Unravelling the Impacts of Climate Variability on Surface Runoff in the Mouhoun River Catchment (West Africa)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Hydroclimatic Data Pre-Processing
2.2.1. Presentation of Data Used in This Study
- Daily discharge data at the Nowkuy station, obtained from the Water Information Division (DEIE) for the period 1983–2018;
- Meteorological observation data, including daily rainfall, daily maximum and minimum temperature data at the synoptic stations at Bobo-Dioulasso (WMO Code: 1200004000, Latitude: 11.1667° North, Longitude: 4.3167° West) and Dédougou (WMO Code: 1200007900, Latitude: 12.4667° North, Longitude: 3.4667° West). The data cover the period 1983–2018 and are provided by the National Meteorology Agency in Burkina Faso (ANAM-BF);
- Meteorological reanalysis data, which includes daily rainfall and daily maximum and minimum temperature data for the period 1983–2018. The data are provided by the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2 [38]), provided at a spatial resolution of nearly 50 km. The data were downloaded from the NASA Power platform through the nasapower R package [39]. The data were extracted at eight (08) locations within the catchment considered as dummy or fictitious stations;
- Soil map, collected from the Food and Agriculture Organization (FAO) soil database, commonly referred to as the Harmonized World Soil Database (HWSD) version 1.2 [37]. The map was resampled to 30 by 30 m through bilinear interpolation.
- Land use/land cover (LULC) map, taken from the national land use/land cover database inventory in 2012 [36], derived from remote sensing analysis and aerial maps and validated with field surveys at the national scale. The map was also resampled to 30 by 30 m through bilinear interpolation.
2.2.2. Gap-Filling of Observations, Spatial Interpolation, and Bias Correction of Reanalysis Data
2.2.3. Estimation of Potential Evapotranspiration (PET)
2.3. Hydrological Modeling
2.3.1. Definition of Warm-Up, Calibration, and Validation Periods
2.3.2. The SWAT Model
2.3.3. Selection of Model Parameters
2.3.4. Sensitivity Analysis
2.3.5. Calibration, Validation, and Evaluation of Model Performance
2.4. Analysis of Hydrological Response to Climate Variability
2.4.1. Annual Trends and Correlation Analyses in P, PET, and Q
2.4.2. Sensitivity of Surface Runoff to P, PET, and Environmental Conditions (n)
2.4.3. Modes of Variability in P, PET, and Q
3. Results
3.1. Bias Correction of Meteorological Data over the Study Period 1983–2018
3.2. Modeling the Surface Runoff Response
3.2.1. Parameter Sensitivity
3.2.2. Model Calibration and Validation
3.3. Hydrological Balance of the MRC
3.4. Effects of Climate Variability on Surface Runoff
3.4.1. Correlation and Trends
3.4.2. Elasticity of P, PET, and Environmental Conditions in the MRC
3.4.3. Modes of Variability in P, PET, and Surface Runoff
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stanzel, P.; Kling, H.; Bauer, H. Climate Change Impact on West African Rivers under an Ensemble of CORDEX Climate Projections. Clim. Serv. 2018, 11, 36–48. [Google Scholar] [CrossRef]
- Sylla, M.B.; Pal, J.S.; Faye, A.; Dimobe, K.; Kunstmann, H. Climate Change to Severely Impact West African Basin Scale Irrigation in 2 °C and 1.5 °C Global Warming Scenarios. Sci. Rep. 2018, 8, 14395. [Google Scholar] [CrossRef]
- Lèye, B.; Zouré, C.O.; Yonaba, R.; Karambiri, H. Water Resources in the Sahel and Adaptation of Agriculture to Climate Change: Burkina Faso. In Climate Change and Water Resources in Africa; Diop, S., Scheren, P., Niang, A., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 309–331. ISBN 978-3-030-61224-5. [Google Scholar]
- Bagré, P.M.; Yonaba, R.; Sirima, A.B.; Somé, Y.C.S. Influence Des Changements d’utilisation Des Terres Sur Les Débits Du Bassin Versant Du Massili à Gonsé (Burkina Faso). Vertigo 2023, 23, 39765. [Google Scholar] [CrossRef]
- Fowé, T.; Yonaba, R.; Mounirou, L.A.; Ouédraogo, E.; Ibrahim, B.; Niang, D.; Karambiri, H.; Yacouba, H. From Meteorological to Hydrological Drought: A Case Study Using Standardized Indices in the Nakanbe River Basin, Burkina Faso. Nat. Hazards 2023, 1–25. [Google Scholar] [CrossRef]
- Ibrahim, B. Characterization of the Rainy Seasons in Burkina Faso under a Climate Change Condition and Hydrological Impacts in the Nakanbé Basin. Ph.D. Thesis, Université Pierre et Marie Curie—Paris VI, Paris, France, 2012. [Google Scholar]
- Diedhiou, A.; Bichet, A.; Wartenburger, R.; Seneviratne, S.I.; Rowell, D.P.; Sylla, M.B.; Diallo, I.; Todzo, S.; Touré, N.E.; Camara, M.; et al. Changes in Climate Extremes over West and Central Africa at 1.5 °C and 2 °C Global Warming. Environ. Res. Lett. 2018, 13, 065020. [Google Scholar] [CrossRef]
- Fowé, T.; Diarra, A.; Kabore, R.F.W.; Ibrahim, B.; Bologo/Traoré, M.; Traoré, K.; Karambiri, H. Trends in Flood Events and Their Relationship to Extreme Rainfall in an Urban Area of Sahelian West Africa: The Case Study of Ouagadougou, Burkina Faso. J. Flood Risk Manag. 2019, 12, e12507. [Google Scholar] [CrossRef]
- Todzo, S.; Bichet, A.; Diedhiou, A. Intensification of the Hydrological Cycle Expected in West Africa over the 21st Century. Earth Syst. Dyn. 2020, 11, 319–328. [Google Scholar] [CrossRef]
- Amogu, O.; Descroix, L.; Yéro, K.S.; Le Breton, E.; Mamadou, I.; Ali, A.; Vischel, T.; Bader, J.-C.; Moussa, I.B.; Gautier, E.; et al. Increasing River Flows in the Sahel? Water 2010, 2, 170–199. [Google Scholar] [CrossRef]
- Amogu, O.; Esteves, M.; Vandervaere, J.-P.; Malam Abdou, M.; Panthou, G.; Rajot, J.-L.; Souley Yéro, K.; Boubkraoui, S.; Lapetite, J.-M.; Dessay, N.; et al. Runoff Evolution Due to Land-Use Change in a Small Sahelian Catchment. Hydrol. Sci. J. 2015, 60, 78–95. [Google Scholar] [CrossRef]
- Paturel, J.E.; Mahé, G.; Diello, P.; Barbier, B.; Dezetter, A.; Dieulin, C.; Karambiri, H.; Yacouba, H.; Maiga, A. Using Land Cover Changes and Demographic Data to Improve Hydrological Modeling in the Sahel: Improving Hydrological Modelling in the Sahel. Hydrol. Process. 2017, 31, 811–824. [Google Scholar] [CrossRef]
- Descroix, L.; Guichard, F.; Grippa, M.; Lambert, L.; Panthou, G.; Mahé, G.; Gal, L.; Dardel, C.; Quantin, G.; Kergoat, L.; et al. Evolution of Surface Hydrology in the Sahelo-Sudanian Strip: An Updated Review. Water 2018, 10, 748. [Google Scholar] [CrossRef]
- Yonaba, R.; Biaou, A.C.; Koïta, M.; Tazen, F.; Mounirou, L.A.; Zouré, C.O.; Queloz, P.; Karambiri, H.; Yacouba, H. A Dynamic Land Use/Land Cover Input Helps in Picturing the Sahelian Paradox: Assessing Variability and Attribution of Changes in Surface Runoff in a Sahelian Watershed. Sci. Total Environ. 2021, 757, 143792. [Google Scholar] [CrossRef]
- Yonaba, R.; Mounirou, L.A.; Tazen, F.; Koïta, M.; Biaou, A.C.; Zouré, C.O.; Queloz, P.; Karambiri, H.; Yacouba, H. Future Climate or Land Use? Attribution of Changes in Surface Runoff in a Typical Sahelian Landscape. Comptes Rendus Géosci. 2023, 355, 1–28. [Google Scholar] [CrossRef]
- Fox, P.; Rockström, J. Supplemental Irrigation for Dry-Spell Mitigation of Rainfed Agriculture in the Sahel. Agric. Water Manag. 2003, 61, 29–50. [Google Scholar] [CrossRef]
- Doto, C.V.; Yacouba, H.; Niang, D.; Lahmar, R.; Kossi Agbossou, E. Mitigation Effect of Dry Spells in Sahelian Rainfed Agriculture: Case Study of Supplemental Irrigation in Burkina Faso. Afr. J. Agric. Res. 2015, 10, 1863–1873. [Google Scholar] [CrossRef]
- Zougmoré, F.; Damiba, L.; D’Haen, S.; Dayamba, S.D. Projet d’Appui Scientifique Aux Processus de Plans Nationaux d’Adaptation (PAS-PNA)—État Des Lieux Des Connaissances Scientifiques Sur Les Ressources En Eau Au Burkina Faso et de l’impact Des Changements Climatiques Sur Ces Ressources (Scientific Support Project for National Adaptation Plan Processes—State of Scientific Knowledge on Water Resources in Burkina Faso and the Impact of Climate Change on These Resources); Climate Analytics gGmbH: Berlin, Germany, 2019. [Google Scholar]
- Dembélé, M.; Vrac, M.; Ceperley, N.; Zwart, S.J.; Larsen, J.; Dadson, S.J.; Mariéthoz, G.; Schaefli, B. Contrasting Changes in Hydrological Processes of the Volta River Basin under Global Warming. Hydrol. Earth Syst. Sci. 2022, 26, 1481–1506. [Google Scholar] [CrossRef]
- Nka, B.N.; Oudin, L.; Karambiri, H.; Paturel, J.E.; Ribstein, P. Trends in Floods in West Africa: Analysis Based on 11 Catchments in the Region. Hydrol. Earth Syst. Sci. 2015, 19, 4707–4719. [Google Scholar] [CrossRef]
- Tirogo, J.; Jost, A.; Biaou, A.; Valdes-Lao, D.; Koussoubé, Y.; Ribstein, P. Climate Variability and Groundwater Response: A Case Study in Burkina Faso (West Africa). Water 2016, 8, 171. [Google Scholar] [CrossRef]
- Kouanda, B.; Coulibaly, P.; Niang, D.; Fowe, T.; Karambiri, H.; Paturel, J.E. Analysis of the Performance of Base Flow Separation Methods Using Chemistry and Statistics in Sudano-Sahelian Watershed, Burkina Faso. Hydrol. Curr. Res. 2018, 9, 1000300. [Google Scholar] [CrossRef]
- Belemtougri, A.P.; Ducharne, A.; Tazen, F.; Oudin, L.; Karambiri, H. Understanding Key Factors Controlling the Duration of River Flow Intermittency: Case of Burkina Faso in West Africa. J. Hydrol. Reg. Stud. 2021, 37, 100908. [Google Scholar] [CrossRef]
- Tirogo, J.; Jost, A.; Biaou, A.; Koussoubé, Y.; Ribstein, P.; Dakouré, D. Impacts of Climate Change and Pumping on Groundwater Resources in the Kou River Basin, Burkina Faso. Comptes Rendus Géosci. 2023, 355, 1–25. [Google Scholar] [CrossRef]
- Yonaba, R.; Tazen, F.; Cissé, M.; Mounirou, L.A.; Belemtougri, A.; Ouedraogo, V.A.; Koïta, M.; Niang, D.; Karambiri, H.; Yacouba, H. Trends, Sensitivity and Estimation of Daily Reference Evapotranspiration ET0 Using Limited Climate Data: Regional Focus on Burkina Faso in the West African Sahel. Theor. Appl. Clim. 2023, 153, 947–974. [Google Scholar] [CrossRef]
- Arnold, J.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large Area Hydrologic Modeling and Assessment Part I: Model Development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Neitsch, S.; Arnold, J.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation: Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- Angelina, A.; Gado Djibo, A.; Seidou, O.; Seidou Sanda, I.; Sittichok, K. Changes to Flow Regime on the Niger River at Koulikoro under a Changing Climate. Hydrol. Sci. J. 2015, 60, 1709–1723. [Google Scholar] [CrossRef]
- Chaibou Begou, J.; Jomaa, S.; Benabdallah, S.; Bazie, P.; Afouda, A.; Rode, M. Multi-Site Validation of the SWAT Model on the Bani Catchment: Model Performance and Predictive Uncertainty. Water 2016, 8, 178. [Google Scholar] [CrossRef]
- Yonaba, R. Spatiotemporal Land Use and Land Cover Dynamics and Impact on Surface Runoff in a Sahelian Landscape: Case of Tougou Watershed (Northern Burkina Faso). Ph.D. Thesis, International Institute for Water and Environmental Engineering (2iE), Ouagadougou, Burkina Faso, 2020. [Google Scholar]
- Gbohoui, Y.P.; Paturel, J.-E.; Fowe, T.; Mounirou, L.A.; Yonaba, R.; Karambiri, H.; Yacouba, H. Impacts of Climate and Environmental Changes on Water Resources: A Multi-Scale Study Based on Nakanbé Nested Watersheds in West African Sahel. J. Hydrol. Reg. Stud. 2021, 35, 100828. [Google Scholar] [CrossRef]
- Hawker, L.; Neal, J. FABDEM V1-0 2021; University of Bristol: Bristol, UK, 2021. [Google Scholar]
- Bonzi, W.M.-E.; Vanderhaeghe, O.; Van Lichtervelde, M.; Wenmenga, U.; André-Mayer, A.-S.; Salvi, S.; Poujol, M. Petrogenetic Links between Rare Metal-Bearing Pegmatites and TTG Gneisses in the West African Craton: The Mangodara District of SW Burkina Faso. Precambrian Res. 2021, 364, 106359. [Google Scholar] [CrossRef]
- Kafando, M.B.; Koïta, M.; Le Coz, M.; Yonaba, O.R.; Fowe, T.; Zouré, C.O.; Faye, M.D.; Leye, B. Use of Multidisciplinary Approaches for Groundwater Recharge Mechanism Characterization in Basement Aquifers: Case of Sanon Experimental Catchment in Burkina Faso. Water 2021, 13, 3216. [Google Scholar] [CrossRef]
- Kafando, M.B.; Koïta, M.; Zouré, C.O.; Yonaba, R.; Niang, D. Quantification of Soil Deep Drainage and Aquifer Recharge Dynamics According to Land Use and Land Cover in the Basement Zone of Burkina Faso in West Africa. Sustainability 2022, 14, 14687. [Google Scholar] [CrossRef]
- IGB. Base de Données d’Occupation Des Terres (BDOT) 2012, Burkina Faso; IGNFI: Paris, France, 2012. [Google Scholar]
- FAO; IIASA; ISRIC; ISSCAS; JRC. Harmonized World Soil Database (Version 1.2); Food and Agriculture Organization: Rome, Italy; International Institute for Applied Systems Analysis: Laxenburg, Austria, 2012. [Google Scholar]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Sparks, A.H. Ropensci/Nasapower, V4.0.9; 2023. Available online: https://cran.r-project.org/web/packages/nasapower/index.html (accessed on 10 September 2023).
- Hawker, L.; Uhe, P.; Paulo, L.; Sosa, J.; Savage, J.; Sampson, C.; Neal, J. A 30 m Global Map of Elevation with Forests and Buildings Removed. Environ. Res. Lett. 2022, 17, 024016. [Google Scholar] [CrossRef]
- Dembélé, M.; Zwart, S.J. Evaluation and Comparison of Satellite-Based Rainfall Products in Burkina Faso, West Africa. Int. J. Remote Sens. 2016, 37, 3995–4014. [Google Scholar] [CrossRef]
- Dembélé, M.; Schaefli, B.; van de Giesen, N.; Mariéthoz, G. Suitability of 17 Gridded Rainfall and Temperature Datasets for Large-Scale Hydrological Modelling in West Africa. Hydrol. Earth Syst. Sci. 2020, 24, 5379–5406. [Google Scholar] [CrossRef]
- Michelangeli, P.-A.; Vrac, M.; Loukos, H. Probabilistic Downscaling Approaches: Application to Wind Cumulative Distribution Functions. Geophys. Res. Lett. 2009, 36, L11708. [Google Scholar] [CrossRef]
- Vrac, M.; Drobinski, P.; Merlo, A.; Herrmann, M.; Lavaysse, C.; Li, L.; Somot, S. Dynamical and Statistical Downscaling of the French Mediterranean Climate: Uncertainty Assessment. Nat. Hazards Earth Syst. Sci. 2012, 12, 2769–2784. [Google Scholar] [CrossRef]
- Vrac, M.; Michelangeli, P.-A. CDFt: Downscaling and Bias Correction via Non-Parametric CDF-Transform. 2021. Available online: https://rdrr.io/cran/CDFt/ (accessed on 10 September 2023).
- Hargreaves, G.H.; Samani, Z.A. Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Raziei, T.; Pereira, L.S. Estimation of ETo with Hargreaves–Samani and FAO-PM Temperature Methods for a Wide Range of Climates in Iran. Agric. Water Manag. 2013, 121, 1–18. [Google Scholar] [CrossRef]
- Zouré, C.; Queloz, P.; Koïta, M.; Niang, D.; Fowé, T.; Yonaba, R.; Consuegra, D.; Yacouba, H.; Karambiri, H. Modelling the Water Balance on Farming Practices at Plot Scale: Case Study of Tougou Watershed in Northern Burkina Faso. Catena 2019, 173, 59–70. [Google Scholar] [CrossRef]
- Mockus, V. Estimation of Direct Runoff from Storm Rainfall. In Part 630 Hydrology; National Engineering Handbook; USDA: Washington, DC, USA, 1972; Volume 4. [Google Scholar]
- Williams, J.R. Flood Routing with Variable Travel Time or Variable Storage Coefficients. Trans. ASAE 1969, 12, 100–103. [Google Scholar] [CrossRef]
- Sood, A.; Muthuwatta, L.; McCartney, M. A SWAT Evaluation of the Effect of Climate Change on the Hydrology of the Volta River Basin. Water Int. 2013, 38, 297–311. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Vejdani, M.; Haghighat, S.; Yang, J. SWAT-CUP Calibration and Uncertainty Programs for SWAT. In Proceedings of the MODSIM 2007 International Congress on Modelling and Simulation, Modelling and Simulation Society of Australia and New Zealand, Christchurch, New Zealand, 10–13 December 2007; pp. 1596–1602. [Google Scholar]
- Kling, H.; Fuchs, M.; Paulin, M. Runoff Conditions in the Upper Danube Basin under an Ensemble of Climate Change Scenarios. J. Hydrol. 2012, 424–425, 264–277. [Google Scholar] [CrossRef]
- Knoben, W.J.M.; Freer, J.E.; Woods, R.A. Technical Note: Inherent Benchmark or Not? Comparing Nash–Sutcliffe and Kling–Gupta Efficiency Scores. Hydrol. Earth Syst. Sci. 2019, 23, 4323–4331. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Johnson, C.A.; van Genuchten, M.T. Estimating Uncertain Flow and Transport Parameters Using a Sequential Uncertainty Fitting Procedure. Vadose Zone J. 2004, 3, 1340–1352. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A Continental-Scale Hydrology and Water Quality Model for Europe: Calibration and Uncertainty of a High-Resolution Large-Scale SWAT Model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests against Trend. Econometrica 1945, 13, 245. [Google Scholar] [CrossRef]
- Kendall, M.G. Multivariate Analysis; Griffin: London, UK, 1975; ISBN 978-0-85264-234-4. [Google Scholar]
- Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The Influence of Autocorrelation on the Ability to Detect Trend in Hydrological Series. Hydrol. Process. 2002, 16, 1807–1829. [Google Scholar] [CrossRef]
- Patakamuri, S.K.; O’Brien, N. Modifiedmk: Modified Versions of Mann Kendall and Spearman’s Rho Trend Tests 2021. R Package Version 2020, 1. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Theil, H. A Rank-Invariant Method of Linear and Polynomial Regression Analysis. In Henri Theil’s Contributions to Economics and Econometrics; Raj, B., Koerts, J., Eds.; Advanced Studies in Theoretical and Applied Econometrics; Springer: Dordrecht, The Netherlands, 1992; Volume 23, pp. 345–381. ISBN 978-94-010-5124-8. [Google Scholar]
- Spearman, C. The Proof and Measurement of Association between Two Things. Am. J. Psychol. 1904, 15, 72. [Google Scholar] [CrossRef]
- Schaake, J.C. From Climate to Flow. In Climate Change and US Water Resources.; Waggoner, P.E., Ed.; Wiley Series in Climate and the Biosphere; Wiley: Hoboken, NJ, USA, 1990; pp. 177–206. ISBN 978-0-471-61838-6. [Google Scholar]
- Ma, Y.; Sun, D.; Niu, Z.; Wang, X. Contribution of Climate Change and Human Activities to Runoff and Sediment Discharge Changes Based on Budyko Theory and Water–Sediment Relationships during 1960–2019 in the Taohe River Basin, China. Atmosphere 2023, 14, 1144. [Google Scholar] [CrossRef]
- Mo, C.; Lai, S.; Yang, Q.; Huang, K.; Lei, X.; Yang, L.; Yan, Z.; Jiang, C. A Comprehensive Assessment of Runoff Dynamics in Response to Climate Change and Human Activities in a Typical Karst Watershed, Southwest China. J. Environ. Manag. 2023, 332, 117380. [Google Scholar] [CrossRef] [PubMed]
- Mezentsev, V. More on the Calculation of Average Total Evaporation. Meteorol. Gidrol. 1955, 5, 24. [Google Scholar]
- Choudhury, B. Evaluation of an Empirical Equation for Annual Evaporation Using Field Observations and Results from a Biophysical Model. J. Hydrol. 1999, 216, 99–110. [Google Scholar] [CrossRef]
- Yang, H.; Yang, D.; Lei, Z.; Sun, F. New Analytical Derivation of the Mean Annual Water-energy Balance Equation. Water Resour. Res. 2008, 44, 2007WR006135. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the Cross Wavelet Transform and Wavelet Coherence to Geophysical Time Series. Nonlinear Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A Practical Guide to Wavelet Analysis. Bull. Amer. Meteor. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Sidibe, M.; Dieppois, B.; Eden, J.; Mahé, G.; Paturel, J.-E.; Amoussou, E.; Anifowose, B.; Lawler, D. Interannual to Multi-Decadal Streamflow Variability in West and Central Africa: Interactions with Catchment Properties and Large-Scale Climate Variability. Glob. Planet. Change 2019, 177, 141–156. [Google Scholar] [CrossRef]
- Gouhier, T.C.; Grinsted, A.; Simko, V. Biwavelet: Conduct Univariate and Bivariate Wavelet Analyses. 2019. Available online: https://rdrr.io/rforge/biwavelet/ (accessed on 10 September 2023).
- Stephens, G.L.; L’Ecuyer, T.; Forbes, R.; Gettelmen, A.; Golaz, J.-C.; Bodas-Salcedo, A.; Suzuki, K.; Gabriel, P.; Haynes, J. Dreary State of Precipitation in Global Models: Model and Observed Precipitation. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Mounirou, L.A.; Zouré, C.O.; Yonaba, R.; Paturel, J.-E.; Mahé, G.; Niang, D.; Yacouba, H.; Karambiri, H. Multi-Scale Analysis of Runoff from a Statistical Perspective in a Small Sahelian Catchment under Semi-Arid Climate. Arab. J. Geosci. 2020, 13, 154. [Google Scholar] [CrossRef]
- Mounirou, L.A.; Yonaba, R.; Koïta, M.; Paturel, J.-E.; Mahé, G.; Yacouba, H.; Karambiri, H. Hydrologic Similarity: Dimensionless Runoff Indices across Scales in a Semi-Arid Catchment. J. Arid Environ. 2021, 193, 104590. [Google Scholar] [CrossRef]
- Yonaba, R.; Koïta, M.; Mounirou, L.A.; Tazen, F.; Queloz, P.; Biaou, A.C.; Niang, D.; Zouré, C.; Karambiri, H.; Yacouba, H. Spatial and Transient Modelling of Land Use/Land Cover (LULC) Dynamics in a Sahelian Landscape under Semi-Arid Climate in Northern Burkina Faso. Land Use Policy 2021, 103, 105305. [Google Scholar] [CrossRef]
- Sidibe, M.; Dieppois, B.; Mahé, G.; Paturel, J.-E.; Amoussou, E.; Anifowose, B.; Lawler, D. Trend and Variability in a New, Reconstructed Streamflow Dataset for West and Central Africa, and Climatic Interactions, 1950–2005. J. Hydrol. 2018, 561, 478–493. [Google Scholar] [CrossRef]
- Mounirou, L.A.; Yonaba, R.; Tazen, F.; Ayele, G.T.; Yaseen, Z.M.; Karambiri, H.; Yacouba, H. Soil Erosion across Scales: Assessing Its Sources of Variation in Sahelian Landscapes under Semi-Arid Climate. Land 2022, 11, 2302. [Google Scholar] [CrossRef]
- Lebel, T.; Ali, A. Recent Trends in the Central and Western Sahel Rainfall Regime (1990–2007). J. Hydrol. 2009, 375, 52–64. [Google Scholar] [CrossRef]
- Gal, L.; Grippa, M.; Hiernaux, P.; Pons, L.; Kergoat, L. The Paradoxical Evolution of Runoff in the Pastoral Sahel: Analysis of the Hydrological Changes over the Agoufou Watershed (Mali) Using the KINEROS-2 Model. Hydrol. Earth Syst. Sci. 2017, 21, 4591–4613. [Google Scholar] [CrossRef]
- Panthou, G.; Lebel, T.; Vischel, T.; Quantin, G.; Sane, Y.; Ba, A.; Ndiaye, O.; Diongue-Niang, A.; Diopkane, M. Rainfall Intensification in Tropical Semi-Arid Regions: The Sahelian Case. Environ. Res. Lett. 2018, 13, 064013. [Google Scholar] [CrossRef]
- Roudier, P.; Ducharne, A.; Feyen, L. Climate Change Impacts on Runoff in West Africa: A Review. Hydrol. Earth Syst. Sci. 2014, 18, 2789–2801. [Google Scholar] [CrossRef]
Parameter Name | Description | Initial Range | Unit |
---|---|---|---|
Soil management, runoff generation parameters (1) | |||
CN2 | SCS runoff curve number | 35–98 | - |
Groundwater control parameters (10) | |||
ALPHA_BF | Baseflow alpha factor | 0–1 | days−1 |
GW_DELAY | Groundwater delay | 0–500 | days |
SHALLST | Initial depth of water in the shallow aquifer | 0–50,000 | mm |
DEEPST | Initial depth of water in the deep aquifer | 0–50,000 | mm |
GWQMN | Depth of water (in the shallow aquifer) triggering return flow | 0–5000 | mm |
GW_REVAP | Groundwater re-evaporation coefficient | 0.02–0.20 | - |
REVAPMN | Water depth (in the shallow aquifer) triggering re-evaporation | 0–500 | mm |
RCHRG_DP | Deep aquifer percolation fraction | 0–1 | - |
GWHT | Initial groundwater height | 0–25 | m |
GW_SPYLD | Specific yield of the shallow aquifer | 0.0–0.4 | m3 m−3 |
Soil parameters (3) | |||
SOL_Z | Depth from the soil surface to the bottom of the layer | 0–3500 | mm |
SOL_AWC | Available water capacity of the soil layer | 0–1 | mm·m−1 |
SOL_K | Saturated hydraulic conductivity | 0–2000 | mm h−1 |
Channel and flow routing parameters (14) | |||
CH_N2 | Manning’s roughness for the main channel | 0.01–0.3 | s·m−1/3 |
CH_K2 | Effective hydraulic conductivity in main channel alluvium | 0.01–500 | mm·h−1 |
ALPHA_BNK | Baseflow alpha factor for bank storage | 0–1 | days |
CH_N1 | Manning’s roughness for tributary channels | 0.01–30 | s·m−1/3 |
CH_K1 | Effective hydraulic conductivity in tributary channel alluvium | 0–300 | mm·h−1 |
OV_N | Manning’s roughness for overland flow | 0.01–30 | s·m−1/3 |
LAT_TTIME | Lateral flow travel time | 0–180 | days |
CANMX | Maximum canopy storage | 0–100 | mm |
ESCO | Soil evaporation compensation factor | 0–1 | - |
EPCO | Plant uptake compensation factor | 0–1 | - |
MSK_CO1 | Storage time constant for normal flow | 0–10 | - |
MSK_CO2 | Storage time constant for low flow | 0–10 | - |
MSK_X | Inflow/outflow rate in reach segment control weighting | 0–0.3 | - |
TRNSRCH | Loss fraction from the main channel entering the deep aquifer | 0–1 | - |
Sensitivity Rank | Parameter | Fitted Value | Uncertainty Range |
---|---|---|---|
1 | r__CN2 | 0.265 | [0.101…0.464] |
2 | v__GW_DELAY | 56.649 | [0.000…112.623] |
3 | v__GWQMN | 1833.929 | [33.210…2110.164] |
4 | v__SHALLST | 14,511.832 | [13441.771…30983.770] |
5 | v__GW_REVAP | 0.195 | [0.143…0.196] |
6 | v__GWHT | 6.017 | [3.230…9.695] |
7 | v__GW_SPYLD | 0.117 | [0.087…0.195] |
8 | r__SOL_AWC | −0.841 | [−0.891…−0.293] |
9 | v__CH_N2 | 0.173 | [0.005…0.218] |
10 | v__CH_K2 | 374.704 | [289.448…452.462] |
11 | v__ALPHA_BNK | 0.799 | [0.509…0.846] |
12 | v__CH_K1 | 154.571 | [100.138…162.205] |
13 | v__EPCO | 0.359 | [0.036…0.372] |
14 | r__MSK_CO1 | −0.661 | [−0.690…−0.368] |
15 | v__TRNSRCH | 0.550 | [0.422…0.597] |
Performance Metric | Calibration (1983–2008) | Validation (2009–2018) |
---|---|---|
Observed/simulated mean Q (m3·s−1) | 31.94/32.59 | 45.41/47.43 |
Observed/simulated standard deviation Q (m3·s−1) | 32.27/29.23 | 29.78/28.59 |
KGE (objective function) | 0.77 | 0.89 |
R² | 0.63 | 0.82 |
NSE | 0.54 | 0.80 |
PBIAS | 2.00% | 4.30% |
r_factor | 1.43 | 1.27 |
p_factor | 0.83 | 0.89 |
Hydrological Process | Average Annual Values (±Standard Deviation) |
---|---|
Annual rainfall (P, mm) | 952.1 (±130.4) |
Potential evapotranspiration (PET, mm) | 1940.4 (±51.1) |
Actual evapotranspiration (ET, mm) | 459.6 (±33.6) |
Surface runoff (Q, mm) | 199.1 (±72.2) |
Soil water content (SW, mm) | 5.2 (±1.0) |
Lateral flow (LATQ, mm) | 0.9 (±0.1) |
Deep aquifer recharge (DEEPAQ, mm) | 23.3 (±5.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zouré, C.O.; Kiema, A.; Yonaba, R.; Minoungou, B. Unravelling the Impacts of Climate Variability on Surface Runoff in the Mouhoun River Catchment (West Africa). Land 2023, 12, 2017. https://doi.org/10.3390/land12112017
Zouré CO, Kiema A, Yonaba R, Minoungou B. Unravelling the Impacts of Climate Variability on Surface Runoff in the Mouhoun River Catchment (West Africa). Land. 2023; 12(11):2017. https://doi.org/10.3390/land12112017
Chicago/Turabian StyleZouré, Cheick Oumar, Arsène Kiema, Roland Yonaba, and Bernard Minoungou. 2023. "Unravelling the Impacts of Climate Variability on Surface Runoff in the Mouhoun River Catchment (West Africa)" Land 12, no. 11: 2017. https://doi.org/10.3390/land12112017
APA StyleZouré, C. O., Kiema, A., Yonaba, R., & Minoungou, B. (2023). Unravelling the Impacts of Climate Variability on Surface Runoff in the Mouhoun River Catchment (West Africa). Land, 12(11), 2017. https://doi.org/10.3390/land12112017