Mapping Ecological Infrastructure in a Cross-Border Regional Context
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Method for Mapping the Ecological Infrastructure
2.3. Pillar 1: Species and Habitat Distribution
2.3.1. Natural Habitats
2.3.2. Species Distribution Modeling
Variables | Description | Origin |
---|---|---|
Temperatures | Mean annual temperature | Worldclim, R |
Precipitations | Annual precipitations | Worldclim, R |
Exposition | Northness index | ArcMap 10.2.1 |
Slope | Continuous slope | ArcMap 10.2.1 |
Solar radiations | Mean seasonal solar radiation | ArcMap 10.2.1 |
Landscape dominance | Index of landscape domination | ArcMap 10.2.1, modified from Weiss, 2001 [64] |
Cambisol | Cambisol proportion in the surrounding soil | Hengl et al., 2017 [65] |
Podzol | Podzol proportion in the surrounding soil | Hengl et al., 2017 [65] |
Closed forests | Distribution of deciduous and coniferous forests | LULC map |
Open forests | Distribution of opens forests and barrens | LULC map |
Urban areas | Distribution of highly and moderately dense urban areas | LULC map |
Transportation | Distribution of railways, paths, highways and roads | LULC map |
Disturbed vegetation | Distribution of urban and wooded disturbed vegetation | LULC map |
Natural meadows | Distribution of dry, alpine and extensive meadows | LULC map |
Agriculture | Distribution of crops, vineyards and orchards | LULC map |
Wetlands | Distribution of wet meadows, riverbeds and wet forests | LULC map |
2.4. Pillar 2: Ecosystem Service Supply
2.4.1. Suitable Areas for Pollinators
2.4.2. Atmospheric Carbon Storage
2.4.3. Nutrient Delivery Ratio
2.4.4. Sediment Delivery Ratio
2.4.5. Leaf Area Index
2.5. Pillar 3: Functional Connectivity
2.5.1. Combined Connectivity and Corridors
2.5.2. Light Pollution
2.6. Pillar 4: Landscape Structure
2.6.1. Fragmentation
2.6.2. Soil Permeability
2.6.3. Naturality
2.6.4. Diversity of Natural Habitats
2.6.5. Core Areas
2.7. Spatial Conservation Prioritization
3. Results
3.1. Identification of the Habitats
3.2. Maps Used as Inputs to the Final Prioritization
3.3. Biodiversity Diagnosis and GI
4. Discussion
4.1. Selection of Inputs
4.2. Prioritization
4.3. Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Biophysical Tables for Ecosystem Service Modeling
Code | Category | Nesting Cavity Availability Index | Nesting Ground Availability Index | Floral Resources Spring Index | Floral Resources Summer Index | Floral Resources Autumn Index |
---|---|---|---|---|---|---|
1 | Highways | 0 | 0 | 0 | 0 | 0 |
2 | Other wetlands | 0 | 0 | 0.3 | 0.5 | 0.2 |
3 | Path | 0 | 0 | 0 | 0 | 0 |
4 | Railways | 0 | 0 | 0 | 0.7 | 0.3 |
5 | Crops | 0 | 0 | 1 | 0 | 0 |
6 | Still water | 0 | 0 | 0 | 0 | 0 |
7 | Running water | 0 | 0 | 0 | 0 | 0 |
8 | Coniferous forests | 0 | 0 | 0 | 0 | 0 |
9 | Deciduous forests | 0 | 0 | 0 | 0 | 0 |
10 | Wet forests | 1 | 0 | 0.7 | 0.3 | 0 |
11 | Open forests | 0.5 | 0.5 | 0.4 | 0.5 | 0.1 |
12 | Riverbeds | 0 | 1 | 0.3 | 0.6 | 0.1 |
13 | Gravel pits | 0 | 1 | 0.2 | 0.6 | 0.2 |
14 | Barrens | 0 | 1 | 0.1 | 0.8 | 0.1 |
15 | Rocks and cliffs | 0 | 1 | 0 | 0 | 0 |
16 | Alpine grasslands | 0 | 1 | 0.1 | 0.8 | 0.1 |
17 | Extensive grasslands | 0 | 1 | 0.6 | 0.2 | 0.2 |
18 | Wet meadows | 1 | 0 | 0.3 | 0.5 | 0.2 |
19 | Dry meadows | 0.3 | 0.7 | 0.6 | 0.2 | 0.2 |
20 | Rivers | 0 | 0 | 0 | 0 | 0 |
21 | Roads | 0 | 0 | 0 | 0 | 0 |
22 | Stream | 0 | 0 | 0 | 0 | 0 |
23 | Dense urban | 0 | 0 | 0 | 0 | 0 |
24 | Diffuse urban | 0.5 | 0.5 | 0.6 | 0.3 | 0.1 |
25 | Wooded disturbed vegetation | 0.5 | 0.5 | 0.8 | 0.2 | 0 |
26 | Urban vegetation | 0 | 0 | 0.7 | 0.3 | 0 |
27 | Orchards | 0 | 1 | 0.9 | 0.1 | 0 |
28 | Vineyards | 0 | 1 | 0.9 | 0.1 | 0 |
Species | Nesting Suitability Cavity Index | Nesting Suitability Ground Index | Foraging Activity Spring Index | Foraging Activity Summer Index | Foraging Activity Autumn Index | Alpha | Relative Abundance |
---|---|---|---|---|---|---|---|
Andrena carantonica | 0 | 1 | 0.7 | 0.3 | 0 | 512 | 1 |
Andrena chrysosceles | 0 | 1 | 0.6 | 0.4 | 0 | 260 | 1 |
Andrena cineraria | 0 | 1 | 0.6 | 0.4 | 0 | 300 | 1 |
Andrena dorsata | 0 | 1 | 0.4 | 0.6 | 0 | 650 | 1 |
Andrena flavipes | 0 | 1 | 0.3 | 0.7 | 0 | 1150 | 1 |
Andrena fulva | 0 | 1 | 1 | 0 | 0 | 315 | 1 |
Andrena haemorrhoa | 0 | 1 | 0.8 | 0.2 | 0 | 373 | 1 |
Andrena minutula | 0 | 1 | 0.6 | 0.4 | 0 | 112 | 1 |
Andrena nitida | 0 | 1 | 0.8 | 0.2 | 0 | 288 | 1 |
Bombus hortorum | 0.5 | 0.5 | 0.3 | 0.6 | 0.1 | 604 | 1 |
Bombus hypnorum | 1 | 0 | 0.3 | 0.6 | 0.1 | 288 | 1 |
Bombus lapidarius | 0.5 | 0.5 | 0.2 | 0.6 | 0.2 | 1500 | 1 |
Bombus pascuorum | 0.5 | 0.5 | 0.3 | 0.4 | 0.3 | 2300 | 1 |
Bombus pratorum | 0.5 | 0.5 | 0.4 | 0.5 | 0.1 | 674 | 1 |
Bombus terrestris | 0.5 | 0.5 | 0.3 | 0.5 | 0.2 | 1500 | 1 |
Lasioglossum calceatum | 0 | 1 | 0.4 | 0.4 | 0.2 | 1000 | 1 |
Lasioglossum malachurum | 0 | 1 | 0.3 | 0.5 | 0.3 | 600 | 1 |
Lasioglossum morio | 0 | 1 | 0.2 | 0.4 | 0.4 | 69 | 1 |
Lasioglossum politum | 0 | 1 | 0.2 | 0.6 | 0.2 | 14 | 1 |
Osmia rufa | 1 | 0 | 0.6 | 0.4 | 0 | 600 | 1 |
Code | Category | C_above | C_dead | C_below | C_soil |
---|---|---|---|---|---|
1 | Highways | 0 | 0 | 0 | 0 |
2 | Other wetlands | 6.5 | 0 | 0 | 68.23 |
3 | Path | 0 | 0 | 0 | 0 |
4 | Railways | 0 | 0 | 0 | 0 |
5 | Crops | 3.51 | 0 | 0 | 49.91 |
6 | Still water | 0 | 0 | 0 | 0 |
7 | Running water | 0 | 0 | 0 | 0 |
8 | Coniferous forests | 134.51 | 8.10 | 8.70 | 55.4 |
9 | Deciduous forests | 134.51 | 8.10 | 8.70 | 55.4 |
10 | Wet forests | 134.51 | 8.10 | 8.70 | 55.4 |
11 | Open forests | 134.51 | 8.10 | 8.70 | 55.4 |
12 | Riverbeds | 7.16 | 0 | 0 | 26.31 |
13 | Gravel pits | 0 | 0 | 0 | 0 |
14 | Barrens | 6.5 | 0 | 0 | 68.23 |
15 | Rocks and cliffs | 0 | 0 | 0 | 0 |
16 | Alpine grasslands | 4.98 | 0 | 0 | 59.4 |
17 | Extensive grasslands | 4.98 | 0 | 0 | 59.4 |
18 | Wet meadows | 6.4 | 0 | 0 | 68.23 |
19 | Dry meadows | 4.98 | 0 | 0 | 59.4 |
20 | Rivers | 0 | 0 | 0 | 0 |
21 | Roads | 0 | 0 | 0 | 0 |
22 | Stream | 0 | 0 | 0 | 0 |
23 | Dense urban | 0 | 0 | 0 | 0 |
24 | Diffuse urban | 0 | 0 | 0 | 0 |
25 | Wooded disturbed vegetation | 20.45 | 0 | 8.7 | 55.4 |
26 | Urban vegetation | 15.43 | 0 | 0 | 53.4 |
27 | Orchards | 22.73 | 0 | 0 | 64.76 |
28 | Vineyards | 5.36 | 0 | 0 | 53.4 |
Code | Category | SDR | NDR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
usle_c | usle_p | load_n | eff_n | crit_len_n | proportion_subsurface_n | load_p | eff_p | crit_len_p | usle_c | ||
1 | Highways | 0 | 0.5 | 16.6 | 0.1 | 25 | 0 | 1.18 | 0.01 | 25 | 0 |
2 | Other wetlands | 0 | 1 | 16.7 | 0.5 | 150 | 0 | 0.01 | 0.8 | 150 | 0 |
3 | Path | 0 | 0.5 | 16.6 | 0.1 | 25 | 0 | 1.18 | 0.01 | 25 | 0 |
4 | Railways | 0 | 0.5 | 16.8 | 0.1 | 25 | 0 | 1.18 | 0.01 | 25 | 0 |
5 | Crops | 0.1384 | 0.9942 | 155 | 0.65 | 150 | 0.5 | 44.6 | 0.4 | 150 | 0.1384 |
6 | Still water | 0 | 1 | 11.4 | 0.05 | 25 | 0 | 0.01 | 0.01 | 25 | 0 |
7 | Running water | 0 | 1 | 17.1 | 0.05 | 25 | 0 | 0.01 | 0.01 | 25 | 0 |
8 | Coniferous forests | 0.0012 | 1 | 16.8 | 0.9 | 150 | 0 | 2.36 | 0.6 | 150 | 0.0012 |
9 | Deciduous forests | 0.0012 | 1 | 16.8 | 0.9 | 150 | 0 | 2.36 | 0.6 | 150 | 0.0012 |
10 | Wet forests | 0.0012 | 1 | 16.7 | 0.5 | 150 | 0 | 0.01 | 0.8 | 150 | 0.0012 |
11 | Open forests | 0.0012 | 1 | 14.3 | 0.9 | 150 | 0 | 2.36 | 0.6 | 150 | 0.0012 |
12 | Riverbeds | 0 | 1 | 7.3 | 0.1 | 25 | 0 | 1.18 | 0.01 | 25 | 0 |
13 | Gravel pits | 0 | 1 | 7.3 | 0.1 | 25 | 0 | 1.18 | 0.01 | 25 | 0 |
14 | Barrens | 0.0219 | 1 | 10.3 | 0.9 | 150 | 0 | 2.36 | 0.6 | 150 | 0.0219 |
15 | Rocks and cliffs | 0 | 1 | 7.3 | 0.1 | 25 | 0 | 1.18 | 0.01 | 25 | 0 |
16 | Alpine grasslands | 0.0903 | 0.9942 | 12.6 | 0.65 | 150 | 0.5 | 10.5 | 0.5 | 150 | 0.0903 |
17 | Extensive grasslands | 0.0903 | 0.9942 | 74 | 0.65 | 150 | 0.5 | 27.55 | 0.5 | 150 | 0.0903 |
18 | Wet meadows | 0.0435 | 1 | 16.7 | 0.5 | 150 | 0 | 0.01 | 0.8 | 150 | 0.0435 |
19 | Dry meadows | 0.0435 | 1 | 9.2 | 0.1 | 150 | 0.5 | 2.36 | 0.6 | 150 | 0.0435 |
20 | Rivers | 0 | 1 | 17.1 | 0.05 | 25 | 0 | 0.01 | 0.01 | 25 | 0 |
21 | Roads | 0 | 0.5 | 16.6 | 0.1 | 25 | 0 | 1.18 | 0.01 | 25 | 0 |
22 | Stream | 0 | 1 | 17.1 | 0.05 | 25 | 0 | 0.01 | 0.01 | 25 | 0 |
23 | Dense urban | 0 | 0.5 | 17 | 0.1 | 25 | 0 | 19.1 | 0.01 | 25 | 0 |
24 | Diffuse urban | 0 | 0.5 | 16.4 | 0.4 | 25 | 0 | 19.1 | 0.01 | 25 | 0 |
25 | Wooded disturbed vegetation | 0.0219 | 1 | 14.7 | 0.4 | 150 | 0 | 2.36 | 0.6 | 150 | 0.0219 |
26 | Urban vegetation | 0.02652 | 0.5 | 15.7 | 0.4 | 150 | 0.4 | 2.36 | 0.6 | 150 | 0.02652 |
27 | Orchards | 0.1232 | 0.9942 | 74 | 0.65 | 150 | 0.5 | 44.6 | 0.4 | 150 | 0.1232 |
28 | Vineyards | 0.3527 | 0.9942 | 74 | 0.65 | 150 | 0.5 | 44.6 | 0.4 | 150 | 0.3527 |
References
- IPBES. Media Release: Biodiversity and Nature’s Contributions Continue Dangerous Decline, Scientists Warn|IPBES-6 Plenary. 2018. Available online: https://www.ipbes.net/news/media-release-biodiversity-nature%E2%80%99s-contributions-continue-%C2%A0dangerous-decline-scientists-warn (accessed on 1 July 2023).
- IPBES. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Brondizio, E.S., Settele, J., Díaz, S., Ngo, H.T., Eds.; IPBES Secretariat: Bonn, Germany, 2019; 1148p. [Google Scholar] [CrossRef]
- Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Pacifici, M.; Foden, W.B.; Visconti, P.; Watson, J.E.; Butchart, S.H.; Kovacs, K.M.; Scheffers, B.R.; Hole, D.G.; Martin, T.G.; Akçakaya, H.R.; et al. Assessing species vulnerability to climate change. Nat. Clim. Chang. 2015, 5, 215–224. [Google Scholar] [CrossRef]
- Sage, R.F. Global change biology: A primer. Glob. Chang. Biol. 2020, 26, 3–30. [Google Scholar] [CrossRef]
- Crenna, E.; Sinkko, T.; Sala, S. Biodiversity impacts due to food consumption in Europe. J. Clean. Prod. 2019, 227, 378–391. [Google Scholar] [CrossRef]
- Benton, T.G.; Bieg, C.; Harwatt, H.; Pudasaini, R.; Wellesley, L. Food System Impacts on Biodiversity Loss. In Three Levers for Food System Transformation in Support of Nature; Chatham House: London, UK, 2021; Available online: https://www.chathamhouse.org/2021/02/food-system-impacts-biodiversity-loss (accessed on 1 July 2023).
- Dawson, T.P.; Jackson, S.T.; House, J.I.; Prentice, I.C.; Mace, G.M. Beyond predictions: Biodiversity conservation in a changing climate. Science 2011, 332, 53–58. [Google Scholar] [CrossRef]
- McGill, B.J.; Dornelas, M.; Gotelli, N.J.; Magurran, A.E. Fifteen forms of biodiversity trend in the Anthropocene. Trends Ecol. Evol. 2015, 30, 104–111. [Google Scholar] [CrossRef]
- Scheffers, B.R.; Meester, L.D.; Bridge, T.C.L.; Hoffmann, A.A.; Pandolfi, J.M.; Corlett, R.T.; Butchart, S.H.M.; Pearce-Kelly, P.; Kovacs, K.M.; Dudgeon, D.; et al. The broad footprint of climate change from genes to biomes to people. Science 2016, 354, aaf7671. [Google Scholar] [CrossRef] [PubMed]
- Hector, A.; Schmid, B.; Beierkuhnlein, C.; Caldeira, M.C.; Diemer, M.; Dimitrakopoulos, P.G.; Finn, J.A.; Freitas, H.; Giller, P.S.; Good, J.; et al. Plant diversity and productivity experiments in European grasslands. Science 1999, 286, 1123–1127. [Google Scholar] [CrossRef]
- Naeem, S.; Thompson, L.J.; Lawler, S.P.; Lawton, J.H.; Woodfin, R.M. Declining biodiversity can alter the performance of ecosystems. Nature 1994, 368, 734–737. [Google Scholar] [CrossRef]
- Power, M.E.; Tilman, D.; Estes, J.A.; Menge, B.A.; Bond, W.J.; Mills, L.S.; Daily, G.; Castilla, J.C.; Lubchenco, J.; Paine, R.T. Challenges in the quest for keystones: Identifying keystone species is difficult—But essential to understanding how loss of species will affect ecosystems. BioScience 1996, 46, 609–620. [Google Scholar] [CrossRef]
- Tilman, D.; Downing, J.A. Biodiversity and stability in grasslands. Nature 1994, 367, 363–365. [Google Scholar] [CrossRef]
- Tilman, D.; Wedin, D.; Knops, J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 1996, 379, 718–720. [Google Scholar] [CrossRef]
- Walker, B.H. Biodiversity and ecological redundancy. Conserv. Biol. 1992, 6, 18–23. [Google Scholar] [CrossRef]
- Cardinale, B.J.; Duffy, J.E.; Gonzalez, A.; Hooper, D.U.; Perrings, C.; Venail, P.; Narwani, A.; Mace, G.M.; Tilman, D.; Wardle, D.A. Biodiversity loss and its impact on humanity. Nature 2012, 486, 59–67. [Google Scholar] [CrossRef]
- Mace, G.M. Whose conservation? Science 2014, 345, 1558–1560. [Google Scholar] [CrossRef]
- One Health Initiative Task Force. One Health: A New Professional Imperative; American Veterinary Medical Association: Schaumburg, IL, USA, 2008. [Google Scholar]
- Mace, G. Ecosystem services: Where is the discipline heading? In Routledge Handbook of Ecosystem Services; Routledge: London, UK, 2016; pp. 602–606. [Google Scholar]
- Benedict, M.A.; McMahon, E.T. Green Infrastructure: Linking Landscapes and Communities; Island Press: Washington, DC, USA, 2006. [Google Scholar]
- da Silva, J.M.C.; Wheeler, E. Ecosystems as infrastructure. Perspect. Ecol. Conserv. 2017, 15, 32–35. [Google Scholar] [CrossRef]
- European Environment Agency. Spatial Analysis of Green Infrastructure in Europe; Technical report No 2/2014; EEA: Brussels, Belgium, 2014.
- Wang, J.; Banzhaf, E. Towards a better understanding of green infrastructure: A critical review. Ecol. Indic. 2018, 85, 758–772. [Google Scholar] [CrossRef]
- Firehock, K. Strategic Green Infrastructure Planning—A Multi-Scale Approach; Island Press: Washington, DC, USA, 2015. [Google Scholar]
- Honeck, E.; Sanguet, A.; Schlaepfer, M.A.; Wyler, N.; Lehmann, A. Methods for identifying green infrastructure. SN Appl. Sci. 2020, 2, 1916. [Google Scholar] [CrossRef]
- Naumann, S.; Davis, M.; Kaphengst, T.; Pieterse, M.; Rayment, M. Design, Implementation and Cost Elements of Green Infrastructure Projects; Final report; European Commission: Brussels, Belgium, 2011; p. 138. [Google Scholar]
- Cohen-Shacham, E.; Walters, G.; Janzen, C.; Maginnis, S. Nature-Based Solutions to Address Global Societal Challenges; IUCN: Gland, Switzerland, 2016; Volume 97, pp. 2016–2036. [Google Scholar] [CrossRef]
- DETA; DGAN; CCDB. Stratégie Biodiversité Genève 2030 (SBG-2030); République et canton de Genève: Geneva, Switzerland, 2018. [Google Scholar]
- OFEV. Plan d’action du Conseil Fédéral 2017: Plan D’action Stratégie Biodiversité Suisse; Office Fédéral de l’environnement OFEV: Berne, Switzerland, 2017; p. 53. [Google Scholar]
- OFEV. Infrastructure Ecologique. Guide de Travail Pour la Planification Cantonale Dans le Cadre de la Période de Convention-Programme 2020–2024; Office Fédéral de l’environnement OFEV: Berne, Switzerland, 2021; Version 1.0. [Google Scholar]
- CBD/COP/15/L.25 18 December 2022, Montreal, Canada. Available online: https://www.cbd.int/doc/c/e6d3/cd1d/daf663719a03902a9b116c34/cop-15-l-25-en.pdf (accessed on 1 July 2023).
- Irga, P.J.; Braun, J.T.; Douglas, A.N.J.; Pettit, T.; Fujiwara, S.; Burchett, M.D.; Torpy, F.R. The distribution of green walls and green roofs throughout Australia: Do policy instruments influence the frequency of projects? Urban For. Urban Green. 2017, 24, 164–174. [Google Scholar] [CrossRef]
- Elbakidze, M.; Angelstam, P.; Yamelynets, T.; Dawson, L.; Gebrehiwot, M.; Stryamets, N.; Manton, M. A bottom-up approach to map land covers as potential green infrastructure hubs for human well-being in rural settings: A case study from Sweden. Landsc. Urban Plan. 2017, 168, 72–83. [Google Scholar] [CrossRef]
- Lynch, A.J. Is it good to be green? Assessing the ecological results of county green infrastructure planning. J. Plan. Educ. Res. 2016, 36, 90–104. [Google Scholar] [CrossRef]
- Park, H.; Kramer, M.; Rhemtulla, J.M.; Konijnendijk, C.C. Urban food systems that involve trees in Northern America and Europe: A scoping review. Urban For. Urban Green. 2019, 45, 126360. [Google Scholar] [CrossRef]
- Donaldson, G.H.; João, E.M. Using green infrastructure to add value and assist place-making in public realm developments. Impact Assess. Proj. Apprais. 2020, 38, 464–478. [Google Scholar] [CrossRef]
- Fattorini, S.; Galassi, D.M. Role of urban green spaces for saproxylic beetle conservation: A case study of tenebrionids in Rome, Italy. J. Insect Conserv. 2016, 20, 737–745. [Google Scholar] [CrossRef]
- Shwartz, A.; Turbé, A.; Julliard, R.; Simon, L.; Prévot, A.C. Outstanding challenges for urban conservation research and action. Glob. Environ. Chang. 2014, 28, 39–49. [Google Scholar] [CrossRef]
- Honeck, E.; Moilanen, A.; Guinaudeau, B.; Wyler, N.; Schlaepfer, M.A.; Martin, P.; Sanguet, A.; Urbina, L.; von Arx, B.; Massy, J.; et al. Implementing Green Infrastructure for the Spatial Planning of Peri-Urban Areas in Geneva, Switzerland. Sustainability 2020, 12, 1387. [Google Scholar] [CrossRef]
- Chartre Grand Genève en Transition, Grand Genève. 2023. Available online: https://www.grand-geneve.org/wp-content/uploads/Charte_Grand_Geneve_en_Transition_2023.pdf (accessed on 1 July 2023).
- Snäll, T.; Lehtomaki, J.; Arponen, A.; Elith, J.; Moilanen, A. Green infrastructure design based on spatial conservation prioritization and modeling of biodiversity features and ecosystem services. Environ. Manag. 2016, 57, 251–256. [Google Scholar] [CrossRef]
- Moilanen, A.; Wilson, K.A.; Possingham, H. Spatial Conservation Prioritization: Quantitative Methods and Computational Tools; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Austin, M.P.; Van Niel, K.P. Improving species distribution models for climate change studies: Variable selection and scale. J. Biogeogr. 2011, 38, 1–8. [Google Scholar] [CrossRef]
- Guisan, A.; Zimmermann, N.E. Predictive habitat distribution models in ecology. Ecol. Model. 2000, 135, 147–186. [Google Scholar] [CrossRef]
- Soberón, J.; Nakamura, M. Niches and distributional areas: Concepts, methods, and assumptions. Proc. Natl. Acad. Sci. USA 2009, 106 (Suppl. 2), 19644–19650. [Google Scholar] [CrossRef]
- Hirzel, A.H.; Le Lay, G. Habitat suitability modelling and niche theory. J. Appl. Ecol. 2008, 45, 1372–1381. [Google Scholar] [CrossRef]
- Lehmann, A.; Overton, J.M.; Austin, M.P. Regression models for spatial prediction: Their role for biodiversity and conservation. Biodivers. Conserv. 2002, 11, 2085–2092. [Google Scholar] [CrossRef]
- Lehmann, A.; Overton, J.M.; Leathwick, J.R. GRASP: Generalized regression analysis and spatial prediction. Ecol. Model. 2002, 157, 189–207. [Google Scholar] [CrossRef]
- Guisan, A.; Tingley, R.; Baumgartner, J.B.; Naujokaitis-Lewis, I.; Sutcliffe, P.R.; Tulloch, A.I.; Regan, T.J.; Brotons, L.; McDonald-Madden, E.; Mantyka-Pringle, C.; et al. Predicting species distributions for conservation decisions. Ecol. Lett. 2013, 16, 1424–1435. [Google Scholar] [CrossRef] [PubMed]
- Guisan, A.; Thuiller, W.; Zimmermann, N.E. Habitat Suitability and Distribution Models: With Applications in R; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Sanguet, A.; Wyler, N.; Petitpierre, B.; Honeck, E.; Poussin, C.; Martin, P.; Lehmann, A. Beyond topo-climatic predictors: Does habitats distribution and remote sensing information improve predictions of species distribution models? Glob. Ecol. Conserv. 2022, 39, e02286. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M.; Schapire, R.E. A maximum entropy approach to species distribution modeling. In Proceedings of the Twenty-First International Conference on Machine Learning, Banff, AB, Canada, 4–8 July 2004; p. 83. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Guillera-Arroita, G.; Lahoz-Monfort, J.J.; Elith, J.; Gordon, A.; Kujala, H.; Lentini, P.E.; McCarthy, M.A.; Tingley, R.; Wintle, B.A. Is my species distribution model fit for purpose? Matching data and models to applications. Glob. Ecol. Biogeogr. 2015, 24, 276–292. [Google Scholar] [CrossRef]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Graham, C.H. The ability of climate envelope models to predict the effect of climate change on species distributions. Glob. Chang. Biol. 2006, 12, 2272–2281. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Phillips, S.; Leathwick, J.; Elith, J.; Hijmans, M.R.J. Package ‘dismo’. Circles 2023, 9, 1–68. [Google Scholar]
- Muscarella, R.; Galante, P.J.; Soley-Guardia, M.; Boria, R.A.; Kass, J.M.; Uriarte, M.; Anderson, R.P. ENM eval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 2014, 5, 1198–1205. [Google Scholar] [CrossRef]
- Naimi, B.; Araújo, M.B. SDM: A reproducible and extensible R platform for species distribution modelling. Ecography 2016, 39, 368–375. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.R-project.org/ (accessed on 1 July 2023).
- Costa, G.C.; Nogueira, C.; Machado, R.B.; Colli, G.R. Sampling bias and the use of ecological niche modeling in conservation planning: A field evaluation in a biodiversity hotspot. Biodivers. Conserv. 2010, 19, 883–899. [Google Scholar] [CrossRef]
- Radosavljevic, A.; Anderson, R.P. Making better Maxent models of species distributions: Complexity, overfitting and evaluation. J. Biogeogr. 2014, 41, 629–643. [Google Scholar] [CrossRef]
- Weiss, A. Topographic position and landforms analysis. In Proceedings of the Poster Presentation, ESRI User Conference, San Diego, CA, USA, 9–13 July 2001; Volume 200. Available online: http://www.jennessent.com/downloads/TPI-poster-TNC_18x22.pdf (accessed on 1 July 2023).
- Hengl, T.; Mendes de Jesus, J.; Heuvelink, G.B.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef]
- Zobrist, J.; Reichert, P. Bayesian estimation of export coefficients from diffuse and point sources in Swiss watersheds. J. Hydrol. 2006, 329, 207–223. [Google Scholar] [CrossRef]
- Bai, Y.; Ochuodho, T.O.; Yang, J. Impact of land use and climate change on water-related ecosystem services in Kentucky, USA. Ecol. Indic. 2019, 102, 51–64. [Google Scholar] [CrossRef]
- Redhead, J.W.; May, L.; Oliver, T.H.; Hamel, P.; Sharp, R.; Bullock, J.M. National scale evaluation of the InVEST nutrient retention model in the United Kingdom. Sci. Total Environ. 2018, 610, 666–677. [Google Scholar] [CrossRef]
- Natural Capital Project. 2017. Available online: https://naturalcapitalproject.stanford.edu/ (accessed on 1 July 2023).
- Renard, K.G. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); United States Government Printing: Washington, DC, USA, 1997.
- Jaligot, R.; Chenal, J.; Bosch, M. Assessing spatial temporal patterns of ecosystem services in Switzerland. Landsc. Ecol. 2019, 34, 1379–1394. [Google Scholar] [CrossRef]
- European Soil Data Centre. Available online: https://esdac.jrc.ec.europa.eu/ (accessed on 2 December 2022).
- Gamon, J.A.; Field, C.B.; Goulden, M.L.; Griffin, K.L.; Hartley, A.E.; Joel, G.; Penuelas, J.; Valentini, R. Relationships between NDVI, canopy structure, and photosynthesis in three Californian vegetation types. Ecol. Appl. 1995, 5, 28–41. [Google Scholar] [CrossRef]
- Geerken, R.; Zaitchik, B.; Evans, J.P. Classifying rangeland vegetation type and coverage from NDVI time series using Fourier Filtered Cycle Similarity. Int. J. Remote Sens. 2005, 26, 5535–5554. [Google Scholar] [CrossRef]
- Swiss Datacube. Available online: https://www.swissdatacube.org/ (accessed on 1 June 2021).
- Saito, K.; Ogawa, S.; Aihara, M.; Otowa, K. Estimation of LAI and Forest Management on Okutama. In Proceedings of the 22nd Asian Conference on Remote Sensing, Singapore, 5–7 November 2001; pp. 11–17. [Google Scholar]
- Pauls, S.U.; Nowak, C.; Bálint, M.; Pfenninger, M. The impact of global climate change on genetic diversity within populations and species. Mol. Ecol. 2013, 22, 925–946. [Google Scholar] [CrossRef]
- Tischendorf, L.; Fahrig, L. On the usage and measurement of landscape connectivity. Oikos 2000, 90, 7–19. [Google Scholar] [CrossRef]
- Taylor, P.D.; Fahrig, L.; Henein, K.; Merriam, G. Connectivity is a vital element of landscape structure. Oikos 1993, 68, 571–573. [Google Scholar] [CrossRef]
- With, K.A.; Gardner, R.H.; Turner, M.G. Landscape connectivity and population distributions in heterogeneous environments. Oikos 1997, 78, 151–169. [Google Scholar] [CrossRef]
- Urbina, L.; Fischer, C.; Ray, N.; Lehmann, A. Modelling red deer functional connectivity at regional scale in a human dominated landscape. Front. Environ. Sci. 2023, 11, 1198168. [Google Scholar] [CrossRef]
- Urbina, L.; Lehmann, A.; Huber, L.; Fischer, C. Combining multi-species connectivity modelling with expert knowledge to inform the green infrastructure design. 2023; under review. [Google Scholar]
- Anantharaman, R.; Hall, K.; Shah, V.B.; Edelman, A. Circuitscape in Julia: High Performance Connectivity Modelling to Support Conservation Decisions. JuliaCon Proc. 2020, 1, 58. [Google Scholar] [CrossRef]
- © Frederic Tapissier/AVEX/Cartes de Pollution Lumineuse. 2016. Available online: https://www.avex-asso.org/dossiers/wordpress/la-pollution-lumineuse-light-pollution/cartes-de-pollution-europeenne-avex-2016 (accessed on 1 July 2023).
- Lord, J.M.; Norton, D.A. Scale and the spatial concept of fragmentation. Conserv. Biol. 1990, 4, 197–202. [Google Scholar] [CrossRef]
- Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 487–515. [Google Scholar] [CrossRef]
- Jaeger, J.A. Landscape division, splitting index, and effective mesh size: New measures of landscape fragmentation. Landsc. Ecol. 2000, 15, 115–130. [Google Scholar] [CrossRef]
- McGarigal, K.; Cushman, S.A.; Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical Maps. 2023. Available online: https://www.fragstats.org (accessed on 1 July 2023).
- Pielou, E.C. Shannon’s formula as a measure of specific diversity: Its use and misuse. Am. Nat. 1966, 100, 463–465. [Google Scholar] [CrossRef]
- IUCN WCPA Task Force on OECMs. Recognising and Reporting Other Effective Area-Based Conservation Measures; IUCN, International Union for Conservation of Nature: Gland, Switzerland, 2019. [Google Scholar] [CrossRef]
- Manhães, A.P.; Mazzochini, G.G.; Oliveira-Filho, A.T.; Ganade, G.; Carvalho, A.R. Spatial associations of ecosystem services and biodiversity as a baseline for systematic conservation planning. Divers. Distrib. 2016, 22, 932–943. [Google Scholar] [CrossRef]
- Fischer, C.; Ranzoni, J. Assessment of the functionality of wildlife corridors used by red deer in the Geneva basin. Schweizerische Zeitschrift für Forstwesen 2017, 168, 299–304. [Google Scholar] [CrossRef]
- Rezaei, J. A Concentration Ratio for Non-Linear Best Worst Method. Int. J. Inf. Technol. Decis. Mak. 2020, 19, 891–907. [Google Scholar] [CrossRef]
Pillars | Inputs | Weight/Input | Weight/Group | Weight/Pillar |
---|---|---|---|---|
Species and habitat distributions | Plant species (n = 1480) | 0.0116171 | 25 | 100 |
Red-listed plant species (n = 336) | 0.0232342 | |||
Animal species (n = 450) | 0.0347222 | 25 | ||
Red-listed animal species (n = 135) | 0.0694444 | |||
Habitats (n = 19) | 2.631578947 | 50 | ||
Ecosystem services | Areas for pollinators | 4 | 20 | 20 |
Carbon storage | 4 | |||
Nutrient delivery ratio | 4 | |||
Sediment delivery ratio | 4 | |||
Leaf area index | 4 | |||
Connectivity | Global connectivity (n = 3) | 5 | 40 | 80 |
Constrained corridors (n = 3) | 5 | |||
Light pollution | 10 | |||
Fragmentation | 8 | 40 | ||
Permeability | 8 | |||
Naturality | 8 | |||
Diversity of natural habitats | 8 | |||
Core areas | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanguet, A.; Wyler, N.; Guinaudeau, B.; Waller, N.; Urbina, L.; Huber, L.; Fischer, C.; Lehmann, A. Mapping Ecological Infrastructure in a Cross-Border Regional Context. Land 2023, 12, 2010. https://doi.org/10.3390/land12112010
Sanguet A, Wyler N, Guinaudeau B, Waller N, Urbina L, Huber L, Fischer C, Lehmann A. Mapping Ecological Infrastructure in a Cross-Border Regional Context. Land. 2023; 12(11):2010. https://doi.org/10.3390/land12112010
Chicago/Turabian StyleSanguet, Arthur, Nicolas Wyler, Benjamin Guinaudeau, Noé Waller, Loreto Urbina, Laurent Huber, Claude Fischer, and Anthony Lehmann. 2023. "Mapping Ecological Infrastructure in a Cross-Border Regional Context" Land 12, no. 11: 2010. https://doi.org/10.3390/land12112010
APA StyleSanguet, A., Wyler, N., Guinaudeau, B., Waller, N., Urbina, L., Huber, L., Fischer, C., & Lehmann, A. (2023). Mapping Ecological Infrastructure in a Cross-Border Regional Context. Land, 12(11), 2010. https://doi.org/10.3390/land12112010