Prediction of Spatial Distribution of Soil Organic Carbon in Helan Farmland Based on Different Prediction Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geologic Setting
2.2. Sampling and Chemical Analysis
2.3. Environmental Covariates
2.4. Theory and Algorithms
2.4.1. Variance Inflation Factor
2.4.2. Ordinary Kriging Model
2.4.3. Random Forest Model
2.4.4. Geographically Weighted Regression Models
2.4.5. Back-Propagation Neural Network Model
2.4.6. Precision Evaluation
2.5. Data Preprocessing
3. Results
3.1. Descriptive Statistics
3.2. Relationship between SOC Content and Multisource Environmental Factors
3.2.1. Importance Ranking of the Influencing Factors
3.2.2. Interactive Correlation of Impact Factors
3.3. Spatial Distribution of Organic Carbon Content
3.4. Prediction Precision Analysis
4. Discussion and Conclusions
4.1. Discussion
4.2. Conclusions
- (1)
- The SOC content ranged from 1.178 to 53.134 g/kg, with an average of 11.841 g/kg, which is a medium level. The SOC greatly varied and was distributed unevenly in the study area, mainly due to the nonuniform application of fertilizer during crop cultivation.
- (2)
- The main environmental factors affecting the spatial distribution of SOC in this study area were EC values and remote sensing factors, with EC values accounting for 38% of the relative importance and remote sensing factors accounting for 44% of all environmental factors.
- (3)
- Compared with the OK (MRE = 0.198, RMSE = 4.248), GWR (MRE = 0.193, RMSE = 3.595), and RF (MRE = 0.186, RMSE = 3.320) models, the prediction accuracy and results of the BPNN (MRE = 0.066, RMSE = 0.257) model were better, and the simulated spatial distribution map could better represent the actual distribution of the SOC. The results showed that the BPNN model was more suitable for the prediction of the distribution of SOC in the study area.
- (4)
- In this study, four different models were selected to predict the SOC content in Helan County, and the optimal model suitable for the prediction of SOC content was determined; this provides theoretical support for refined agricultural management. This study was limited to the applicability analysis of the four models described above; however, our method requires enhancement to render it applicable to the spatial distribution of SOC.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Abridgement | Full Name |
OK | ordinary Kriging |
GWR | geographically weighted regression |
RF | random forest |
BPNN | back-propagation neural network |
SOC | soil organic carbon |
ML | machine learning |
pH | potential of hydrogen |
MLR | multiple linear regression |
DEM | digital elevation model |
SWIR1 | short infrared wave 1 |
SWIR2 | short infrared wave 2 |
NIR | near-infrared band |
EC | electrical conductivity |
VIF | variance inflation factor |
X | longitude |
Y | latitude |
RMSE | root mean square error |
MRE | mean relative estimation error |
NDVI | normalized difference vegetation index |
PLS | partial least squares regression |
ELM | ensemble learning modeling |
STN | total soil nitrogen |
References
- Freier, K.P.; Glaser, B.; Zech, W. Mathematical modeling of soil carbon turnover in natural Podocarpus forest and Eucalyptus plantation in Ethiopia using compound specific δ13C analysis. Glob. Chang. Biol. 2010, 16, 1487–1502. [Google Scholar] [CrossRef]
- Kell, D.B. Large-scale sequestration of atmospheric carbon via plant roots in natural and agricultural ecosystems: Why and how. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 1589–1597. [Google Scholar] [CrossRef] [PubMed]
- Hou, G.; Delang, C.O.; Lu, X.; Gao, L. Grouping tree species to estimate afforestation-driven soil organic carbon sequestration. Plant Soil 2020, 455, 507–518. [Google Scholar] [CrossRef]
- Lal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed]
- Rovai, A.S.; Twilley, R.R.; Castañeda-Moya, E.; Riul, P.; Cifuentes-Jara, M.; Manrow-Villalobos, M.; Horta, P.A.; Simonassi, J.C.; Fonseca, A.L.; Pagliosa, P.R. Global controls on carbon storage in mangrove soils. Nat. Clim. Chang. 2018, 8, 534–538. [Google Scholar] [CrossRef]
- Bilen, S.; Turan, V. Enzymatic analyses in soils. In Practical Handbook on Agricultural Microbiology; Springer: Berlin/Heidelberg, Germany, 2022; pp. 377–385. [Google Scholar]
- Dvorakova, K.; Heiden, U.; Pepers, K.; Staats, G.; van Os, G.; van Wesemael, B. Improving soil organic carbon predictions from a Sentinel–2 soil composite by assessing surface conditions and uncertainties. Geoderma 2023, 429, 116128. [Google Scholar] [CrossRef]
- Mishra, U.; Lal, R.; Liu, D.; Van Meirvenne, M. Predicting the Spatial Variation of the Soil Organic Carbon Pool at a Regional Scale. Soil Sci. Soc. Am. J. 2010, 74, 906–914. [Google Scholar] [CrossRef]
- Fang, X.; Xue, Z.; Li, B.; An, S. Soil organic carbon distribution in relation to land use and its storage in a small watershed of the Loess Plateau, China. Catena 2012, 88, 6–13. [Google Scholar] [CrossRef]
- Guoju, X.; Yanbin, H.; Qiang, Z.; Jing, W.; Ming, L. Impact of cultivation on soil organic carbon and carbon sequestration potential in semiarid regions of China. Soil Use Manag. 2020, 36, 83–92. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Pham, T.D.; Nguyen, C.T.; Delfos, J.; Archibald, R.; Dang, K.B.; Hoang, N.B.; Guo, W.; Ngo, H.H. A novel intelligence approach based active and ensemble learning for agricultural soil organic carbon prediction using multispectral and SAR data fusion. Sci. Total Environ. 2022, 804, 150187. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Žižala, D.; Saberioon, M.; Borůvka, L. Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging. Remote Sens. Environ. 2018, 218, 89–103. [Google Scholar] [CrossRef]
- Scaioni, M.; Longoni, L.; Melillo, V.; Papini, M. Remote Sensing for Landslide Investigations: An Overview of Recent Achievements and Perspectives. Remote Sens. 2014, 6, 9600–9652. [Google Scholar] [CrossRef]
- Racek, D.; Thurner, P.W.; Davidson, B.I.; Zhu, X.X.; Kauermann, G. Conflict forecasting using remote sensing data: An application to the Syrian civil war. Int. J. Forecast. 2023. [Google Scholar] [CrossRef]
- Chai, H.; Rao, S.; Wang, R.; Liu, J.; Huang, Q.; Mou, X. The Effect of the Geomorphologic Type as Surrogate to the Time Factor on Digital Soil Mapping. Open J. Soil Sci. 2015, 5, 12. [Google Scholar] [CrossRef]
- Abdoli, P.; Khanmirzaei, A.; Hamzeh, S.; Rezaei, S.; Moghimi, S. Use of remote sensing data to predict soil organic carbon in some agricultural soils of Iran. Remote Sens. Appl. Soc. Environ. 2023, 30, 100969. [Google Scholar] [CrossRef]
- Dhiman, G.; Bhattacharya, J.; Roy, S. Soil textures and nutrients estimation using remote sensing data in north india—Punjab region. Procedia Comput. Sci. 2023, 218, 2041–2048. [Google Scholar] [CrossRef]
- Jia, P.; Shang, T.; Zhang, J.; Sun, Y. Inversion of soil pH during the dry and wet seasons in the Yinbei region of Ningxia, China, based on multi-source remote sensing data. Geoderma Reg. 2021, 25, e00399. [Google Scholar] [CrossRef]
- Kalambukattu, J.G.; Kumar, S.; Arya Raj, R. Digital soil mapping in a Himalayan watershed using remote sensing and terrain parameters employing artificial neural network model. Environ. Earth Sci. 2018, 77, 203. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, D.; Wang, J.; Triantafilis, J. Soil organic carbon (SOC) prediction in Australian sugarcane fields using Vis–NIR spectroscopy with different model setting approaches. Geoderma Reg. 2022, 30, e00566. [Google Scholar] [CrossRef]
- Hao, J.; Lin, Y.; Ren, G.; Yang, G.; Han, X.; Wang, X.; Ren, C.; Feng, Y. Comprehensive benefit evaluation of conservation tillage based on BP neural network in the Loess Plateau. Soil Tillage Res. 2021, 205, 104784. [Google Scholar] [CrossRef]
- Li, Q.-Q.; Zhang, X.; Wang, C.-Q.; Li, B.; Gao, X.-S.; Yuan, D.-G.; Luo, Y.-L. Spatial prediction of soil nutrient in a hilly area using artificial neural network model combined with kriging. Arch. Agron. Soil Sci. 2016, 62, 1541–1553. [Google Scholar] [CrossRef]
- Halecki, W.; Młyński, D.; Ryczek, M.; Kruk, E.; Radecki-Pawlik, A. Applying an Artificial Neural Network (ANN) to Assess Soil Salinity and Temperature Variability in Agricultural Areas of a Mountain Catchment. Pol. J. Environ. Stud. 2017, 26, 2545–2554. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Luo, H.; He, L.; Duan, W.; Tao, Y.; Wang, X.; Li, S. Detection of heavy metals in vegetable soil based on THz spectroscopy. Comput. Electron. Agric. 2022, 197, 106923. [Google Scholar] [CrossRef]
- Wang, D.; Li, X.; Zou, D.; Wu, T.; Xu, H.; Hu, G.; Li, R.; Ding, Y.; Zhao, L.; Li, W.; et al. Modeling soil organic carbon spatial distribution for a complex terrain based on geographically weighted regression in the eastern Qinghai-Tibetan Plateau. Catena 2020, 187, 104399. [Google Scholar] [CrossRef]
- Yuan, Y.; Cave, M.; Xu, H.; Zhang, C. Exploration of spatially varying relationships between Pb and Al in urban soils of London at the regional scale using geographically weighted regression (GWR). J. Hazard. Mater. 2020, 393, 122377. [Google Scholar] [CrossRef]
- Emadi, M.; Taghizadeh-Mehrjardi, R.; Cherati, A.; Danesh, M.; Mosavi, A.; Scholten, T. Predicting and Mapping of Soil Organic Carbon Using Machine Learning Algorithms in Northern Iran. Remote Sens. 2020, 12, 2234. [Google Scholar] [CrossRef]
- Hu, S.; Xiong, C.; Chen, P.; Schonfeld, P. Examining nonlinearity in population inflow estimation using big data: An empirical comparison of explainable machine learning models. Transp. Res. Part A Policy Pract. 2023, 174, 103743. [Google Scholar] [CrossRef]
- Zeraatpisheh, M.; Ayoubi, S.; Mirbagheri, Z.; Mosaddeghi, M.R.; Xu, M. Spatial prediction of soil aggregate stability and soil organic carbon in aggregate fractions using machine learning algorithms and environmental variables. Geoderma Reg. 2021, 27, e00440. [Google Scholar] [CrossRef]
- Mahmoudzadeh, H.; Matinfar, H.R.; Taghizadeh-Mehrjardi, R.; Kerry, R. Spatial prediction of soil organic carbon using machine learning techniques in western Iran. Geoderma Reg. 2020, 21, e00260. [Google Scholar] [CrossRef]
- Takoutsing, B.; Heuvelink, G.B.M. Comparing the prediction performance, uncertainty quantification and extrapolation potential of regression kriging and random forest while accounting for soil measurement errors. Geoderma 2022, 428, 116192. [Google Scholar] [CrossRef]
- Tan, C.; Yang, J.; Li, M. Temporal-Spatial Variation of Drought Indicated by SPI and SPEI in Ningxia Hui Autonomous Region, China. Atmosphere 2015, 6, 1399–1421. [Google Scholar] [CrossRef]
- Zeraatpisheh, M.; Garosi, Y.; Reza Owliaie, H.; Ayoubi, S.; Taghizadeh-Mehrjardi, R.; Scholten, T.; Xu, M. Improving the spatial prediction of soil organic carbon using environmental covariates selection: A comparison of a group of environmental covariates. Catena 2022, 208, 105723. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Q.; Ma, H.; Liang, J. Chemical compositions evolution of groundwater and its pollution characterization due to agricultural activities in Yinchuan Plain, northwest China. Environ. Res. 2021, 200, 111449. [Google Scholar] [CrossRef] [PubMed]
- Zeraatpisheh, M.; Galford, G.L.; White, A.; Noel, A.; Darby, H.; Adair, E.C. Soil organic carbon stock prediction using multi-spatial resolutions of environmental variables: How well does the prediction match local references? Catena 2023, 229, 107197. [Google Scholar] [CrossRef]
- Wang, Q.; Le Noë, J.; Li, Q.; Lan, T.; Gao, X.; Deng, O.; Li, Y. Incorporating agricultural practices in digital mapping improves prediction of cropland soil organic carbon content: The case of the Tuojiang River Basin. J. Environ. Manag. 2023, 330, 117203. [Google Scholar] [CrossRef]
- Mondal, A.; Khare, D.; Kundu, S.; Mondal, S.; Mukherjee, S.; Mukhopadhyay, A. Spatial soil organic carbon (SOC) prediction by regression kriging using remote sensing data. Egypt. J. Remote Sens. Space Sci. 2017, 20, 61–70. [Google Scholar] [CrossRef]
- Moloney, J.P.; Malone, B.P.; Karunaratne, S.; Stockmann, U. Leveraging large soil spectral libraries for sensor-agnostic field condition predictions of several agronomically important soil properties. Geoderma 2023, 439, 116651. [Google Scholar] [CrossRef]
- Salazar, O.; Benvenuto, A.; Fajardo, M.; Fuentes, J.P.; Nájera, F.; Celedón, A.; Pfeiffer, M.; Renwick, L.L.R.; Seguel, O.; Tapia, Y.; et al. Evaluation of a miniaturized portable NIR spectrometer for the prediction of soil properties in Mediterranean central Chile. Geoderma Reg. 2023, 34, e00675. [Google Scholar] [CrossRef]
- Zepp, S.; Heiden, U.; Bachmann, M.; Möller, M.; Wiesmeier, M.; van Wesemael, B. Optimized bare soil compositing for soil organic carbon prediction of topsoil croplands in Bavaria using Landsat. ISPRS J. Photogramm. Remote Sens. 2023, 202, 287–302. [Google Scholar] [CrossRef]
- Yang, Z.; Xiaomin, Z.; Xi, G. Prediction of Total Nitrogen Distribution in Surface Soil Based on Multi-source Auxiliary Variables and Random Forest Approach. Acta Pedol. Sin. 2021, 59, 451–460. [Google Scholar] [CrossRef]
- Vu, D.H.; Muttaqi, K.M.; Agalgaonkar, A.P. A variance inflation factor and backward elimination based robust regression model for forecasting monthly electricity demand using climatic variables. Appl. Energy 2015, 140, 385–394. [Google Scholar] [CrossRef]
- Cheng, J.; Sun, J.; Yao, K.; Xu, M.; Cao, Y. A variable selection method based on mutual information and variance inflation factor. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 268, 120652. [Google Scholar] [CrossRef] [PubMed]
- Gómez, R.S.; Sánchez, A.R.; García, C.G.; Pérez, J.G. The VIF and MSE in Raise Regression. Mathematics 2020, 8, 605. [Google Scholar] [CrossRef]
- Maiti, P.; Mitra, D. Complexity reduction of ordinary kriging algorithm for 3D REM design. Phys. Commun. 2022, 55, 101912. [Google Scholar] [CrossRef]
- Li, X.; Geng, T.; Shen, W.; Zhang, J.; Zhou, Y. Quantifying the influencing factors and multi-factor interactions affecting cadmium accumulation in limestone-derived agricultural soil using random forest (RF) approach. Ecotoxicol. Environ. Saf. 2021, 209, 111773. [Google Scholar] [CrossRef]
- Genuer, R.; Poggi, J.-M.; Tuleau-Malot, C. Variable selection using random forests. Pattern Recognit. Lett. 2010, 31, 2225–2236. [Google Scholar] [CrossRef]
- Lindner, C.; Bromiley, P.A.; Ionita, M.C.; Cootes, T.F. Robust and accurate shape model matching using random forest regression-voting. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 37, 1862–1874. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhou, H.; Yang, J.; Xiong, Y.; She, J.; Chen, W. A decision support system for tobacco cultivation measures based on BPNN and GA. Comput. Electron. Agric. 2021, 181, 105928. [Google Scholar] [CrossRef]
- Ullah, Z.; Khan, M.; Raza Naqvi, S.; Farooq, W.; Yang, H.; Wang, S.; Vo, D.-V.N. A comparative study of machine learning methods for bio-oil yield prediction—A genetic algorithm-based features selection. Bioresour. Technol. 2021, 335, 125292. [Google Scholar] [CrossRef]
- Fang, Y.; Ma, L.; Yao, Z.; Li, W.; You, S. Process optimization of biomass gasification with a Monte Carlo approach and random forest algorithm. Energy Convers. Manag. 2022, 264, 115734. [Google Scholar] [CrossRef]
- Xian-ju, X.; Yong-chun, Z.; Ji-dong, W.; Hui, Z.; Zhong-hou, T.; Ai-jun, Z.; Huan, L.; Qing, L. Soil nutrient status and soil fertility evaluation of farmland in three main sweet potato regions in China. Soil Fertil. Sci. China 2021, 5, 27–33. [Google Scholar] [CrossRef]
- Zhang, F.; Li, S.; Yue, S.; Song, Q. The effect of long-term soil surface mulching on SOC fractions and the carbon management index in a semiarid agroecosystem. Soil Tillage Res. 2022, 216, 105233. [Google Scholar] [CrossRef]
- Dou, X.; Zhang, J.; Zhang, C.; Ma, D.; Chen, L.; Zhou, G.; Li, J.; Duan, Y. Calcium carbonate regulates soil organic carbon accumulation by mediating microbial communities in northern China. Catena 2023, 231, 107327. [Google Scholar] [CrossRef]
- Xu, X.; Shi, Z.; Li, D.; Rey, A.; Ruan, H.; Craine, J.M.; Liang, J.; Zhou, J.; Luo, Y. Soil properties control decomposition of soil organic carbon: Results from data-assimilation analysis. Geoderma 2016, 262, 235–242. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Urbanski, L.; Hobley, E.; Lang, B.; von Lützow, M.; Marin-Spiotta, E.; van Wesemael, B.; Rabot, E.; Ließ, M.; Garcia-Franco, N.; et al. Soil organic carbon storage as a key function of soils—A review of drivers and indicators at various scales. Geoderma 2019, 333, 149–162. [Google Scholar] [CrossRef]
- Reda, R.; Saffaj, T.; Ilham, B.; Saidi, O.; Issam, K.; Brahim, L.; El Hadrami, E.M. A comparative study between a new method and other machine learning algorithms for soil organic carbon and total nitrogen prediction using near infrared spectroscopy. Chemom. Intell. Lab. Syst. 2019, 195, 103873. [Google Scholar] [CrossRef]
- Tang, X.; Liu, H.; Feng, D.; Zhang, W.; Chang, J.; Li, L.; Yang, L. Prediction of field winter wheat yield using fewer parameters at middle growth stage by linear regression and the BP neural network method. Eur. J. Agron. 2022, 141, 126621. [Google Scholar] [CrossRef]
- Yang, Y.; Zhu, J.; Zhao, C.; Liu, S.; Tong, X. The spatial continuity study of NDVI based on Kriging and BPNN algorithm. Math. Comput. Model. 2011, 54, 1138–1144. [Google Scholar] [CrossRef]
- Virto, I.; Barré, P.; Burlot, A.; Chenu, C. Carbon input differences as the main factor explaining the variability in soil organic C storage in no-tilled compared to inversion tilled agrosystems. Biogeochemistry 2012, 108, 17–26. [Google Scholar] [CrossRef]
- Liu, E.; Yan, C.; Mei, X.; He, W.; Bing, S.H.; Ding, L.; Liu, Q.; Liu, S.; Fan, T. Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China. Geoderma 2010, 158, 173–180. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, Y.; Zhu, Y.; Feng, X.; Ou, J.; Li, G.; Tong, Z.; Yan, Q. Mapping Soil Organic Carbon in Floodplain Farmland: Implications of Effective Range of Environmental Variables. Land 2023, 12, 1198. [Google Scholar] [CrossRef]
- Ebhin Masto, R.; Chhonkar, P.K.; Singh, D.; Patra, A.K. Changes in soil biological and biochemical characteristics in a long-term field trial on a sub-tropical inceptisol. Soil Biol. Biochem. 2006, 38, 1577–1582. [Google Scholar] [CrossRef]
- Ma, G.; Cheng, S.; He, W.; Dong, Y.; Qi, S.; Tu, N.; Tao, W. Effects of Organic and Inorganic Fertilizers on Soil Nutrient Conditions in Rice Fields with Varying Soil Fertility. Land 2023, 12, 1026. [Google Scholar] [CrossRef]
- Wang, Q.; Mao, X.; Jiang, X.; Pei, D.; Shao, X. Digital image processing technology under backpropagation neural network and K-Means Clustering algorithm on nitrogen utilization rate of Chinese cabbages. PLoS ONE 2021, 16, e0248923. [Google Scholar] [CrossRef]
- Gao, C.; Yan, X.; Qiao, X.; Wei, K.; Zhang, X.; Yang, S.; Wang, C.; Yang, W.; Feng, M.; Xiao, L.; et al. Multivariate prediction of soil aggregate-associated organic carbon by simulating satellite sensor bands. Comput. Electron. Agric. 2023, 209, 107859. [Google Scholar] [CrossRef]
- Odebiri, O.; Odindi, J.; Mutanga, O. Basic and deep learning models in remote sensing of soil organic carbon estimation: A brief review. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102389. [Google Scholar] [CrossRef]
Extracted Parameters | Sources | Reference | Spatial Resolution |
---|---|---|---|
EC | Laboratory measurement | [33,38] | 30 m |
pH | [36,39] | ||
Slope | Geospatial data cloud platform to obtain various topographic factors (https://www.gscloud.cn/ (accessed on 25 February 2022 )). | [33,35,36,37] | 30 m |
SWIR.2 | [7,40] | ||
Y | [41] | ||
SWIR.1 | [7,40] | ||
NIR | [7,39] | ||
X | [41] | ||
Profile curvature | [33] | ||
Surface curvature | [33] | ||
Aspect | [33] | ||
Elevation | [33,35,36] |
Soil Sample Sites | No. of Samples | Max(g/kg) | Min(g/kg) | Mean(g/kg) | Standard Deviation | Coefficient of Variation | Skewness | Kurtosis | |
---|---|---|---|---|---|---|---|---|---|
Group 1 | Fitted points.1 | 82 | 53.134 | 1.178 | 12.155 | 7.419 | 0.610 | 3.447 | 15.704 |
Validation points.1 | 35 | 18.815 | 3.710 | 11.105 | 3.288 | 0.296 | −0.023 | 0.158 | |
Group 2 | Fitted points.2 | 82 | 36.728 | 1.178 | 11.391 | 4.575 | 0.402 | 1.913 | 10.756 |
Validation points.2 | 35 | 53.134 | 3.710 | 12.896 | 9.383 | 0.728 | 3.340 | 12.052 | |
Total sample points | 117 | 53.134 | 1.178 | 11.841 | 6.440 | 0.544 | 3.643 | 17.154 |
Prediction Method | MRE | RMSE |
---|---|---|
OK | 0.198 | 4.248 |
RF | 0.186 | 3.320 |
GWR | 0.193 | 3.595 |
BPNN | 0.066 | 0.257 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, Y.; Bai, Y.; Zhang, R.; Liu, X.; Ma, X. Prediction of Spatial Distribution of Soil Organic Carbon in Helan Farmland Based on Different Prediction Models. Land 2023, 12, 1984. https://doi.org/10.3390/land12111984
Zhang Y, Wang Y, Bai Y, Zhang R, Liu X, Ma X. Prediction of Spatial Distribution of Soil Organic Carbon in Helan Farmland Based on Different Prediction Models. Land. 2023; 12(11):1984. https://doi.org/10.3390/land12111984
Chicago/Turabian StyleZhang, Yuhan, Youqi Wang, Yiru Bai, Ruiyuan Zhang, Xu Liu, and Xian Ma. 2023. "Prediction of Spatial Distribution of Soil Organic Carbon in Helan Farmland Based on Different Prediction Models" Land 12, no. 11: 1984. https://doi.org/10.3390/land12111984
APA StyleZhang, Y., Wang, Y., Bai, Y., Zhang, R., Liu, X., & Ma, X. (2023). Prediction of Spatial Distribution of Soil Organic Carbon in Helan Farmland Based on Different Prediction Models. Land, 12(11), 1984. https://doi.org/10.3390/land12111984