Yongchang county | 74 | 177.6 | 1.13 | 0.263 | 0.303 | 0.564 | 0.451 |
Tianzhu tibetan autonomous county | 71 | 151 | 0.663 | 0.17 | 0.127 | 0.366 | 0.552 |
Liangzhou district | 49 | 885.3 | 4.559 | 1.127 | 0.788 | 2.644 | 2.368 |
Sunan Yugur Autonomous County | 202 | 27.8 | 0.386 | 0.101 | 0.115 | 0.17 | 0.158 |
Total | 1232.2 | 1460.3 | 7.974 | 1.964 | 1.641 | 4.369 | 5.338 |
Land Use Types | Area and Proportion | 2000–2019 Rate of Change/% | Dynamics of Single Land Use/% | ||||
---|---|---|---|---|---|---|---|
2000 | 2005 | 2010 | 2015 | 2019 | |||
Farmland | 9324.27 | 12,627.63 | 9274.59 | 9231.30 | 8717.04 | −6.51 | −0.02 |
0.31% | 0.40% | 0.30% | 0.30% | 0.28% | |||
Forestland | 158,374.26 | 457,176.42 | 164,074.86 | 319,009.05 | 350,380.26 | 121.24 | 0.30 |
5.18% | 14.66% | 5.26% | 10.2883% | 11.37% | |||
Grassland | 1,786,700.07 | 1,166,820.21 | 1,613,574.54 | 1,468,309.32 | 1,489,829.58 | −16.62 | −0.04 |
58.47% | 37.42% | 51.72% | 47.35% | 48.34% | |||
Water | 16,695.90 | 17,494.11 | 6078.24 | 113,096.97 | 7452.81 | −55.36 | −0.14 |
0.55% | 0.56% | 0.19% | 3.65% | 0.24% | |||
Built-up area | 46.08 | 58.41 | 22.59 | 88.47 | 147.60 | 220.31 | 0.55 |
0.0015% | 0.0019% | 0.0007% | 0.0029% | 0.0048% | |||
Unused land | 1,075,888.26 | 1,389,957.39 | 1,219,935.60 | 1,103,931.09 | 1,122,641.01 | 4.35 | 0.01 |
35.21% | 44.57% | 39.11% | 35.60% | 36.43% | |||
Glacial snow | 8892.72 | 74,350.26 | 106,632.45 | 87,024.51 | 102,892.68 | 1057.04 | 2.64 |
0.29% | 2.38% | 3.42% | 2.81% | 3.34% |
Unused Land (Glacial Snow) | Water | Forestland (Grassland) | Farmland | Built-Up Area | |
---|---|---|---|---|---|
Degree of land use | 1 | 2 | 3 | 4 | 5 |
Land Use Intensity Index | Amount of Change in the Land Use Intensity Index | Rate of Change in Land Use Intensity | |
---|---|---|---|
2000 | 2.2877 | — | — |
2005 | 2.0594 | −0.2283 | −9.98% |
2010 | 2.1506 | 0.0912 | 4.43% |
2015 | 2.1984 | 0.0478 | 2.22% |
2019 | 2.2052 | 0.0069 | 0.31% |
Farmland | Forestland | Grassland | Water | Built-Up Area | Unused Land | Glacial Snow | |
---|---|---|---|---|---|---|---|
2000–2005 | 0.3271 | 1.8288 | −0.3600 | 0.0268 | 0.2421 | 0.2660 | 7.1931 |
2005–2010 | −0.2658 | −0.6412 | 0.3824 | −0.6527 | −0.6134 | −0.1226 | 0.4337 |
2010–2015 | 0.0014 | 0.9561 | −0.0845 | 17.7203 | 2.9402 | −0.0896 | −0.1789 |
2015–2019 | −0.0500 | 0.1050 | 0.0208 | −0.9337 | 0.6784 | 0.0231 | 0.1895 |
2000–2019 | −0.0731 | 1.1936 | −0.1732 | −0.5574 | 2.1760 | 0.0346 | 10.4723 |
Total Value of the Service and Percentage | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
2000 | 2005 | 2010 | 2015 | 2019 | ||||||
Farmland | 0.4844 | 0.09% | 1.2263 | 0.14% | 1.9925 | 0.10% | 2.2898 | 0.06% | 1.3488 | 0.09% |
Forestland | 46.7240 | 8.62% | 252.0863 | 27.94% | 200.1601 | 9.91% | 449.3289 | 12.76% | 307.8546 | 20.08% |
Grassland | 455.8161 | 84.08% | 556.3551 | 61.65% | 1702.1868 | 84.26% | 1788.3872 | 50.79% | 1131.9449 | 73.87% |
Water | 37.9062 | 6.99% | 74.2339 | 8.22% | 57.0635 | 2.82% | 1225.9076 | 34.81% | 50.3932 | 3.29% |
Unused land | 0.0007 | 0.01% | 0.0016 | 0.01% | 0.0013 | 0.01% | 0.0061 | 0.01% | 0.0062 | 0.01% |
Glacial snow | 1.1833 | 0.21% | 18.4907 | 2.04% | 58.6723 | 2.90% | 55.2853 | 1.57% | 40.7754 | 2.66% |
Total | 542.1147 | 100% | 902.3941 | 100% | 2020.0764 | 100% | 3521.2048 | 100% | 1532.3232 | 100% |
Amount of Change | ||||||||||
2000–2005 | 2005–2010 | 2010–2015 | 2015–2019 | 2000–2019 | ||||||
Farmland | 0.7417 | 0.7664 | 0.2972 | −0.9411 | 0.8644 | |||||
Forestland | 205.3623 | −51.9262 | 249.1688 | −141.4742 | 261.1306 | |||||
Grassland | 100.5390 | 1145.8315 | 86.2005 | −656.4423 | 676.1288 | |||||
Water | 36.3277 | −17.1704 | 1168.8439 | −1175.5144 | 12.4869 | |||||
Unused land | 0.0009 | −0.0003 | 0.0046 | 0.0003 | 0.0057 | |||||
Glacial snow | 17.3075 | 40.1814 | −3.3868 | −14.5100 | 39.5920 | |||||
Total | 360.2794 | 1117.6823 | 1501.1284 | −1988.8816 | 990.2085 |
Service Features | Supply Services | Conditioning Services | Support Services | Cultural Services |
---|---|---|---|---|
2000 | 34.8308 | 356.9154 | 125.0125 | 25.3560 |
6.42 | 65.84 | 23.06 | 4.68 | |
2005 | 60.1541 | 599.3683 | 203.6830 | 39.1886 |
6.67 | 66.42 | 22.57 | 4.34 | |
2010 | 137.2245 | 1323.3005 | 466.6521 | 92.8994 |
6.79 | 65.51 | 23.1 | 4.6 | |
2015 | 238.6677 | 2489.8058 | 642.5233 | 150.2079 |
6.78 | 70.71 | 18.25 | 4.27 | |
2019 | 103.1654 | 1005.6898 | 354.9110 | 68.5569 |
6.73 | 65.63 | 23.16 | 4.47 | |
2000–2019 Amount/rate of change | 68.3346 | 68.3346 | 68.3346 | 68.3346 |
196.19% | 181.77% | 183.90% | 170.38% |
Service Features | Individual Service Features | 2000 | 2005 | 2010 | 2015 | 2019 | Amount of Change (2000–2019) | Rate of Change (2000–2019) |
---|---|---|---|---|---|---|---|---|
Supply services | Food production | 9.6633 | 14.6791 | 36.1903 | 45.2447 | 26.4925 | 16.8292 | 174.16% |
1.78% | 1.63% | 1.79% | 1.28% | 1.73% | ||||
Raw material production | 14.6270 | 24.1152 | 55.0894 | 70.2096 | 42.1374 | 27.5105 | 188.08% | |
2.70% | 2.67% | 2.73% | 1.99% | 2.75% | ||||
Water supply | 10.5405 | 21.3599 | 45.9448 | 123.2134 | 34.5355 | 23.9950 | 227.65% | |
1.94% | 2.37% | 2.27% | 3.50% | 2.25% | ||||
Subtotal | 34.8308 | 60.1541 | 137.2245 | 238.6677 | 103.1654 | 68.3346 | 196.19% | |
Conditioning services | Gas conditioning | 51.1063 | 83.3408 | 193.1937 | 245.3344 | 146.7329 | 95.6266 | 187.11% |
9.43% | 9.24% | 9.56% | 6.97% | 9.58% | ||||
Climate comfort | 136.0364 | 227.8777 | 516.8104 | 644.0117 | 398.0173 | 261.9808 | 192.58% | |
25.09% | 25.25% | 25.58% | 18.29% | 25.97% | ||||
Clean-up operation | 45.9109 | 74.8265 | 170.1298 | 260.4256 | 129.0871 | 83.1762 | 181.17% | |
8.47% | 8.29% | 8.42% | 7.40% | 8.42% | ||||
Soil–water regulation | 123.8618 | 14,713.76 | 30,566.97 | 92,427.52 | 22,889.19 | 14,345.9491 | 167.92% | |
22.85% | 23.64% | 21.94% | 38.06% | 21.66% | ||||
Subtotal | 356.9154 | 599.3683 | 1323.30 | 2489.806 | 1005.69 | 648.7744 | 181.77% | |
Support services | Soil conservation | 62.2532 | 101.1645 | 234.1863 | 297.6786 | 177.9187 | 115.6654 | 185.80% |
22.85% | 23.64% | 21.94% | 38.06% | 21.66% | ||||
Nutrient cycling | 4.6870 | 7.6643 | 17.6358 | 22.5078 | 13.4347 | 8.7477 | 186.64% | |
0.86% | 0.85% | 0.87% | 0.64% | 0.88% | ||||
Diversity | 58.0724 | 94.8543 | 214.8300 | 322.3370 | 163.5577 | 105.4854 | 181.64% | |
10.71% | 10.51% | 10.63% | 9.15% | 10.67% | ||||
Subtotal | 125.0125 | 203.6830 | 466.6521 | 642.5233 | 354.9110 | 229.8985 | 1.8390 | |
Cultural services | Aesthetic landscape | 25.3560 | 39.1886 | 92.8994 | 150.2079 | 68.5569 | 43.2010 | 170.38% |
4.68% | 4.34% | 4.60% | 4.27% | 4.47% | ||||
Subtotal | 25.3560 | 39.1886 | 92.8994 | 150.2079 | 68.5569 | 43.2010 | 170.38% |
Amount of Change | |||||
---|---|---|---|---|---|
2000 | 2005 | 2010 | 2015 | 2019 | |
Farmland (VC ± 50%) | 0.00089 | 0.00136 | 0.00099 | 0.00065 | 0.00088 |
Forestland (VC ± 50%) | 0.08619 | 0.27935 | 0.09909 | 0.12761 | 0.20091 |
Grassland (VC ± 50%) | 0.84081 | 0.61653 | 0.84263 | 0.50789 | 0.73871 |
Water (VC ± 50%) | 0.06992 | 0.08226 | 0.02825 | 0.34815 | 0.03289 |
Unused land (VC ± 50%) | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
Glacial snow (VC ± 50%) | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pu, L.; Lu, C.; Yang, X.; Chen, X. Spatio-Temporal Variation of the Ecosystem Service Value in Qilian Mountain National Park (Gansu Area) Based on Land Use. Land 2023, 12, 201. https://doi.org/10.3390/land12010201
Pu L, Lu C, Yang X, Chen X. Spatio-Temporal Variation of the Ecosystem Service Value in Qilian Mountain National Park (Gansu Area) Based on Land Use. Land. 2023; 12(1):201. https://doi.org/10.3390/land12010201
Chicago/Turabian StylePu, Lili, Chengpeng Lu, Xuedi Yang, and Xingpeng Chen. 2023. "Spatio-Temporal Variation of the Ecosystem Service Value in Qilian Mountain National Park (Gansu Area) Based on Land Use" Land 12, no. 1: 201. https://doi.org/10.3390/land12010201
APA StylePu, L., Lu, C., Yang, X., & Chen, X. (2023). Spatio-Temporal Variation of the Ecosystem Service Value in Qilian Mountain National Park (Gansu Area) Based on Land Use. Land, 12(1), 201. https://doi.org/10.3390/land12010201