Impacts of Urbanization and Its Parameters on Thermal and Dynamic Fields in Hangzhou: A Sensitivity Study Using the Weather Research and Forecasting Urban Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synoptic Background
2.2. Model Configuration
2.3. Numerical Experiment Design
3. Results
3.1. Evaluation of WRF Simulation
3.2. Evaluation of the Urban Effect
3.3. Sensitivity Analysis of Urban Canopy Parameters
4. Discussion
5. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviations and Descriptions | |
ALBEDO | surface albedo |
GLW | downward longwave radiation |
GLWUP | upward longwave radiation |
GRDFLX | ground heat flux |
HFX | sensible heat flux |
LH | latent heat flux |
NLW | net longwave radiation |
NSW | net shortwave radiation |
PBL | planetary boundary layer scheme |
PREC | precipitation |
Q2M | 2 m mixing ratio |
RMSE | root-mean-square error |
RN | net radiation |
SWDOWN | downward shortwave radiation |
SWUP | upward shortwave radiation |
TKEP850 | turbulent kinetic energy flux at 850 hPa |
TS | threat score |
TSK | surface temperature |
T2M | 2 m temperature |
UCP | urban canopy parameter |
UHI | urban heat island |
UST | friction velocity |
WS10M | 10 m wind speed |
W850 | vertical velocity at 850 hPa |
References
- Han, J.; Baik, J.; Lee, H. Urban impacts on precipitation. Asia-Pac. J. Atmos. Sci. 2014, 50, 17–30. [Google Scholar] [CrossRef]
- Portman, D. Identifying and Correcting Urban Bias in Regional Time Series: Surface Temperature in China’s Northern Plains. J. Clim. 1993, 6, 2298–2308. [Google Scholar] [CrossRef]
- Ren, G.; Zhou, Y.; Chu, Z.; Zhou, J.; Zhang, A.; Guo, J.; Liu, X. Urbanization effects on observed surface air temperature trends in north China. J. Clim. 2008, 21, 1333–1348. [Google Scholar] [CrossRef]
- Sun, X.; Luo, Y.; Gao, X.; Wu, M.; Li, M.; Huang, L.; Zhang, D.-L.; Xu, H. On the Localized Extreme Rainfall over the Great Bay Area in South China with Complex Topography and Strong UHI Effects. Mon. Wea. Rev. 2021, 149, 2777–2801. [Google Scholar] [CrossRef]
- Jiang, X.; Luo, Y.; Zhang, D.; Wu, M. Urbanization Enhanced Summertime Extreme Hourly Precipitation over the Yangtze River Delta. J. Clim. 2020, 33, 5809–5826. [Google Scholar] [CrossRef]
- Wen, J.; Chen, J.; Lin, W.; Jiang, B.; Xu, S.; Lan, J. Impacts of Anthropogenic Heat Flux and Urban Land-Use Change on Frontal Rainfall near Coastal Regions: A Case Study of a Rainstorm over the Pearl River Delta, South China. J. Appl. Meteorol. Clim. 2020, 59, 363–379. [Google Scholar] [CrossRef]
- Wang, X.; Lin, W.; Yang, L.; Deng, R.; Lin, H. A numerical study of influences of urban land-use change on ozone distribution over the Pearl River Delta Region, China. Tellus B Chem. Phys. Meteorol. 2007, 59, 633–641. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, S.; Hao, J.; Wang, X.; Wang, S.; Chai, F.; Li, M. Air pollution and control action in Beijing. J. Clean. Prod. 2016, 112, 1519–1527. [Google Scholar] [CrossRef]
- Mishra, V.; Dennis, P. Climatic trends in major U.S. urban areas, 1950–2009. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Westra, S.; Alexander, L.; Zwiers, F. Global increasing trends in annual maximum daily precipitation. J. Clim. 2013, 26, 3904–3918. [Google Scholar] [CrossRef]
- Zhang, D. Rapid urbanization and more extreme rainfall events. Sci. Bull. 2020, 65, 516–518. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, J. A review of current investigations of urban-induced rainfall and recommendations for the future. Earth Interact. 2005, 9, 1–27. [Google Scholar] [CrossRef]
- Liang, X.; Miao, S.; Li, J.; Bornstein, R.; Zhang, X.; Gao, Y.; Chen, F.; Cao, X.; Cheng, Z.; Clements, C.; et al. SURF: Understanding and predicting urban convection and haze. Bull. Amer. Meteor. Soc. 2018, 99, 1391–1413. [Google Scholar] [CrossRef]
- Chen, F.; Yu, B.; Wu, M.; Yang, X. Improved Urban Finescale Forecasting During a Heat Wave by Using High-Resolution Urban Canopy Parameters. Front. Clim. 2022, 3, 771441. [Google Scholar] [CrossRef]
- Miao, Y.; Liu, S.; Zheng, Y.; Wang, S.; Chen, B. Numerical Study of the Effects of Topography and Urbanization on the Local Atmospheric Circulations over the Beijing-Tianjin-Hebei, China. Adv. Meteor. 2015, 2015, 397070. [Google Scholar] [CrossRef]
- Shui, T.; Liu, J.; Zhang, P.; Liu, S.; Zhao, Z. Development of an urban canopy model for the evaluation of urban thermal climate with snow cover in severe cold regions. Build. Environ. 2016, 95, 160–170. [Google Scholar] [CrossRef]
- Kusaka, H.; Kimura, F. Coupling a single-layer urban canopy model with a simple atmospheric model: Impact on urban heat island simulation for an idealized case. J. Meteor. Soc. Jpn. 2004, 82, 67–80. [Google Scholar] [CrossRef]
- Kusaka, H.; Kondo, H.; Kikegawa, Y.; Kimura, F. A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound-Layer Meteor. 2001, 101, 329–358. [Google Scholar] [CrossRef]
- Martilli, A.; Clappier, A.; Rotach, M. An urban surface exchange parameterisation for mesoscale models. Bound-Layer Meteor. 2002, 104, 261–304. [Google Scholar] [CrossRef]
- Chen, F.; Kusaka, H.; Bornstein, R.; Ching, J.; Grimmond, S.; Grossman-Clarke, S.; Loridan, T.; Manning, K.W.; Martilli, A.; Miao, S.; et al. The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. Int. J. Climatol. 2011, 31, 273–288. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, F.; Warner, T.; Basara, J. Verification of a mesoscale data-assimilation and forecasting system for the Oklahoma City area during the Joint Urban 2003 field project. J. Appl. Meteorol. Clim. 2006, 45, 912–929. [Google Scholar] [CrossRef]
- Ganeshan, M.; Murtugudde, R.; Imhoff, M. A multi-city analysis of the UHI-influence on warm season rainfall. Urban Clim. 2013, 6, 1–23. [Google Scholar] [CrossRef]
- Changnon, S. Rainfall changes in summer caused by St. Louis. Science 1979, 205, 402–404. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, J.; Harold, P.; Negri, A. Rainfall modification by major urban areas: Observations from spaceborne rain radar on the TRMM satellite. J. Appl. Meteor. 2002, 41, 689–701. [Google Scholar] [CrossRef]
- Niyogi, D.; Lei, M.; Kishtawal, C.; Schmid, P.; Shepherd, M. Urbanization impacts on the summer heavy rainfall climatology over the eastern United States. Earth Interact. 2017, 21, 1–7. [Google Scholar] [CrossRef]
- Bornstein, R.; Lin, Q. Urban heat islands and summertime convective thunderstorms in Atlanta: Three case studies. Atmos. Environ. 2000, 34, 507–516. [Google Scholar] [CrossRef]
- Dou, J.; Wang, Y.; Bornstein, R.; Miao, S. Observed spatial characteristics of Beijing urban climate impacts on summer thunderstorms. J. Appl. Meteorol. Clim. 2015, 54, 94–105. [Google Scholar] [CrossRef]
- Wan, H.; Zhong, Z.; Yang, X.; Li, X. Ensembles to model the impact of urbanization for a summertime rainstorm process in Yangtze River Delta, China. Meteorol. Appl. 2015, 22, 105–112. [Google Scholar] [CrossRef]
- Miao, S.; Chen, F.; Li, Q.; Fan, S. Impacts of Urban Processes and Urbanization on Summer Precipitation: A Case Study of Heavy Rainfall in Beijing on 1 August 2006. J. Appl. Meteorol. Clim. 2011, 50, 806–825. [Google Scholar] [CrossRef]
- Dou, J.; Bornstein, R.; Miao, S.; Sun, J.; Zhang, Y. Observation and simulation of a bifurcating thunderstorm over Beijing. J. Appl. Meteorol. Clim. 2020, 59, 2129–2148. [Google Scholar] [CrossRef]
- Xian, T.; Guo, J.; Zhao, R.; Su, T.; Li, Z. The impact of urbanization on mesoscale convective systems in the Yangtze River Delta region of China: Insights gained from observations and modeling. J. Geophys. Res. Atmos. 2023, 128, e2022JD037709. [Google Scholar] [CrossRef]
- Zhong, S.; Qian, Y.; Zhao, C.; Leung, R.; Wang, H.; Yang, B.; Fan, J.; Yan, H.; Yang, X.-Q.; Liu, D. Urbanization-induced urban heat island and aerosol effects on climate extremes in the Yangtze River Delta region of China. Atmos. Chem. Phys. 2017, 17, 5439–5457. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, J.; Yu, M.; Liang, X.; Xia, R.; Gao, Y.; Gao, X.; Yin, J. On the Influences of Urbanization on the Extreme Rainfall over Zhengzhou on 20 July 2021, A Convection-Permitting Ensemble Modeling Study. Adv. Atmos. Sci. 2023, 40, 393–409. [Google Scholar] [CrossRef]
- Chen, L.; Ng, E. Quantitative urban climate mapping based on a geographical database: A simulation approach using Hong Kong as a case study. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 586–594. [Google Scholar] [CrossRef]
- Martilli, A. Current research and future challenges in urban mesoscale modelling. Int. J. Climatol. 2007, 27, 1909–1918. [Google Scholar] [CrossRef]
- He, X.; Li, Y.; Wang, X.; Chen, L.; Yu, B.; Zhang, Y.; Miao, S. High-resolution dataset of urban canopy parameters for Beijing and its application to the integrated WRF/Urban modelling system. J. Clean. Prod. 2019, 208, 373–383. [Google Scholar] [CrossRef]
- Ching, J.; Brown, M.; Burian, S. National Urban Database and Access Portal Tool. Bull. Am. Meteor. Soc. 2009, 90, 1157–1168. [Google Scholar] [CrossRef]
- Baik, J.; Kim, Y.; Chun, H. Dry and moist convection forced by an urban heat island. J. Appl. Meteor. 2001, 40, 1462–1475. [Google Scholar] [CrossRef]
- Kaufmann, R.; Seto, K.; Schneider, A.; Liu, Z.; Zhou, L.; Wang, W. Climate response to rapid urban growth: Evidence of a human-induced precipitation deficit. J. Clim. 2007, 20, 2299–2306. [Google Scholar] [CrossRef]
- Coutts, A.; Daly, E.; Beringer, J.; Tapper, N. Assessing practical measures to reduce urban heat: Green and cool roofs. Build. Environ. 2013, 70, 266–276. [Google Scholar] [CrossRef]
- Liu, X.; Tian, G.; Feng, J.; Wang, J.; Kong, L. Assessing summertime urban warming and the cooling efficacy of adaptation strategy in the Chengdu-Chongqing metropolitan region of China. Sci. Total Environ. 2018, 610–611, 1092–1102. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Chen, H. Impact of urbanization-related land use land cover changes and urban morphology changes on the urban heat island phenomenon. Sci. Total Environ. 2018, 635, 1467–1476. [Google Scholar] [CrossRef] [PubMed]
- Zonato, A.; Martilli, A.; Di Sabatino, S.; Zardi, D.; Giovannini, L. Evaluating the performance of a novel WUDAPT averaging technique to define urban morphology with mesoscale models. Urban Clim. 2020, 31, 100584. [Google Scholar] [CrossRef]
- Yu, M.; Chen, X.; Yang, J.; Miao, S. A new perspective on evaluating high-resolution urban climate simulation with urban canopy parameters. Urban Clim. 2021, 38, 100919. [Google Scholar] [CrossRef]
- Shen, C.; Chen, X.; Dai, W.; Li, X.; Wu, J.; Fan, Q.; Wang, X.; Zhu, L.; Chan, P.; Hang, J.; et al. Impacts of High-Resolution Urban Canopy Parameters within the WRF Model on Dynamical and Thermal Fields over Guangzhou, China. J. Appl. Meteorol. Clim. 2019, 58, 1155–1176. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, F.; Miao, S.; Li, Q.; Xia, X.; Xuan, C. Impacts of urban expansion and future green planting on summer precipitation in the Beijing metropolitan area. J. Geophys. Res. Atmos. 2009, 114, D02116. [Google Scholar] [CrossRef]
- Zhong, S.; Qian, Y.; Zhao, C.; Leung, R.; Yang, X. A case study of urbanization impact on summer precipitation in the Greater Beijing Metropolitan Area: Urban heat island versus aerosol effects. J. Geophys. Res. Atmos. 2015, 120, 10903–10914. [Google Scholar] [CrossRef]
- Wang, X.; Sun, X.; Tang, J.; Yang, X. Urbanization-induced regional warming in yangtze river delta: Potential role of anthropogenic heat release. Int. J. Climatol. 2015, 35, 4417–4430. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, D.; Luo, Y. Influences of Urbanization on an Afternoon Heavy Rainfall Event over the Yangtze River Delta Region. Mon. Wea. Rev. 2023, 151, 815–832. [Google Scholar] [CrossRef]
- Wu, M.; Luo, Y.; Chen, F.; Wong, W. Observed Link of Extreme Hourly Precipitation Changes to Urbanization over Coastal South China. J. Appl. Meteor. Clima. 2019, 58, 1799–1819. [Google Scholar] [CrossRef]
- Li, Y.; Wang, W.; Chang, M.; Wang, X. Impacts of urbanization on extreme precipitation in the Guangdong-Hong Kong-Macau Greater Bay Area. Urban Clim. 2021, 38, 100904. [Google Scholar] [CrossRef]
- Chen, F.; Yang, X.; Wu, J. Simulation of the urban climate in a Chinese megacity with spatially heterogeneous anthropogenic heat data. J. Geophys. Res. Atmos. 2016, 121, 5193–5212. [Google Scholar] [CrossRef]
- Skamarock, W.; Klemp, J.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Huang, X.Y. A Description of the Advanced Research WRF Version 4; NCAR Technical Notes NCAR/TN-556+STR 2019; UCAR: Boulder, CO, USA, 2019; pp. 145p. [Google Scholar]
- Berner, J.; Ha, S.; Hacker, J.; Fournier, A.; Snyder, C. Model uncertainty in a mesoscale ensemble prediction system: Stochastic versus multiphysics representations. Mon. Wea. Rev. 2011, 139, 1972–1995. [Google Scholar] [CrossRef]
- Yu, M.; Miao, S.; Zhang, H. Uncertainties in the impact of urbanization on heavy rainfall: Case study of a rainfall event in Beijing on 7 August 2015. J. Geophys. Res. Atmos. 2018, 123, 6005–6021. [Google Scholar] [CrossRef]
- Iacono, M.; Delamere, J.; Mlawer, E.; Shephard, M.; Clough, S.; Collins, W. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. Atmos. 2008, 113, D13103. [Google Scholar] [CrossRef]
- Chen, S.; Sun, W. A One-dimensional Time Dependent Cloud Model. J. Meteor. Soc. Jpn. Ser. II 2002, 80, 99–118. [Google Scholar] [CrossRef]
- Hong, S.; Lim, J. The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc. 2006, 42, 129–151. [Google Scholar]
- Lim, K.; Hong, S. Development of an Effective Double-Moment Cloud Microphysics Scheme with Prognostic Cloud Condensation Nuclei (CCN) for Weather and Climate Models. Mon. Wea. Rev. 2010, 138, 1587–1612. [Google Scholar] [CrossRef]
- Janjić, Z. The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes. Mon. Wea. Rev. 1994, 122, 927–945. [Google Scholar] [CrossRef]
- Mesinger, F. Forecasting upper tropospheric turbulence within the framework of the Mellor-Yamada 2.5 closure. Res. Activ. Atmos. Oceanic Mod. 1993. Available online: https://www.researchgate.net/profile/Fedor-Mesinger/publication/343610849_Forecasting_upper_tropospheric_turbulence_within_the_framework_of_the_Mellor-Yamada_25_closure/links/5f341119458515b7291bc95c/Forecasting-upper-tropospheric-turbulence-within-the-framework-of-the-Mellor-Yamada-25-closure.pdf (accessed on 1 July 2018).
- Bougeault, P.; Lacarrere, P. Parameterization of Orography-Induced Turbulence in a Mesobeta-Scale Model. Mon. Wea. Rev. 1989, 117, 1872–1890. [Google Scholar] [CrossRef]
- Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; LeMone, M.A.; Mitchell, K.; Cuenca, R.H. Implementation and verification of the united NOAH land surface model in the WRF model. In Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, WA, USA, 12–16 January 2004; Volume 1115, pp. 2165–2170. [Google Scholar]
- Niu, G.; Yang, Z.; Mitchell, K.; Chen, F.; Ek, M.B.; Barlage, M.; Xia, Y. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. Atmos. 2011, 116, D12109. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Dahlgren, P.; Horányi, A.; Munoz-Sebater, J.; Soci, C. The ERA5 Global Reanalysis: Achieving a detailed record of the climate and weather for the past 70 years. Eur. Geophys. Union Gen. Assem. 2020, 3–8. Available online: https://ui.adsabs.harvard.edu/abs/2020EGUGA..2210375H/abstract (accessed on 12 July 2021).
- Strahler, A. MODIS Land Cover Product Algorithm Theoretical Basis Document (ATBD) Version 5.0. Tech. Rep. 1999, 72, 42–47. [Google Scholar]
- Chen, F.; Yang, X.; Zhu, W. WRF simulations of urban heat island under hot-weather synoptic conditions: The case study of Hangzhou City, China. Atmos. Res. 2014, 138, 364–377. [Google Scholar] [CrossRef]
- Chen, F.; Wu, M.; Dong, M.; Yu, B. Comparison of the Impacts of Topography and Urbanization on an Extreme Rainfall Event in the Hangzhou Bay Region. J. Geophys. Res. Atmos. 2022, 127, e2022JD037060. [Google Scholar] [CrossRef]
- Ikeda, K.; Rasmussen, R.; Liu, C.; Gochis, D.; Yates, D.; Chen, F.; Tewari, M.; Barlage, M.; Dudhia, J.; Miller, K.; et al. Simulation of seasonal snowfall over Colorado. Atmos. Res. 2010, 97, 462–477. [Google Scholar] [CrossRef]
- Xu, L.; Dong, M.; Chen, F. Comparison study of spatial interpolation methods based on hourly precipitation data from automatic weather stations. J. Meteor. Environ. 2017, 33, 34–43. (In Chinese) [Google Scholar]
- Gaur, A.; Lacasse, M.; Armstrong, M.; Lu, H.; Shu, C.; Fields, A.; Palou, F.S.; Zhang, Y. Effects of using different urban parametrization schemes and land-cover datasets on the accuracy of WRF model over the City of Ottawa. Urban Clim. 2021, 35, 100737. [Google Scholar] [CrossRef]
- Guo, X.; Fu, D.; Wang, J. Mesoscale convective precipitation system modified by urbanization in Beijing City. Atmos. Res. 2006, 82, 112–126. [Google Scholar] [CrossRef]
- Xing, Y.; Ni, G.; Yang, L.; Yang, Y.; Xing, P.; Sun, T. Modeling the impacts of urbanization and open water surface on heavy convective rainfall: A case study over the emerging Xiong’an City, China. J. Geophys. Res. Atmos. 2019, 124, 9078–9098. [Google Scholar] [CrossRef]
- Carter, M.; Shepherd, J.; Burian, S.; Jeyachandran, I. Integration of lidar data into a coupled mesoscale–land surface model: A theoretical assessment of sensitivity of urban–coastal mesoscale circulations to urban canopy parameters. J. Atmos. Ocean. Technol. 2012, 29, 328–346. [Google Scholar] [CrossRef]
- Buizza, R. Potential Forecast Skill of Ensemble Prediction and Spread and Skill Distributions of the ECMWF Ensemble Prediction System. Mon. Wea. Rev. 1997, 125, 99–119. [Google Scholar] [CrossRef]
- Miao, S.; Chen, F.; LeMone, M.; Tewari, M.; Li, Q.; Wang, Y. An Observational and Modeling Study of Characteristics of Urban Heat Island and Boundary Layer Structures in Beijing. J. Appl. Meteor. Clima. 2009, 48, 484–501. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, N.; Miao, S.; Kong, F.; Zhang, Y.; Li, N. Urban Morphological Parameters of the Main Cities in China and Their Application in the WRF Model. J. Adv. Model. Earth Syst. 2021, 13, e2020MS002382. [Google Scholar] [CrossRef]
- Salamanca, F.; Martilli, A.; Yagüe, C. A numerical study of the urban heat island over madrid during the DESIREX (2008) campaign with WRF and an evaluation of simple mitigation strategies. Int. J. Climatol. 2012, 32, 2372–2386. [Google Scholar] [CrossRef]
- Mughal, M.; Li, X.; Norford, L. Urban heat island mitigation in Singapore: Evaluation using WRF/multilayer urban canopy model and local climate zones. Urban Clim. 2020, 34, 100714. [Google Scholar] [CrossRef]
- Chen, F.; Manning, K.; LeMone, M.; Trier, S.B.; Alfieri, J.G.; Roberts, R.; Tewari, M.; Niyogi, D.; Horst, T.W.; Oncley, S.P.; et al. Description and evaluation of the characteristics of the NCAR high-resolution land data assimilation system. J. Appl. Meteor. Climatol. 2007, 46, 694–713. [Google Scholar] [CrossRef]
- Chen, J.; Xue, J.; Yan, H. A Comparison of a New Initial Condition and Model Perturbation Method for Heavy Rainfall Ensemble Prediction. Acta Meteor. Sin. 2009, 23, 53–67. [Google Scholar]
Model Settings | D01 | D02 |
---|---|---|
Model and version | WRF v4.0.2 | |
Horizontal grid points | 403 × 353 | 413 × 457 |
Δx (km) | 4 | 1 |
Vertical layers | 51 | |
Cumulus physics | None (0) * | |
Shortwave radiation | RRTMG (4) [56] | |
Longwave radiation | RRTMG (4) [56] | |
Microphysics | Purdue Lin (2) [57], WSM6 (6) [58], WDM6 (16) [59] | |
PBL physics | MYJ (2) [60,61], Boulac (8) [62] | |
Land surface | Noah (2) [63], NoahMP (4) [64] | |
Urban physics | SLUCM (1) [24], BEP (2) [19] |
Group | WRF Simulations | Physical Parameterization Options | Notes |
---|---|---|---|
GROUP I | ENCTL | Microphysics (Lin(2), WSM6(6), WDM6(16)) | 1. Choose one option from each physical group, and make up a member named by the option numbers, e.g., m2p2s2u1 represents the Lin(2), MYJ(2), Noah(2), and SLUCM(1) schemes used in this member. 2. 24 members are chosen for the numerical simulation, and the m16p8s4u2 is chosen as the control run (CTL) because of its good performance. 3. The real terrain and land use data are used in the numerical simulation (Figure 2). |
Planetary Boundary layer (MYJ(2), BouLac(8)) | |||
Land Surface (Noah (2), NoahMP(4)) | |||
Urban Surface (SLUCM(1), BEP(2)) | |||
ENNoUB | Same as ENCTL | Same as ENCT, replace the urban land use type with cropland. | |
GROUP II | CTL | WDM6(16) + BouLac(8) + Noahmp(4) + BEP(2) | The control run in ENCTL, abbreviated as m16p8s4u2 run. |
NOUB | Same as CTL | Same as CT but artificially remove both the thermal and dynamical effect of urbanization. | |
NOTH | Same as CTL | Same as CT but artificially removes the thermal effect of urbanization. | |
NODY | Same as CTL | Same as CTL but artificially removes the dynamical effect of urbanization. | |
GROUP III | CTL | WDM6(16) + BouLac(8) + Noahmp(4) + BEP(2) | The control run in ENCTL, abbreviated as m16p8s4u2 run. |
SEN1/SEN2 | Same as CTL | Same as CTL but decreases/increases the building height by 50%. | |
SEN3/SEN4 | Same as CTL | Same as CTL but decreases/increases the roof width by 50%. | |
SEN5/SEN6 | Same as CTL | Same as CTL but decreases/increases the road width by 50%. | |
SEN7/SEN8 | Same as CTL | Same as CTL but decreases/increases the anthropogenic heat by 50%. | |
SEN9/SEN10 | Same as CTL | Same as CTL but decreases/increases the heat capacity by 50%. | |
SEN11/SEN12 | Same as CTL | Same as CTL but decreases/increases the thermal conductivity by 50%. | |
SEN13/SEN14 | Same as CTL | Same as CTL but decreases/increases the surface albedo by 50%. | |
SEN15/SEN16 | Same as CTL | Same as CTL but decreases/increases the roughness length by 50%. |
CASES | TS (≥0.1 mm) | TS (≥10 mm) | TS (≥25 mm) | TS (≥50 mm) |
---|---|---|---|---|
m2p2s2u1 | 0.87 | 0.32 | 0.16 | 0.02 |
m2p2s2u2 | 0.92 | 0.47 | 0.27 | 0.07 |
m2p2s4u1 | 0.90 | 0.41 | 0.21 | 0.04 |
m2p2s4u2 | 0.93 | 0.52 | 0.24 | 0.07 |
m2p8s2u1 | 0.84 | 0.44 | 0.19 | 0.02 |
m2p8s2u2 | 0.87 | 0.43 | 0.19 | 0.03 |
m2p8s4u1 | 0.82 | 0.43 | 0.28 | 0.16 |
m2p8s4u2 | 0.86 | 0.41 | 0.19 | 0.06 |
m6p2s2u1 | 0.87 | 0.34 | 0.14 | 0.00 |
m6p2s2u2 | 0.88 | 0.34 | 0.07 | 0.00 |
m6p2s4u1 | 0.90 | 0.36 | 0.16 | 0.02 |
m6p2s4u2 | 0.85 | 0.37 | 0.14 | 0.02 |
m6p8s2u1 | 0.86 | 0.28 | 0.10 | 0.11 |
m6p8s2u2 | 0.92 | 0.39 | 0.14 | 0.02 |
m6p8s4u1 | 0.84 | 0.43 | 0.17 | 0.04 |
m6p8s4u2 | 0.84 | 0.40 | 0.12 | 0.00 |
m16p2s2u1 | 0.92 | 0.53 | 0.26 | 0.03 |
m16p2s2u2 | 0.92 | 0.48 | 0.15 | 0.02 |
m16p2s4u1 | 0.90 | 0.49 | 0.15 | 0.02 |
m16p2s4u2 | 0.92 | 0.61 | 0.34 | 0.02 |
m16p8s2u1 | 0.86 | 0.52 | 0.20 | 0.04 |
m16p8s2u2 | 0.93 | 0.53 | 0.19 | 0.02 |
m16p8s4u1 | 0.90 | 0.60 | 0.30 | 0.15 |
m16p8s4u2 | 0.92 | 0.56 | 0.33 | 0.07 |
Mean | 0.87 | 0.37 | 0.14 | 0.03 |
Variables | Scores | Ensemble Mean | Ensemble Variation |
---|---|---|---|
T2M | BIAS (°C) | −1.43 | 0.27 |
RMSE (°C) | 1.97 | 0.16 | |
Q2M | BIAS (g kg−1) | −1.83 | 0.42 |
RMSE (g kg−1) | 2.54 | 0.20 | |
WS10M | BIAS (m s−1) | 1.31 | 0.13 |
RMSE (m s−1) | 1.73 | 0.09 | |
PREC | BIAS (mm) | −6.14 | 13.64 |
RMSE (mm) | 29.08 | 2.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, M.; Dong, M.; Chen, F.; Yang, X. Impacts of Urbanization and Its Parameters on Thermal and Dynamic Fields in Hangzhou: A Sensitivity Study Using the Weather Research and Forecasting Urban Model. Land 2023, 12, 1965. https://doi.org/10.3390/land12111965
Wu M, Dong M, Chen F, Yang X. Impacts of Urbanization and Its Parameters on Thermal and Dynamic Fields in Hangzhou: A Sensitivity Study Using the Weather Research and Forecasting Urban Model. Land. 2023; 12(11):1965. https://doi.org/10.3390/land12111965
Chicago/Turabian StyleWu, Mengwen, Meiying Dong, Feng Chen, and Xuchao Yang. 2023. "Impacts of Urbanization and Its Parameters on Thermal and Dynamic Fields in Hangzhou: A Sensitivity Study Using the Weather Research and Forecasting Urban Model" Land 12, no. 11: 1965. https://doi.org/10.3390/land12111965
APA StyleWu, M., Dong, M., Chen, F., & Yang, X. (2023). Impacts of Urbanization and Its Parameters on Thermal and Dynamic Fields in Hangzhou: A Sensitivity Study Using the Weather Research and Forecasting Urban Model. Land, 12(11), 1965. https://doi.org/10.3390/land12111965