Assessing the Impact of Rural Multifunctionality on Non-Point Source Pollution: A Case Study of Typical Hilly Watershed, China
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Data Sources
2.3. The Simulation of NPS Pollution
2.4. The Identification of Rural Multifunctionality
2.5. Geographical Detector
- (1)
- Nonlinear-weaken:
- (2)
- Uni-enhance/weaken:
- (3)
- Bi-enhance:
- (4)
- Nonlinear-enhance:
- (5)
- Independent:
3. Results
3.1. The NPS Pollution Estimation in Liyang
3.2. The Modifiable Areal Unit Problem (MAUP)
3.3. Factor Detector of NPS Pollution and Rural Multifunctionality
3.4. The Identification of the Rural Multifunctions
3.5. The Interaction Detector of Rural Multifunctions
4. Discussion
4.1. The Impact of Rural Multifunctionality on NPS Pollution
4.2. The Mechanism of Impacts of Rural Multifunctionality on the Spatial Differentiation of NPS Pollution and Policy Implication
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, Y.; Chen, Y.; Zhang, X.; Ongley, E.; Zhao, L. Methodology for agricultural and rural NPS pollution in a typical county of the North China Plain. Environ. Pollut. 2012, 168, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Xie, B.; Zhang, Z.; Guo, H.D. Rural multifunction in Shanghai suburbs: Evaluation and spatial characteristics based on villages. Habitat Int. 2019, 92, 102041. [Google Scholar] [CrossRef]
- Ongley, E.D.; Xiaolan, Z.; Tao, Y. Current status of agricultural and rural non-point source pollution assessment in China. Environ. Pollut. 2010, 158, 1159–1168. [Google Scholar] [CrossRef]
- Min, J.; Kong, X. Research Progress of Agricultural Non-point Source Pollution in China. J. Huazhong Agric. Univ. 2016, 2, 59–66. [Google Scholar]
- Long, H.; Woods, M. Rural restructuring under globalization in eastern coastal China: What can be learned from Wales? J. Rural Community Dev. 2011, 6, 70–94. [Google Scholar]
- Lu, D.; Fan, J. Regional Development Research in China: A Roadmap to 2050; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Yang, R.; Luo, X.; Chen, Y. Spatial pattern and influencing factors of rural multifunctionality at county level in China. Prog. Geogr. 2019, 38, 1316–1328. [Google Scholar] [CrossRef]
- Van Berkel, D.B.; Verburg, P.H. Sensitising rural policy: Assessing spatial variation in rural development options for Europe. Land Use Policy 2011, 28, 447–459. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Chen, Y. Territorial multi-functionality evaluation and decision-making mechanism at county scale in China. Acta Geogr. Sin. 2011, 66, 1379–1389. [Google Scholar]
- Wang, Y.; Liu, Y. Pollution and restructuring strategies of rural ecological environment in China. Prog. Geogr. 2018, 37, 710–717. [Google Scholar]
- Zhang, Y.; Dore, A.; Ma, L.; Liu, X.; Ma, W.; Cape, J.; Zhang, F. Agricultural ammonia emissions inventory and spatial distribution in the North China Plain. Environ. Pollut. 2010, 158, 490–501. [Google Scholar] [CrossRef]
- Dong, G.; Yang, S.; Gao, Y.; Bai, J.; Wang, X.; Zheng, D. Spatial evaluation of phosphorus retention in riparian zones using remote sensing data. Environ. Earth Sci. 2014, 72, 1643–1657. [Google Scholar] [CrossRef]
- Shen, Z.; Liao, Q.; Hong, Q.; Gong, Y. An overview of research on agricultural non-point source pollution modelling in China. Sep. Purif. Technol. 2012, 84, 104–111. [Google Scholar] [CrossRef]
- Nobre, R.L.G.; Caliman, A.; Cabral, C.R.; de Carvalho Araújo, F.; Guerin, J.; Dantas, F.d.C.C.; Quesado, L.B.; Venticinque, E.M.; Guariento, R.D.; Amado, A.M. Precipitation, landscape properties and land use interactively affect water quality of tropical freshwaters. Sci. Total Environ. 2020, 716, 137044. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Kao, C.; Lin, C.; Chen, C.; Lai, Y. Using a constructed wetland for non-point source pollution control and river water quality purification: A case study in Taiwan. Water Sci. Technol. 2010, 61, 2549–2555. [Google Scholar] [CrossRef] [PubMed]
- Lai, S.; Du, P.; Chen, J. Evaluation of non-point source pollution based on unit analysis. J.-Tsinghua Univ. 2004, 44, 1184–1187. [Google Scholar]
- Xu, F.; Dong, G.; Wang, Q.; Liu, L.; Yu, W.; Men, C.; Liu, R. Impacts of DEM uncertainties on critical source areas identification for non-point source pollution control based on SWAT model. J. Hydrol. 2016, 540, 355–367. [Google Scholar] [CrossRef]
- Bosch, N.S. The influence of impoundments on riverine nutrient transport: An evaluation using the Soil and Water Assessment Tool. J. Hydrol. 2008, 355, 131–147. [Google Scholar] [CrossRef]
- Xue, J.; Wang, Q.; Zhang, M. A review of non-point source water pollution modeling for the urban–rural transitional areas of China: Research status and prospect. Sci. Total Environ. 2022, 826, 154146. [Google Scholar] [CrossRef]
- Laurent, F.; Ruelland, D. Assessing impacts of alternative land use and agricultural practices on nitrate pollution at the catchment scale. J. Hydrol. 2011, 409, 440–450. [Google Scholar] [CrossRef]
- Fohrer, N.; Eckhardt, K.; Haverkamp, S.; Frede, H. Applying the SWAT model as a decision support tool for land use concepts in peripheral regions in Germany. In Proceedings of the Sustaining the Global Farm. 10th International Soil Conservation Organization Meeting, West Lafayette, IN, USA, 24–29 May 1999. [Google Scholar]
- Zhang, S. Influence of Land Use/Cover Change on Agricultural Non-Point Source Pollution under Different Slopes in Dianchi Lake Basin Based on GIS and SWAT Model; Yunnan Normal University: Kunming, China, 2014. [Google Scholar]
- Lai, Z.; Li, S.; Deng, Y.; Lv, G.; Ullah, S. Development of a polder module in the SWAT model: SWATpld for simulating polder areas in south-eastern China. Hydrol. Process. 2018, 32, 1050–1062. [Google Scholar] [CrossRef]
- Chang, D.; Lai, Z.; Li, S.; Li, D.; Zhou, J. Critical source areas’ identification for non-point source pollution related to nitrogen and phosphorus in an agricultural watershed based on SWAT model. Environ. Sci. Pollut. Res. 2021, 28, 47162–47181. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Hong, Q.; Chu, Z.; Gong, Y. A framework for priority non-point source area identification and load estimation integrated with APPI and PLOAD model in Fujiang Watershed, China. Agric. Water Manag. 2011, 98, 977–989. [Google Scholar] [CrossRef]
- MEA. Ecosystems and Human Well-Being: Wetlands and Water; World Resources Institute: Washington, DC, USA, 2005. [Google Scholar]
- Shen, Z.; Hou, X.; Li, W.; Aini, G.; Chen, L.; Gong, Y. Impact of landscape pattern at multiple spatial scales on water quality: A case study in a typical urbanised watershed in China. Ecol. Indic. 2015, 48, 417–427. [Google Scholar] [CrossRef]
- Min, M.; Li, H.; Ma, T.; Miao, C. Will agricultural land scale management aggravate non-point source pollution?–Chaohu Lake Basin, China as a case study. Appl. Geogr. 2023, 158, 103056. [Google Scholar] [CrossRef]
- Holmes, J. Impulses towards a multifunctional transition in rural Australia: Gaps in the research agenda. J. Rural Stud. 2006, 22, 142–160. [Google Scholar] [CrossRef]
- Chen, T.; Lu, J.; Lu, T.; Yang, X.; Zhong, Z.; Feng, H.; Wang, M.; Yin, J. Agricultural non-point source pollution and rural transformation in a plain river network: Insights from Jiaxing city, China. Environ. Pollut. 2023, 333, 121953. [Google Scholar] [CrossRef]
- Xu, X.; Liu, J.; Zhang, S.; Li, R.; Yan, C.; Wu, S.; Multi-Period Land Use Land Cover Remote Sensing Monitoring Dataset in China (CNLUCC). Resource and Environmental Science Data Registration and Publication System. 2018. Available online: http://www.resdc.cn/ (accessed on 16 November 2022).
- Rodriguez, E.; Morris, C.S.; Belz, J.E. A global assessment of the SRTM performance. Photogramm. Eng. Remote Sens. 2006, 72, 249–260. [Google Scholar] [CrossRef]
- FAO-ISRIC. Jrc: Harmonized World Soil Database (Version 1.2); FAO: Rome, Italy; IIASA: Laxenburg, Austria, 2012. [Google Scholar]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development 1. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Nasr, A.; Bruen, M.; Jordan, P.; Moles, R.; Kiely, G.; Byrne, P. A comparison of SWAT, HSPF and SHETRAN/GOPC for modelling phosphorus export from three catchments in Ireland. Water Res. 2007, 41, 1065–1073. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Krause, P.; Boyle, D.; Bäse, F. Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci. 2005, 5, 89–97. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.; Van Griensven, A.; Van Liew, M.W. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Vyas, S.; Kumaranayake, L. Constructing socio-economic status indices: How to use principal components analysis. Health Policy Plan. 2006, 21, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Camdevyren, H.; Demyr, N.; Kanik, A.; Keskyn, S. Use of principal component scores in multiple linear regression models for prediction of Chlorophyll-a in reservoirs. Ecol. Model. 2005, 181, 581–589. [Google Scholar] [CrossRef]
- Wang, L.; Xu, C.; Wang, J.; Qiao, J.; Wu, N.; Li, L. Spatiotemporal associations between hand, foot and mouth disease and meteorological factors over multiple climate zones. Int. J. Biometeorol. 2023, 67, 1493–1504. [Google Scholar] [CrossRef]
- Jelinski, D.E.; Wu, J.G. The modifiable areal unit problem and implications for landscape ecology. Landsc. Ecol. 1996, 11, 129–140. [Google Scholar] [CrossRef]
- Song, Y.; Wang, J.; Ge, Y.; Xu, C. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. GIScience Remote Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
- Ju, H.; Zhang, Z.; Zuo, L.; Wang, J.; Zhang, S.; Wang, X.; Zhao, X. Driving forces and their interactions of built-up land expansion based on the geographical detector–a case study of Beijing, China. Int. J. Geogr. Inf. Sci. 2016, 30, 2188–2207. [Google Scholar] [CrossRef]
- Kaiser, H.F. A note on Guttman’s lower bound for the number of common factors. Br. J. Stat. Psychol. 1961. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, P.; Wang, X.; Chen, Y.; Shen, Z. Assessment of effects of best management practices on agricultural non-point source pollution in Xiangxi River watershed. Agric. Water Manag. 2013, 117, 9–18. [Google Scholar] [CrossRef]
- Wang, W.; Chen, L.; Shen, Z. Dynamic export coefficient model for evaluating the effects of environmental changes on non-point source pollution. Sci. Total Environ. 2020, 747, 141164. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Luo, C.; Xi, Q.; Li, H.; Pan, J.; Zhou, Q.; Xiong, Z. Assessment of the AnnAGNPS model in simulating runoff and nutrients in a typical small watershed in the Taihu Lake basin, China. Catena 2015, 133, 349–361. [Google Scholar] [CrossRef]
- Jain, C. A hydro-chemical study of a mountainous watershed: The Ganga, India. Water Res. 2002, 36, 1262–1274. [Google Scholar] [CrossRef]
- Wong, D.W. The modifiable areal unit problem (MAUP). In WorldMinds: Geographical Perspectives on 100 Problems: Commemorating the 100th Anniversary of the Association of American Geographers 1904–2004; Springer: Berlin/Heidelberg, Germany, 2004; pp. 571–575. [Google Scholar]
- Fotheringham, A.S.; Wong, D.W. The modifiable areal unit problem in multivariate statistical analysis. Environ. Plan. A 1991, 23, 1025–1044. [Google Scholar] [CrossRef]
- Duan, T.; Li, Y. A multiscale analysis of the spatially heterogeneous relationships between non-point source pollution–related processes and their main drivers in Chaohu Lake watershed, China. Environ. Sci. Pollut. Res. 2023, 30, 86940–86956. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, C.; Chen, J.; Hu, N.; Zhu, L. Evaluation on environmental consequences and sustainability of three rice-based rotation systems in Quanjiao, China by an integrated analysis of life cycle, emergy and economic assessment. J. Clean. Prod. 2021, 310, 127493. [Google Scholar] [CrossRef]
- Wang, X.; Feng, A.; Wang, Q.; Wu, C.; Liu, Z.; Ma, Z.; Wei, X. Spatial variability of the nutrient balance and related NPSP risk analysis for agro-ecosystems in China in 2010. Agric. Ecosyst. Environ. 2014, 193, 42–52. [Google Scholar] [CrossRef]
- Zhang, Y.; Long, H.; Li, Y.; Tu, S.; Jiang, T. Non-point source pollution in response to rural transformation development: A comprehensive analysis of China’s traditional farming area. J. Rural Stud. 2021, 83, 165–176. [Google Scholar] [CrossRef]
- Zou, L.; Liu, Y.; Wang, Y.; Hu, X. Assessment and analysis of agricultural non-point source pollution loads in China: 1978–2017. J. Environ. Manag. 2020, 263, 110400. [Google Scholar] [CrossRef]
- Xue, L.; Hou, P.; Zhang, Z.; Shen, M.; Liu, F.; Yang, L. Application of systematic strategy for agricultural non-point source pollution control in Yangtze River basin, China. Agriculture, Ecosystems Environment. 2020, 304, 107–148. [Google Scholar] [CrossRef]
- Rizov, M. Rural development under the European CAP: The role of diversity. Soc. Sci. J. 2005, 42, 621–628. [Google Scholar] [CrossRef]
Name | Sources | Resolution | Application |
---|---|---|---|
Land-use data | RESDC [31] | 30 m × 30 m | For the distribution of land-use type(Farmland/water/forest/grassland/bare land/built-up land) |
DEM | USGS [32] | 90 m × 90 m | For sub-watershed division, river network digitization, and slope division |
Soil | HWSD [33] | 1 km × 1 km | For soil database in SWAT |
Meteorological data | Liyang National meteorological Station | 2010~2020 | For weather database in SWAT |
Flow and water quality data | Monthly Water Quality Report | 2010–2014 | For calibration and validation |
Rural multifunctional indicator | Liayng Statistical Yearbook | 2018 | For the development analysis in the study area |
No. | Factors | Calculation | Unit |
---|---|---|---|
X1 | Actual sown rate | The ratio of actual sown area and total farmland at the end of the year | % |
X2 | Grain farming rate | The ratio of grain farming area and sown area | % |
X3 | Vegetable farming rate | The ratio of vegetable farming area and sown area | % |
X4 | Pond density | The density of pond farming | % |
X5 | Family farming cooperatives | The number of family farm and agricultural cooperatives per unit area | /km2 |
X6 | Rural industrial enterprises | The number of rural industrial enterprises per unit area | /km2 |
X7 | Individual business | The number of individual business per unit area | /km2 |
X8 | Market | The number of markets over 50 square meters per unit area | /km2 |
X9 | Tourist arrivals | The number of tourist arrivals per unit area | /km2 |
X10 | Households engaged in leisure agriculture | The number of households engaged in leisure agriculture per unit area | /km2 |
X11 | Ecotourism area | The proportion of the ecotourism area | % |
X12 | Nature reserves | The proportion of nature reserves | % |
Indicators | TN | TP | ||
---|---|---|---|---|
q-Value | Rank | q-Value | Rank | |
X1 | 0.14 | 2 | 0.13 | 2 |
X2 | 0.12 | 4 | 0.12 | 4 |
X3 | 0.18 | 1 | 0.17 | 1 |
X4 | 0.12 | 4 | 0.13 | 2 |
X5 | 0.13 | 3 | 0.10 | 5 |
X6 | 0.05 | 9 | 0.04 | 9 |
X7 | 0.03 | 12 | 0.01 | 12 |
X8 | 0.05 | 9 | 0.06 | 7 |
X9 | 0.05 | 9 | 0.02 | 11 |
X10 | 0.06 | 7 | 0.05 | 8 |
X11 | 0.06 | 7 | 0.03 | 10 |
X12 | 0.10 | 6 | 0.09 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, W.; Duan, X.; Kang, J.; Ma, Z. Assessing the Impact of Rural Multifunctionality on Non-Point Source Pollution: A Case Study of Typical Hilly Watershed, China. Land 2023, 12, 1936. https://doi.org/10.3390/land12101936
Yan W, Duan X, Kang J, Ma Z. Assessing the Impact of Rural Multifunctionality on Non-Point Source Pollution: A Case Study of Typical Hilly Watershed, China. Land. 2023; 12(10):1936. https://doi.org/10.3390/land12101936
Chicago/Turabian StyleYan, Wei, Xuejun Duan, Jiayu Kang, and Zhiyuan Ma. 2023. "Assessing the Impact of Rural Multifunctionality on Non-Point Source Pollution: A Case Study of Typical Hilly Watershed, China" Land 12, no. 10: 1936. https://doi.org/10.3390/land12101936
APA StyleYan, W., Duan, X., Kang, J., & Ma, Z. (2023). Assessing the Impact of Rural Multifunctionality on Non-Point Source Pollution: A Case Study of Typical Hilly Watershed, China. Land, 12(10), 1936. https://doi.org/10.3390/land12101936