Spatiotemporal Analysis of Urban Sprawl and Ecological Quality Study Case: Chiba Prefecture, Japan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Research Methods
2.3.1. Land Use Land Cover (LULC) Assessment and Accuracy Assessment
2.3.2. Urban Sprawl
Prefecture Level
City Level
2.3.3. Remote Sensing Ecological Index
- A comprehensive index was constructed using standardization to minimize the impact of varying numerical values of different indices on the outcome [43].
- 2.
- Principal component analysis (PCA)
- 3.
- These four indices were integrated to be 4-band images (principal components 1–4). According to the contribution of each component, if the total variance contribution of a specific component reaches or exceeds 85%, the component encapsulates the majority of the significant information [44].
- 4.
- The RSEI values were presented as grades I–V (I: very good, II: good, III: moderate, IV: poor, V: very poor) [45]. Standardization was performed to simplify the evaluation.
2.3.4. Relationship between Urban Sprawl and RSEI
3. Results
3.1. Land Use Land Cover (LULC) Assessment and Accuracy Assessment
3.2. Urban Sprawl Analysis in Chiba Prefecture (Prefecture and City Level)
3.3. RSEI Quality in Chiba Prefecture
3.4. Urban Sprawl Analysis in Chiba Prefecture (Prefecture and City Level)
4. Discussion
4.1. Urban Sprawl from Prefecture and City Level
4.2. Good Ecological Quality in Chiba Prefecture
4.3. Planning Proposal Recommendation
5. Conclusions
6. Limitations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- MLIT (Ministry of Land, Infrastructure, Transport and Tourism City Bureau City Planning Division). What Kind of Things Can Be Built Anywhere in the “City”? MLIT. Available online: https://www.mlit.go.jp/crd/city/plan/03_mati/03/index.html (accessed on 6 June 2023).
- Jaeger, J.A.G. Landscape division, splitting index, and effective mesh size: New measures of landscape fragmentation. Landsc. Ecol. 2000, 15, 115–130. [Google Scholar] [CrossRef]
- Ewing, R.H. Endangered by Sprawl: How Runaway Development Threatens America’s Wildlife. National Wildlife Federation, Smart Growth America, NatureServe. 2005. Available online: https://www.nwf.org/~/media/PDFs/Wildlife/EndangeredbySprawl.pdf (accessed on 1 June 2023).
- Nakatani, H. Population Aging in Japan: Policy Transformation, Sustainable Development Goals, Universal Health Coverage, and Social Determinates of Health. Glob. Health Med. 2019, 1, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Klug, S.; Hayashi, Y. Social and Public Costs of Residential Urban Sprawl. Proceedings of the Eastern Asia Society for Transportation Studies. 2007. Available online: https://www.urban.env.nagoya-u.ac.jp/strategy/paper/2007/kokusai/07k_stefan2.pdf (accessed on 7 June 2023).
- Fina, S.; Siedentop, S. The riddled city-where demographic change adds to the woes of urban sprawl. In Proceedings of the Real Corp Tagungsband, Barcelona, Spain, 22–25 April 2009; pp. 507–517. Available online: https://www.corp.at/archive/CORP2009_32.pdf (accessed on 28 October 2023).
- Yokohari, M.; Murayama, A.; Terada, T. The Value of Grey. In Framing in Sustainability Science; Mino, T., Kudo, S., Eds.; Science for Sustainable Societies; Springer: Singapore, 2020; pp. 57–96. [Google Scholar] [CrossRef]
- Wang, R.; Derdouri, A.; Murayama, Y. Spatiotemporal Simulation of Future Land Use/Cover Change Scenarios in the Tokyo Metropolitan Area. Sustainability 2018, 10, 2056. [Google Scholar] [CrossRef]
- Okata, J.; Murayama, A. Tokyo’s Urban Growth, Urban Form and Sustainability. In Megacities; Sorensen, A., Okata, J., Eds.; CSUR-UT Series: Library for Sustainable Urban Regeneration; Springer: Tokyo, Japan, 2011; Volume 10, pp. 15–41. [Google Scholar] [CrossRef]
- Mashima, T.; Kawakami, M. Planning Review: Developments and Planning Issues of Land Use Control in Suburban Areas by Local Government’s Ordinances in Japan. Int. Rev. Spat. Plan. Sustain. Dev. 2014, 2, 1–13. [Google Scholar] [CrossRef]
- Nikodemus, A.; Hájek, M.; Ndeinoma, A.; Purwestri, R.C. Forest Ecosystem Services-Based Adaptation Actions Supported by the National Policy on Climate Change for Namibia: Effectiveness, Indicators, and Challenges. Forests 2022, 13, 1965. [Google Scholar] [CrossRef]
- Pal, S.C.; Chakrabortty, R.; Malik, S.; Das, B. Application of Forest Canopy Density Model for Forest Cover Mapping Using LISS-IV Satellite Data: A Case Study of Sali Watershed, West Bengal. Model. Earth Syst. Environ. 2018, 4, 853–865. [Google Scholar] [CrossRef]
- Zhu, Q.; Guo, J.; Guo, X.; Chen, L.; Han, Y.; Liu, S. Relationship between Ecological Quality and Ecosystem Services in a Red Soil Hilly Watershed in Southern China. Ecol. Indic. 2021, 121, 107119. [Google Scholar] [CrossRef]
- Dupras, J.; Alam, M. Urban Sprawl and Ecosystem Services: A Half Century Perspective in the Montreal Area (Quebec, Canada). J. Environ. Policy Plan. 2015, 17, 180–200. [Google Scholar] [CrossRef]
- Schneider, A.; Woodcock, C.E. Compact, Dispersed, Fragmented, Extensive? A Comparison of Urban Growth in Twenty-Five Global Cities Using Remotely Sensed Data, Pattern Metrics and Census Information. Urban Stud. 2008, 45, 659–692. [Google Scholar] [CrossRef]
- Serdaroğlu Sağ, N. Assessment of Urban Development Pattern and Urban Sprawl Using Shannon’s Entropy: A Case Study of Konya (Turkey). J. Hum. Sci. 2021, 18, 252–265. [Google Scholar] [CrossRef]
- E-Stat Japan. Socio-Demographic System—Data Display (Municipal Data) 1990 and 2020. E-Stat. Available online: https://www.e-stat.go.jp/regional-statistics/ssdsview/municipality (accessed on 6 June 2023).
- Abijith, D.; Saravanan, S. Assessment of Land Use and Land Cover Change Detection and Prediction Using Remote Sensing and CA Markov In the Northern Coastal Districts of Tamil Nadu, India. Review 2022, 29, 86055–86067. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Meng, X.; Dong, S.; Liang, S. Generating the 30-m Land Surface Temperature Product over Continental China and USA from Landsat 5/7/8 Data. Sci. Remote Sens. 2021, 4, 100032. [Google Scholar] [CrossRef]
- Magidi, J.; Nhamo, L.; Mpandeli, L.S.; Mabhaudhi, T. Application of the Random Forest Classifier to Map Irrigated Areas Using Google Earth Engine. Remote Sens. 2021, 13, 876. [Google Scholar] [CrossRef]
- Hamadi, A.D.; Ewemoje, T.A.; El Abidine, S.Z. Assessment of Land Use and Land Cover Change in Southwest Mauritania, Remote Sensing and GIS Approach. Adv. Remote Sens. 2022, 4, 182–196. [Google Scholar] [CrossRef]
- Gul, S.; Bibi, T.; Rahim, S.; Gul, Y.; Niaz, A.; Mumtaz, S.; Shedayi, A.A. Monitoring of Land Use and Land Cover Changes Using Remote Sensing and Geographic Information System. Review 2022. preprint. [Google Scholar] [CrossRef]
- Oo, K.K.; Torii, K.; Cheng, K.; Nawata, E. An Analysis of Land Use/Land-Cover Changes in Nay Pyi Taw, Myanmar, Using Remote Sensing Images. Trop. Agric. Dev. 2019, 63, 93–104. [Google Scholar] [CrossRef]
- Souzan, F.F.D.; Ochi, T.; Hosono, A. Land Readjustment: Solving Urban Problems through Innovative Approach. 2018. Available online: https://www.jica.go.jp/Resource/jica-ri/publication/booksandreports/20180228_01.html (accessed on 8 June 2023).
- Moghadam, S.S.; Mofrad, S.S. Urban Sprawl Trend Analysis Using Statistical and Remote Sensing Approach Case Study: Mashhad City. 2018. Available online: https://crcd.mashhad.iau.ir/article_663449_061e2b516a49c9a243c6d64bf0cbcaef.pdf (accessed on 7 June 2023).
- Aguilera, F.; Valenzuela, L.; Leitão, A. Landscape Metrics in the Analysis of Urban Land Use Patterns: A Case Study in a Spanish Metropolitan Area. Landsc. Urban Plan. 2011, 3–4, 226–238. [Google Scholar] [CrossRef]
- Avalos, J.A.; Vilchez, F.F.; Delgado, M.D.; Benavente, F.A.; González, O.N. Future Urban Growth Scenarios and Ecosystem Services Valuation in the Tepic-Xalisco Metropolitan Area, Mexico. One Ecosyst. 2022, 7, e84518. [Google Scholar] [CrossRef]
- Bindajam, A.; Mallick, J.; Balha, A.; Qadhi, S.; Sohan, A.; Singh, C.; Rahman, A. Characterizing the Urban Decadal Expansionand Its Morphology Using Integrated Spatial Approaches in Semi-Arid Mountainous Environment, Saudi Arabia. Pol. J. Environ. Stud. 2021, 5, 4437–4451. [Google Scholar] [CrossRef]
- Cengiz, S.; Görmüş, S.; Oğuz, D. Analysis of the Urban Growth Pattern through Spatial Metrics; Ankara City. Land Use Policy 2022, 112, 105812. [Google Scholar] [CrossRef]
- Fan, C.; Myint, S. A Comparison of Spatial Autocorrelation Indices and Landscape Metrics in Measuring Urban Landscape Fragmentation. Landsc. Urban Plan. 2014, 121, 117–128. [Google Scholar] [CrossRef]
- Fenta, A.A.; Yasuda, H.; Haregeweyn, N.; Belay, A.S.; Hadush, Z.; Gebremedhin, A.M.; Mekonnen, G. The Dynamics of Urban Expansion and Land Use/Land Cover Changes Using Remote Sensing and Spatial Metrics: The Case of Mekelle City of Northern Ethiopia. Int. J. Remote Sens. 2017, 38, 4107–4129. [Google Scholar] [CrossRef]
- Getu, K.; Bhat, H.G. Analysis of Spatio-Temporal Dynamics of Urban Sprawl and Growth Pattern Using Geospatial Technologies and Landscape Metrics in Bahir Dar, Northwest Ethiopia. Land Use Policy 2021, 109, 105676. [Google Scholar] [CrossRef]
- Keita, M.A.; Ruan, R.; An, R. Spatiotemporal Change of Urban Sprawl Patterns in Bamako District in Mali Based on Time Series Analysis. Urban Sci. 2020, 5, 4. [Google Scholar] [CrossRef]
- Kong, F.; Yin, H.; Nakagoshi, N.; James, P. Simulating Urban Growth Processes Incorporating a Potential Model with Spatial Metrics. Ecol. Indic. 2012, 20, 82–91. [Google Scholar] [CrossRef]
- Lv, Z.; Dai, F.; Sun, C. Evaluation of Urban Sprawl and Urban Landscape Pattern in a Rapidly Developing Region. Environ. Monit. Assess. 2012, 184, 6437–6448. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Báez, P.; Cabrera-Barona, P.; Bogaert, J. Characterizing Landscape Patterns in Urban-Rural Interfaces. J. Urban Manag. 2021, 10, 46–56. [Google Scholar] [CrossRef]
- Pan, Y.; Qiu, L.; Wang, Z.; Zhu, J.; Cheng, M. Unravelling the Association between Polycentric Urban Development and Landscape Sustainability in Urbanizing Island Cities. Ecol. Indic. 2022, 143, 109348. [Google Scholar] [CrossRef]
- Tv, R.; Aithal, B.H.; Sanna, D.D. Insights to Urban Dynamics through Landscape Spatial Pattern Analysis. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 329–343. [Google Scholar] [CrossRef]
- Ahlqvist, O. Overlay (in GIS). Int. Encycl. Hum. Geogr. 2009, 8, 48–55. [Google Scholar] [CrossRef]
- Xiong, Y.; Xu, W.; Lu, N.; Huang, S.; Wu, C.; Wang, L.; Dai, F.; Kou, W. Assessment of Spatial–Temporal Changes of Ecological Environment Quality Based on RSEI and GEE: A Case Study in Erhai Lake Basin, Yunnan Province, China. Ecol. Indic. 2021, 125, 107518. [Google Scholar] [CrossRef]
- Liu, X.Y.; Zhang, X.X.; He, R.Y.; Luan, H.J. Monitoring and Assessment of Ecological Change in Coastal Cities Based on RSEI. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 42, 461–470. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, S.; Rao, X.; Lin, X.; Li, R. Landsat TM/OLI-Based Ecological and Environmental Quality Survey of Yellow River Basin, Inner Mongolia Section. Remote Sens. 2021, 13, 4477. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, B.; Bai, Y.; He, X. Ecological Environment Assessment Based on Remote Sensing in Zhengzhou. IOP Conf. Ser. Earth Environ. Sci. 2017, 94, 12190. [Google Scholar] [CrossRef]
- Shi, H.; Shi, T.; Liu, Q.; Wang, Z. Ecological Vulnerability of Tourism Scenic Spots: Based on Remote Sensing Ecological Index. Pol. J. Environ. Stud. 2021, 30, 3231–3248. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, R.; Yang, Y.; Li, L.; Chen, L. Assessing the Urban Eco-Environmental Quality by the Remote-Sensing Ecological Index: Application to Tianjin, North China. ISPRS Int. J. Geo-Inf. 2021, 10, 475. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, T.H.; Ergün, T. The Instability of the Pearson Correlation Coefficient in the Presence of Coincidental Outliers. Financ. Res. Lett. 2015, 13, 243–257. [Google Scholar] [CrossRef]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
- Lian, Z.; Hao, H.; Zhao, J.; Cao, K.; Wang, H.; He, Z. Evaluation of Remote Sensing Ecological Index Based on Soil and Water Conservation on the Effectiveness of Management of Abandoned Mine Landscaping Transformation. Int. J. Environ. Res. Public Health 2022, 19, 9750. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, T.; Zhu, D.; Jia, K.; Plaza, A. RSEIFE: A New Remote Sensing Ecological Index for Simulating the Land Surface Eco-Environment. J. Environ. Manag. 2023, 326, 116851. [Google Scholar] [CrossRef]
- Toshio, K. The Commodification of Rurality and Its Sustainability in the Jike Area, Yokohama City, the Tokyo Metropolitan Fringe. Geogr. Rev. Jpn. Ser. B 2010, 82, 89–102. [Google Scholar] [CrossRef]
- Follmann, A. Geographies of Peri-urbanization in the Global South. Geogr. Compass 2022, 16, e12650. [Google Scholar] [CrossRef]
- Kashiwagi, H.; Shikazono, N.; Ogawa, Y.; Higuchi, Y.; Takahashi, M.; Tanaka, Y. Mineralogical and Biological Influences on Groundwater Chemistry of the Boso Peninsula, Chiba, Central Japan: Implications for the Origin of Groundwater in Sedimentary Basins. Geochem. J. 2006, 40, 345–361. [Google Scholar] [CrossRef]
- Matsuyama, H.; Taira, M.; Suzuki, M.; Sando, E. Associations between Japanese Spotted Fever (JSF) Cases and Wildlife Distribution on the Boso Peninsula, Central Japan (2006–2017). J. Vet. Med. Sci. 2020, 82, 1666–1670. [Google Scholar] [CrossRef] [PubMed]
- Yoshio, M.; Asada, M.; Ochiai, K.; Goka, K.; Miyashita, T.; Tatsuta, H. Evidence for Cryptic Genetic Discontinuity in a Recently Expanded Sika Deer Population on the Boso Peninsula, Central Japan. Zool. Sci. 2009, 26, 48–53. [Google Scholar] [CrossRef]
- Gomes, E. Sustainable Population Growth in Low-Density Areas in a New Technological Era: Prospective Thinking on How to Support Planning Policies Using Complex Spatial Models. Land 2020, 9, 221. [Google Scholar] [CrossRef]
- Blumberg, I. Wetland Roofs—A Multifunctional Green Roof Type—Basics and Perspectives from Engineering Practice. In Proceedings of the Closed Cycles and the Circular Society Symposium: International Ecological Engineering Society, Wädenswil, Switzerland, 2–4 September 2020; Available online: https://www.researchgate.net/publication/342381226_Wetland_roofs_-a_multifunctional_green_roof_type_-_Basics_and_perspectives_from_engineering_practice (accessed on 5 June 2023).
- Lucius, I.; Raluca, D.; Dana, C. Green Infrastructure Sustainable Investments for the Benefit of Both People and Nature. SURF-Nature Project. 2011. Available online: https://www.yumpu.com/en/document/view/37390604/green-infrastructure-surf-nature (accessed on 10 June 2023).
- Wootton-Beard, P.; Xing, Y.; Prabhakaran, R.D.; Robson, P.; Bosch, M.; Thornton, J.; Ormondroyd, G.; Jones, P.; Donnison, I. Review: Improving the Impact of Plant Science on Urban Planning and Design. Buildings 2016, 6, 48. [Google Scholar] [CrossRef]
- Dorner, J. Introduction to Using Native Plants in Restoration Project. Plant Conservation Alliance Bureau of Land Management, US Department of Interior. 2002. Available online: https://www.fs.usda.gov/wildflowers/Native_Plant_Materials/documents/intronatplant.pdf (accessed on 8 June 2023).
- Abdullahi, S.; Pradhan, B.; Al-sharif, A. Sprawl Versus Compact Development. In Spatial Modeling and Assessment of Urban Form; Pradhan, B., Ed.; Springer: Cham, Switzerland, 2017; Volume 1, pp. 35–38. [Google Scholar] [CrossRef]
- Moore, J.; Kirstin, M.; Richard, R.; Sarah, C. The International Ecocity Standards (IES) Initiative Seeks to Provide an Innovative Vision for an Ecologically-Restorative Human Civilization as Well as a Practical Methodology for Assessing and Guiding Progress towards the Goal. 2014. Available online: www.ecocitystandards.org (accessed on 8 June 2023).
No. | Metric | Class | Description |
---|---|---|---|
1 | Total Edge (TE) | Area-Edge | Range: TE > 0, without limit |
2 | Perimeter–Area Fractal Dimension (PAFRAC) | Shape | Range 1 ≤ PAFRAC ≤ 2 |
3 | Mean Fractal Dimension Index (FRAC_MN) | Shape | Range 1 ≤ FRAC_MN ≤ 2 |
4 | Mean Shape Index (SHAPE_MN) | Shape | Range: SHAPE_MN > 0, without limit |
5 | Mean of Euclidean Nearest-Neighbor Distance (ENN_MN) | Aggregation | Range: ENN_MN > 0, without limit |
6 | Number of Patch (NP) | Aggregation | Range: NP > 0, without limit |
7 | Landscape Shape Index (LSI) | Aggregation | Range: LSI > 0, without limit |
8 | Landscape Division Index (DIVISION) | Aggregation | Range 0 ≤ DIVISION ≤ 1 |
No. | Indicator | Calculation Method | Explanation |
---|---|---|---|
1 | NDVI | NDVI = (ρNIR − ρR)/(ρNIR + ρR) WETTM = 0.0315ρB + 0.2021ρG + 0.3102ρR + 0.1594ρNIR − 0.6806ρSWIR1 − 0.6109ρSWIR2 WETOLI = 0.1511ρB + 0.1972ρG + 0.3283ρR + 0.3407ρNIR − 0.7117ρSWIR1 − 0.4559ρSWIR2 | ρB: Blue Band ρG: Green Band ρR: Red Band ρNIR: Near-Infrared Band ρSWIR1: Short-Wave Infrared 1 Band ρSWIR2: Short-Wave Infrared 2 Band IBI: Index Based Build-up SI: Soil Index Lλ: the radiance value (Landsat 5: 6 Band, Landsat8: 10 Band) Tb: the at-satellite brightness temperature K1 and K2: thermal conversion constants A: the wavelength of the thermal infrared band; ρ = 1.4380 × 104 μm; ε: surface-specific emissivity |
2 | WET | ||
3 | NDBSI | IBI = {2ρSWIR1/(ρSWIR1 + ρNIR) − [ρNIR/(ρR) + ρG/(ρG+ ρSWIR1)]}/{2ρ SWIR1/(ρ SWIR1 + ρNIR) + [ρ NIR/(ρNIR + ρR) + ρG/(ρG + ρSWIR1)]} SI = [(ρSWIR1 + ρR) − (ρB + ρNIR)]/[(ρSWIR1 + ρR) + (ρB + ρNIR)] NDBSI = (IBI + SI)/2 | |
4 | LST | ||
5 | MNDWI | MNDWI = (ρG − ρSWIR1)/(ρG − ρSWIR1) |
LULC | Chiba (ha) | Tokyo (ha) | Kanagawa (ha) | Saitama (ha) | |
---|---|---|---|---|---|
Vegetation | 1990 | 419,857.48 | 94,118.93 | 166,492.63 | 296,088.10 |
2021 | 382,455.96 | 7630.11 | 140,126.16 | 223,069.90 | |
Changes | −37,401.52 | −17,588.82 | −26,366.47 | −73,018.20 | |
Waterbody | 1990 | 38,736.20 | 16,057.60 | 14,652.73 | 15,091.50 |
2021 | 28,701.28 | 7515.88 | 9870.86 | 15,712.16 | |
Changes | −10,034.93 | −8541.72 | −4781.87 | +620.66 | |
Built-up | 1990 | 56,200.74 | 68,398.19 | 60,365.89 | 68,543.52 |
2021 | 103,642.22 | 94,526.09 | 91,517.74 | 140,939.93 | |
Changes | +47,441.48 | +26,127.91 | +31,151.85 | +72,396.41 | |
Kappa Accuracy | 1990 | 0.81 | |||
2021 | 0.83 |
Metropolitan Level: Shannon Entropy | City Level: Landscape Metric | |||
---|---|---|---|---|
1990 | 2021 | 1990 | 2021 | |
Highest sprawling | Fringe | Fringe | Core and Fringe | Core, Fringe, Periphery |
The highest urban sprawl growth | Periphery | Fringe | ||
The highest urban sprawl loss | Fringe | Core |
Indicator | Contribution Component (PC1) | Average Value | ||
---|---|---|---|---|
1990 | 2021 | 1990 | 2021 | |
LST | −0.12906 | −0.30183 | 0.43 | 0.38 |
WET | 0.04945 | 0.14231 | 0.90 | 0.81 |
NDVI | 0.73616 | 0.48384 | 0.62 | 0.77 |
NDBSI | −0.66255 | −0.80904 | 0.48 | 0.46 |
Eigenvalue | 0.01624 | 0.01466 | 1990 | 2021 |
Eigenvalue contribution Rate (%) | 92.3725 | 85.8561 |
Quality Level | 1990 | 2021 | The Trend during 1990–2021 (ha) | ||
---|---|---|---|---|---|
Area (ha) | Proportion (%) | Area (ha) | Proportion (%) | ||
Very Poor (0–0.2) | 160.037 | 0.031 | 18.976 | 0.004 | −141.060 |
Poor (0.2–0.4) | 86,093.173 | 16.881 | 51,611.783 | 10.170 | −34,481.390 |
Moderate (0.4–0.6) | 236,116.137 | 46.296 | 250,599.317 | 49.373 | 14,443.180 |
Good (0.6–0.8) | 155,928.230 | 30.573 | 142,147.733 | 28.010 | −13,780.498 |
Very Good (0.8–1) | 31,714.784 | 6.218 | 63,144.150 | 12.443 | 31,429.366 |
Mean | 0.551 | 0.582 | 0.582 |
City | RSEI1990 | RSEI 2021 | Trend | City | RSEI 1990 | RSEI 2021 | Trend |
---|---|---|---|---|---|---|---|
Abiko | 0.45 | 0.47 | 0.02 | Nagara | 0.60 | 0.65 | 0.06 |
Asahi | 0.51 | 0.52 | 0.01 | Nagareyama | 0.47 | 0.44 | −0.01 |
Chiba | 0.46 | 0.50 | 0.04 | Narashino | 0.37 | 0.42 | 0.05 |
Chonan | 0.64 | 0.66 | 0.04 | Narita | 0.49 | 0.54 | 0.05 |
Chosei | 0.47 | 0.50 | 0.03 | Noda | 0.48 | 0.47 | 0.00 |
Choshi | 0.55 | 0.57 | 0.02 | Oamishirasato | 0.48 | 0.53 | 0.04 |
Funabashi | 0.41 | 0.43 | 0.02 | Onjuku | 0.67 | 0.69 | 0.02 |
Futtsu | 0.64 | 0.66 | 0.02 | Otaki | 0.71 | 0.75 | 0.04 |
Ichihara | 0.55 | 0.59 | 0.04 | Sakae | 0.45 | 0.50 | 0.05 |
Ichikawa | 0.37 | 0.40 | 0.02 | Sakura | 0.50 | 0.54 | 0.04 |
Ichinomiya | 0.55 | 0.57 | 0.02 | Sanmu | 0.54 | 0.58 | 0.04 |
Inzai | 0.49 | 0.53 | 0.03 | Shibayama | 0.53 | 0.58 | 0.05 |
Isumi | 0.63 | 0.66 | 0.03 | Shirako | 0.45 | 0.49 | 0.04 |
Kamagaya | 0.46 | 0.45 | −0.01 | Shiroi | 0.50 | 0.51 | 0.01 |
Kamogawa | 0.71 | 0.74 | 0.03 | Shisui | 0.50 | 0.54 | 0.05 |
Kashiwa | 0.45 | 0.46 | 0.01 | Sodegaura | 0.50 | 0.54 | 0.05 |
Katori | 0.52 | 0.57 | 0.05 | Sosa | 0.53 | 0.54 | 0.01 |
Katsuura | 0.72 | 0.73 | 0.02 | Tateyama | 0.64 | 0.54 | −0.10 |
Kimitsu | 0.65 | 0.68 | 0.03 | Togane | 0.50 | 0.54 | 0.04 |
Kisarazu | 0.55 | 0.56 | 0.01 | Toka | 0.56 | 0.54 | −0.01 |
Kozaki | 0.50 | 0.55 | 0.15 | Tomisato | 0.48 | 0.53 | 0.05 |
Kujuri | 0.44 | 0.48 | 0.04 | Tonosha | 0.54 | 0.56 | 0.02 |
Kyonan | 0.68 | 0.71 | 0.02 | Uruyasu | 0.34 | 0.38 | 0.04 |
Matsudo | 0.39 | 0.41 | 0.02 | Yashima | 0.50 | 0.52 | 0.03 |
Minamiboso | 0.70 | 0.72 | 0.01 | Yachiyo | 0.47 | 0.48 | 0.01 |
Mobara | 0.50 | 0.55 | 0.05 | Yokoshibahikari | 0.49 | 0.53 | 0.03 |
Mutsuzawawa | 0.60 | 0.64 | 0.04 | Yotsukaido | 0.48 | 0.50 | 0.02 |
Year 1990 | ||
---|---|---|
Pearson Correlation | Urban Sprawl | RSEI |
Urban Sprawl | 1 | −0.786 ** |
RSEI | RSEI | RSEI |
Year 2021 | ||
Urban Sprawl | 1 | −0.495 ** |
RSEI | 1 |
Proposal | City | Urban Sprawl | RSEI |
---|---|---|---|
1 | Abiko, Asahi, Chiba, Chosei, Kamagaya, Kashiwa, Kujuri, Nagareyama, Noda, Oamishirasato, Sakae, Shirako, Shiroi, Tomisato, Yachimata, Yokoshibahikari, Yotsukaido | High sprawl | Moderate quality |
2 | Kyonan | High sprawl | Good quality |
3 | Uruyasu | Moderate sprawl | Bad quality |
Ichikawa | Low sprawl | Moderate quality | |
4 | Ichihara, Katori, Kisarazu, Kozaki, Matsudo, Mobara, Narashino, Narita, Sakura, Sanmu, Shibayama, Shisui, Sodegaura, Sosa, Tateyama, Togane, Toka, Tonosha | Moderate sprawl | Moderate quality |
5 | Choshi, Funabashi, Ichinomiya, Inzai, Yachiyo | Low sprawl | Moderate quality |
6 | Chonan, Futtsu, Isumi, Kamogawa, Katsuura, Kimitsu, Minamiboso, Mutsuzawawa, Nagara, Onjuku, Otaki | Low sprawl | Good quality |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aurora, R.M.; Furuya, K. Spatiotemporal Analysis of Urban Sprawl and Ecological Quality Study Case: Chiba Prefecture, Japan. Land 2023, 12, 2013. https://doi.org/10.3390/land12112013
Aurora RM, Furuya K. Spatiotemporal Analysis of Urban Sprawl and Ecological Quality Study Case: Chiba Prefecture, Japan. Land. 2023; 12(11):2013. https://doi.org/10.3390/land12112013
Chicago/Turabian StyleAurora, Ruth Mevianna, and Katsunori Furuya. 2023. "Spatiotemporal Analysis of Urban Sprawl and Ecological Quality Study Case: Chiba Prefecture, Japan" Land 12, no. 11: 2013. https://doi.org/10.3390/land12112013
APA StyleAurora, R. M., & Furuya, K. (2023). Spatiotemporal Analysis of Urban Sprawl and Ecological Quality Study Case: Chiba Prefecture, Japan. Land, 12(11), 2013. https://doi.org/10.3390/land12112013