Biophysical Effects of Land Cover Changes on Land Surface Temperature on the Sichuan Basin and Surrounding Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Identification of Pixels with Land Cover Change
2.3.2. Quantification of Actual LST Effect
3. Results
3.1. Overview of Land Cover Change
3.2. The Spatial Distribution of the Impact of Land Cover Change on LST
3.3. The Temporal Pattern of the Impact of Land Cover Change on LST
4. Discussion
5. Conclusions
- (1)
- From 2001 to 2020, approximately 2.9% of the pixels in the study area underwent LCCs, and the distribution of different conversion types was mainly regulated by altitude. The most prevalent conversion was the interaction between Savannas and Cropland within the Sichuan Basin.
- (2)
- During 2001–2020, the biophysical feedback of LCCs led to an annual average LST increase of 0.01 ± 0.004 K, which exhibited a seasonal pattern of strong warming in summer and autumn and weaker cooling in winter. Overall, these conversions can exacerbate or alleviate the background climate warming effect of about 10%. The main reasons to the above patterns were the conversions between Savannas and Cropland, between Mixed Forest and Savanna, and in urbanization.
- (3)
- Both the area of LCCs and the warming impact on annual and seasonal scales demonstrated a “first rising and then declining” trend over time. However, the cooling impact in winter showed a continuous enhancement trend. The monodirectional or mutual conversions between Cropland and Savannas were the dominant factors driving the temporal pattern of variations in area and temperature impact.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thompson, A. NASA Says 2020 Tied for Hottest Year on Record. 2021. Available online: https://www.scientificamerican.com/article/2020-will-rival-2016-for-hottest-year-on-record/ (accessed on 4 September 2023).
- Susskind, J.; Schmidt, G.A.; Lee, J.N.; Iredell, L. Recent global warming as confirmed by AIRS. Environ. Res. Lett. 2019, 14, 044030. [Google Scholar] [CrossRef]
- Winkler, K.; Fuchs, R.; Rounsevell, M.; Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 2021, 12, 2501. [Google Scholar] [CrossRef] [PubMed]
- Alkama, R.; Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 2016, 351, 600–604. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, Z.-L.; Wu, H.; Zhou, C.; Liu, X.; Leng, P.; Yang, P.; Wu, W.; Tang, R.; Shang, G.-F.; et al. Biophysical impacts of earth greening can substantially mitigate regional land surface temperature warming. Nat. Commun. 2023, 14, 121. [Google Scholar] [CrossRef] [PubMed]
- Perugini, L.; Caporaso, L.; Marconi, S.; Cescatti, A.; Quesada, B.; de Noblet-Ducoudre, N.; House, J.I.; Arneth, A. Biophysical effects on temperature and precipitation due to land cover change. Environ. Res. Lett. 2017, 12, 053002. [Google Scholar] [CrossRef]
- Duveiller, G.; Hooker, J.; Cescatti, A. The mark of vegetation change on Earth’s surface energy balance. Nat. Commun. 2018, 9, 679. [Google Scholar] [CrossRef] [PubMed]
- Lee, X.; Goulden, M.L.; Hollinger, D.Y.; Barr, A.; Black, T.A.; Bohrer, G.; Bracho, R.; Drake, B.; Goldstein, A.; Gu, L.; et al. Observed increase in local cooling effect of deforestation at higher latitudes. Nature 2011, 479, 384–387. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhao, M.; Motesharrei, S.; Mu, Q.; Kalnay, E.; Li, S. Local cooling and warming effects of forests based on satellite observations. Nat. Commun. 2015, 6, 6603. [Google Scholar] [CrossRef]
- Zhou, D.; Xiao, J.; Frolking, S.; Liu, S.; Zhang, L.; Cui, Y.; Zhou, G. Croplands intensify regional and global warming according to satellite observations. Remote Sens. Environ. 2021, 264, 112585. [Google Scholar] [CrossRef]
- Wang, L.; Duan, S.-B.; Zhang, X.; Chang, S.; Liu, X.; Huang, C.; Qian, Y.G. The influence of afforestation on land surface temperature in China. Natl. Remote Sens. Bull. 2021, 25, 1862–1872. [Google Scholar] [CrossRef]
- Liao, W.; Rigden, A.J.; Li, D. Attribution of local temperature response to deforestation. J. Geophys. Res. Biogeosci. 2018, 123, 1572–1587. [Google Scholar] [CrossRef]
- Wang, H.; Yue, C.; Luyssaert, S. Reconciling different approaches to quantifying land surface temperature impacts of afforestation using satellite observations. Biogeosciences 2023, 20, 75–92. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, M.; Mildrexler, D.J.; Motesharrei, S.; Mu, Q.; Kalnay, E.; Zhao, F.; Li, S.; Wang, K. Potential and Actual impacts of deforestation and afforestation on land surface temperature. J. Geophys. Res. Atmos. 2016, 121, 14372–14386. [Google Scholar] [CrossRef]
- Ge, J. Biogeophysical Impacts of Large-Scale Ecological Programs on Regional Climate in China. Ph.D. Thesis, Nanjing University, Nanjing, China, 2019. [Google Scholar]
- Shen, W.; He, J.; Huang, C.; Li, M. Quantifying the Actual Impacts of Forest Cover Change on Surface Temperature in Guangdong, China. Remote Sens. 2020, 12, 2354. [Google Scholar] [CrossRef]
- Zeng, Z.; Wang, D.; Yang, L.; Wu, J.; Ziegler, A.D.; Liu, M.; Ciais, P.; Searchinger, T.D.; Yang, Z.-L.; Chen, D.; et al. Deforestation-induced warming over tropical mountain regions regulated by elevation. Nat. Geosci. 2021, 14, 23–29. [Google Scholar] [CrossRef]
- Shen, X.; Liu, B.; Jiang, M.; Lu, X. Marshland loss warms local land surface temperature in China. Geophys. Res. Lett. 2020, 47, e2020GL087648. [Google Scholar] [CrossRef]
- Liu, W.; Dong, J.; Du, G.; Zhang, G.; Hao, Z.; You, N.; Zhao, G.; Flynn, K.C.; Yang, T.; Zhou, Y. Biophysical effects of paddy rice expansion on land surface temperature in Northeastern Asia. Agric. For. Meteorol. 2022, 315, 108820. [Google Scholar] [CrossRef]
- Shen, X.; Liu, Y.; Liu, B.; Zhang, J.; Wang, L.; Lu, X.; Jiang, M. Effect of shrub encroachment on land surface temperature in semi-arid areas of temperate regions of the Northern Hemisphere. Agric. For. Meteorol. 2022, 320, 108943. [Google Scholar] [CrossRef]
- Di, W.; Shen, R.; Huang, A.; Han, H. Analysis of the Biophysical Mechanism of Cooling/Warming Effect of Cropland Expansion on Land Surface Temperature in Northeast China. China J. Agrometeorol. 2022, 43, 450–463. [Google Scholar]
- Liu, X.; Tong, X.; Shi, X.; Yang, J.; Gu, J. Impact of farming on land surface temperature over Northeast China. J. PLA Univ. Sci. Technol. 2015, 16, 97–102. [Google Scholar]
- Zhu, H.; Zhang, Y.; Shen, X.; Wang, S.; Shang, L.; Su, Y. A numerical simulation of the impact of vegetation evolution on the regional climate in the ecotone of agriculture and animal husbandry over China. Plateau Meteorol. 2018, 37, 721–733. [Google Scholar]
- Tian, L.; Zhang, B.; Wang, X.; Chen, S.; Pan, B. Large-Scale Afforestation Over the Loess Plateau in China Contributes to the Local Warming Trend. J. Geophys. Res. Atmos. 2021, 127, e2021jd035730. [Google Scholar] [CrossRef]
- Shen, W.; Li, M.; Huang, C.; He, T.; Tao, X.; Wei, A. Local land surface temperature change induced by afforestation based on satellite observations in Guangdong plantation forests in China. Agric. For. Meteorol. 2019, 276–277, 107641. [Google Scholar] [CrossRef]
- Shao, J.; Li, Y.; Ni, J. The characteristics of temperature variability with terrain, latitude and longitude in Sichuan-Chongqing Region. J. Geogr. Sci. 2012, 22, 223–244. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z.; Wang, J. Regional differentiation and comprehensive regionalization scheme of modern agriculture in China. Acta Geogr. Sin. 2018, 73, 203–218. [Google Scholar]
- Sulla-Menashe, D.; Gray, J.M.; Abercrombie, S.P.; Friedl, M.A. Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product. Remote Sens. Environ. 2019, 222, 183–194. [Google Scholar] [CrossRef]
- Li, Z.L.; Wu, H.; Duan, S.B.; Zhao, W.; Ren, H.; Liu, X.; Leng, P.; Tang, R.; Ye, X.; Zhu, J. Satellite remote sensing of global land surface temperature: Definition, methods, products, and applications. Rev. Geophys. 2023, 61, e2022RG000777. [Google Scholar] [CrossRef]
- Liu, X.; Li, Z.L.; Li, J.H.; Leng, P.; Liu, M.; Gao, M. Temporal upscaling of MODIS 1-km instantaneous land surface temperature to monthly mean value: Method evaluation and product generation. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5001214. [Google Scholar] [CrossRef]
- Xing, Z.; Li, Z.-L.; Duan, S.-B.; Liu, X.; Zheng, X.; Leng, P.; Gao, M.; Zhang, X.; Shang, G. Estimation of daily mean land surface temperature at global scale using pairs of daytime and nighttime MODIS instantaneous observations. ISPRS J. Photogramm. Remote Sens. 2021, 178, 51–67. [Google Scholar] [CrossRef]
- Liu, X.; Li, Z.; Li, J.; Leng, P.; Liu, M.; Gao, M. Global 1-km Monthly Mean Land Surface Temperature Product (2003–2020); Zenodo: Geneva, Switzerland, 2022; (1.0). [Google Scholar] [CrossRef]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Abera, T.A.; Heiskanen, J.; Pellikka, P.; Rautiainen, M.; Maeda, E.E. Clarifying the role of radiative mechanisms in the spatio-temporal changes of land surface temperature across the Horn of Africa. Remote Sens. Environ. 2019, 221, 210–224. [Google Scholar] [CrossRef]
- Liu, X.; Tang, B.-H.; Li, Z.-L. Evaluation of three parametric models for estimating directional thermal radiation from simulation, airborne, and satellite data. Remote Sens. 2018, 10, 420. [Google Scholar] [CrossRef]
- Tang, T.; Lee, X.; Schultz, N.; Zhang, K.; Cai, L.; Lawrence, D.M.; Shevliakova, E. Biophysical Impact of Land Use and Land Cover Change on Subgrid Temperature in CMIP6 Models. J. Hydrometeorol. 2022, 24, 373–388. [Google Scholar] [CrossRef]
- Yang, Q.; Huang, X.; Tang, Q. Global assessment of the impact of irrigation on land surface temperature. Sci. Bull. 2020, 65, 1440–1443. [Google Scholar] [CrossRef] [PubMed]
- Si, M.; Li, Z.-L.; Nerry, F.; Tang, B.-H.; Leng, P.; Wu, H.; Zhang, X.; Shang, G. Spatiotemporal pattern and long-term trend of global surface urban heat islands characterized by dynamic urban-extent method and MODIS data. ISPRS J. Photogramm. Remote Sens. 2022, 183, 321–335. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, J.; Huang, X.; Yang, Q.; Ma, S. Effects of Urban Morphology on Land Surface Temperature in Local Climate Zones. Geomat. Inf. Sci. Wuhan Univ. 2021, 46, 1412–1422. [Google Scholar] [CrossRef]
- Loveland, T.R.; Belward, A. The international geosphere biosphere programme data and information system global land cover data set (DISCover). Acta Astronaut. 1997, 41, 681–689. [Google Scholar] [CrossRef]
- Shahfahad; Bindajam, A.A.; Naikoo, M.W.; Horo, J.P.; Mallick, J.; Rihan, M.; Malcoti, M.D.; Talukdar, S.; Rahman, R.; Rahman, A. Response of soil moisture and vegetation conditions in seasonal variation of land surface temperature and surface urban heat island intensity in sub-tropical semi-arid cities. Theor. Appl. Climatol. 2023, 153, 367–395. [Google Scholar] [CrossRef]
- Dong, R.; Wurm, M.; Taubenböck, H. Seasonal and diurnal variation of land surface temperature distribution and its relation to land use/land cover patterns. Int. J. Environ. Res. Public Health 2022, 19, 12738. [Google Scholar] [CrossRef]
- Shi, Z.; Yang, J.; Wang, L.-e.; Lv, F.; Wang, G.; Xiao, X.; Xia, J. Exploring seasonal diurnal surface temperature variation in cities based on ECOSTRESS data: A local climate zone perspective. Front. Public Health 2022, 10, 1001344. [Google Scholar] [CrossRef]
- Kafy, A.-A.; Rahman, A.F.; Al Rakib, A.; Akter, K.S.; Raikwar, V.; Jahir, D.M.A.; Ferdousi, J.; Kona, M.A. Assessment and prediction of seasonal land surface temperature change using multi-temporal Landsat images and their impacts on agricultural yields in Rajshahi, Bangladesh. Environ. Chall. 2021, 4, 100147. [Google Scholar]
- Zhao, J.; Dong, Y.; Zhang, M.; Huang, L. Comparison of identifying land cover tempo-spatial changes using GlobCover and MCD12Q1 global land cover products. Arab. J. Geosci. 2020, 13, 792. [Google Scholar] [CrossRef]
- Jun, C.; Ban, Y.; Li, S. Open access to Earth land-cover map. Nature 2014, 514, 434. [Google Scholar] [CrossRef]
Abbreviation | Class | Subclass |
---|---|---|
ENF | Evergreen Needleleaf Forests | / |
EBF | Evergreen Broadleaf Forests | / |
DBF | Deciduous Broadleaf Forests | / |
MF | Mixed Forests | / |
SAV | Savannas | Woody Savannas |
Savannas | ||
GRA | Grassland | / |
CRO | Cropland | Croplands |
Cropland/Natural Vegetation Mosaics | ||
URB | Urban | / |
BAR | Bare Soil | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, X.; Tang, G.; Du, J.; Tian, X. Biophysical Effects of Land Cover Changes on Land Surface Temperature on the Sichuan Basin and Surrounding Regions. Land 2023, 12, 1959. https://doi.org/10.3390/land12111959
Mao X, Tang G, Du J, Tian X. Biophysical Effects of Land Cover Changes on Land Surface Temperature on the Sichuan Basin and Surrounding Regions. Land. 2023; 12(11):1959. https://doi.org/10.3390/land12111959
Chicago/Turabian StyleMao, Xiangming, Gula Tang, Jiaqiang Du, and Xiaotong Tian. 2023. "Biophysical Effects of Land Cover Changes on Land Surface Temperature on the Sichuan Basin and Surrounding Regions" Land 12, no. 11: 1959. https://doi.org/10.3390/land12111959
APA StyleMao, X., Tang, G., Du, J., & Tian, X. (2023). Biophysical Effects of Land Cover Changes on Land Surface Temperature on the Sichuan Basin and Surrounding Regions. Land, 12(11), 1959. https://doi.org/10.3390/land12111959