Evolution Pattern and Spatial Mismatch of Urban Greenspace and Its Impact Mechanism: Evidence from Parkland of Hunan Province
Abstract
:1. Introduction
2. Literature Review
2.1. Supply and Demand of Urban Parkland
2.2. Benefits and Value Analysis of Urban-Parkland Use
2.3. Relationship between Urban Park and Population
2.4. Research Gap and Objectives
3. Materials and Methods
3.1. Study Area
3.2. Research Steps
3.3. Research Methods
3.3.1. Boston Consulting Group Matrix
3.3.2. Spatial Mismatch Model
3.3.3. Geographically Weighted Regression Method
3.4. Variable Selection and Data Source
4. Results
4.1. Evolution Pattern and Spatial Effects Analysis
4.1.1. Urban-parkland supply Scale
4.1.2. Urban-parkland supply Speed
4.1.3. Urban-Parkland Supply Trends
4.2. Spatial Mismatch and Spatial Effects Analysis
4.2.1. Spatial Mismatch Analysis
4.2.2. Spatial Effects Analysis
4.3. Influencing Factors and Impact Mechanism Analysis
4.3.1. The Impact of Factors on Urban-Parkland Supply
4.3.2. The Impact of Factors on Spatial Mismatch Contribution Rate Index
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
NO. | Cities | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | Changsha | 1.00 | 1.00 | 6.97 | 0.14 | 0.96 | 0.90 | 1.00 | 0.02 | 0.91 |
2 | Ningxiang | 0.22 | 0.09 | 1.74 | 0.55 | 0.31 | 0.59 | 0.73 | 0.10 | 0.60 |
3 | Liuyang | 0.10 | 0.10 | 0.94 | 0.40 | 0.39 | 0.75 | 0.83 | 0.23 | 0.40 |
4 | Changshaxian | 0.19 | 0.12 | 0.42 | 0.00 | 1.00 | 1.00 | 0.87 | 0.04 | 0.70 |
5 | Wangcheng | 0.12 | 0.08 | 0.15 | 0.10 | 0.96 | 0.70 | 0.90 | 0.02 | 0.89 |
6 | Zhuzhou | 0.20 | 0.33 | 4.83 | 0.47 | 0.73 | 0.52 | 0.56 | 0.03 | 0.72 |
7 | Liling | 0.09 | 0.06 | 0.13 | 0.59 | 0.14 | 0.55 | 0.49 | 0.09 | 0.57 |
8 | You | 0.03 | 0.04 | 0.50 | 0.76 | 0.12 | 0.40 | 0.34 | 0.21 | 0.45 |
9 | Chaling | 0.15 | 0.03 | 2.13 | 0.46 | 0.05 | 0.22 | 0.18 | 0.29 | 0.38 |
10 | Yanling | 0.04 | 0.01 | 0.45 | 0.62 | 0.24 | 0.30 | 0.19 | 0.83 | 0.08 |
11 | Xiangtan | 0.28 | 0.21 | 0.12 | 0.61 | 0.59 | 0.58 | 0.50 | 0.02 | 0.89 |
12 | Xiangxiang | 0.04 | 0.04 | 0.27 | 0.76 | 0.12 | 0.42 | 0.30 | 0.08 | 0.62 |
13 | Shaoshan | 0.03 | 0.00 | 0.50 | 0.68 | 0.65 | 0.64 | 0.45 | 0.06 | 0.70 |
14 | Xiangtanxian | 0.09 | 0.04 | 0.60 | 0.78 | 0.22 | 0.38 | 0.34 | 0.04 | 0.78 |
15 | Hengyang | 0.35 | 0.43 | 4.70 | 0.48 | 0.45 | 0.28 | 0.36 | 0.03 | 0.82 |
16 | Leiyang | 0.15 | 0.06 | 1.15 | 0.37 | 0.03 | 0.13 | 0.27 | 0.08 | 0.53 |
17 | Changning | 0.10 | 0.04 | 0.70 | 0.37 | 0.01 | 0.21 | 0.20 | 0.17 | 0.62 |
18 | Hengyangxian | 0.04 | 0.04 | 0.38 | 0.60 | 0.19 | 0.17 | 0.16 | 0.11 | 0.61 |
19 | Hengnan | 0.03 | 0.04 | 0.56 | 0.58 | 0.21 | 0.21 | 0.19 | 0.05 | 0.66 |
20 | Hengshan | 0.07 | 0.01 | 0.82 | 0.67 | 0.29 | 0.27 | 0.32 | 0.11 | 0.63 |
21 | Hengdong | 0.12 | 0.02 | 1.68 | 0.62 | 0.10 | 0.27 | 0.19 | 0.07 | 0.63 |
22 | Qidong | 0.13 | 0.03 | 1.55 | 0.65 | 0.11 | 0.17 | 0.16 | 0.12 | 0.60 |
23 | Nanyue | 0.02 | 0.00 | 0.22 | 0.24 | 0.90 | 0.45 | 0.52 | 0.68 | 0.57 |
24 | Shaoyang | 0.31 | 0.41 | 4.81 | 0.52 | 0.29 | 0.12 | 0.18 | 0.13 | 0.75 |
25 | Wugang | 0.14 | 0.03 | 1.67 | 0.56 | 0.10 | 0.05 | 0.12 | 0.29 | 0.59 |
26 | Shaodong | 0.05 | 0.07 | 0.92 | 0.54 | 0.18 | 0.34 | 0.29 | 0.15 | 0.56 |
27 | Xinshao | 0.02 | 0.03 | 0.47 | 0.56 | 0.22 | 0.05 | 0.14 | 0.43 | 0.55 |
28 | Shaoyangxian | 0.06 | 0.04 | 0.16 | 0.61 | 0.28 | 0.03 | 0.05 | 0.21 | 0.61 |
29 | Longhui | 0.03 | 0.05 | 0.66 | 0.46 | 0.10 | 0.02 | 0.12 | 0.47 | 0.46 |
30 | Dongkou | 0.08 | 0.04 | 0.47 | 0.70 | 0.23 | 0.07 | 0.10 | 0.51 | 0.44 |
31 | Suining | 0.04 | 0.01 | 0.38 | 0.55 | 0.10 | 0.12 | 0.00 | 0.60 | 0.27 |
32 | Xinning | 0.11 | 0.02 | 1.47 | 0.55 | 0.11 | 0.02 | 0.09 | 0.59 | 0.49 |
33 | Chengbu | 0.02 | 0.01 | 0.06 | 0.39 | 0.15 | 0.04 | 0.05 | 0.94 | 0.23 |
34 | Yueyang | 0.39 | 0.37 | 2.18 | 0.49 | 0.53 | 0.51 | 0.33 | 0.01 | 0.83 |
35 | Miluo | 0.05 | 0.03 | 0.17 | 0.64 | 0.36 | 0.54 | 0.24 | 0.06 | 0.75 |
36 | Linxiang | 0.10 | 0.03 | 1.07 | 0.49 | 0.17 | 0.44 | 0.18 | 0.10 | 0.57 |
37 | Yueyangxian | 0.05 | 0.03 | 0.11 | 0.59 | 0.49 | 0.39 | 0.15 | 0.05 | 0.68 |
38 | Huarong | 0.08 | 0.03 | 0.54 | 0.72 | 0.16 | 0.38 | 0.10 | 0.01 | 0.93 |
39 | Xiangyin | 0.06 | 0.03 | 0.14 | 0.64 | 0.32 | 0.33 | 0.54 | 0.01 | 0.90 |
40 | Pingjiang | 0.15 | 0.06 | 1.34 | 0.47 | 0.17 | 0.13 | 0.15 | 0.23 | 0.41 |
41 | Changde | 0.33 | 0.35 | 2.91 | 0.83 | 0.47 | 0.44 | 0.37 | 0.02 | 0.83 |
42 | Jin | 0.06 | 0.01 | 0.75 | 0.99 | 0.33 | 0.57 | 0.21 | 0.01 | 0.87 |
43 | Anxiang | 0.11 | 0.02 | 1.61 | 1.00 | 0.38 | 0.28 | 0.07 | 0.00 | 1.00 |
44 | Hanshou | 0.02 | 0.04 | 0.74 | 0.66 | 0.23 | 0.22 | 0.16 | 0.01 | 0.80 |
45 | Li | 0.03 | 0.05 | 0.84 | 1.00 | 0.18 | 0.29 | 0.22 | 0.04 | 0.83 |
46 | Linli | 0.03 | 0.02 | 0.07 | 0.94 | 0.32 | 0.30 | 0.15 | 0.03 | 0.82 |
47 | Taoyuan | 0.04 | 0.04 | 0.28 | 0.96 | 0.20 | 0.29 | 0.21 | 0.14 | 0.47 |
48 | Shimen | 0.19 | 0.03 | 2.86 | 0.94 | 0.24 | 0.31 | 0.19 | 0.55 | 0.36 |
49 | Zhangjiajie | 0.10 | 0.09 | 0.54 | 0.60 | 0.30 | 0.14 | 0.16 | 0.65 | 0.19 |
50 | Cili | 0.07 | 0.03 | 0.58 | 0.90 | 0.15 | 0.11 | 0.13 | 0.44 | 0.38 |
51 | Sangzhi | 0.03 | 0.01 | 0.12 | 0.63 | 0.06 | 0.06 | 0.04 | 0.78 | 0.17 |
52 | Yiyang | 0.29 | 0.23 | 0.57 | 0.66 | 0.36 | 0.24 | 0.22 | 0.02 | 0.77 |
53 | Yuanjiang | 0.08 | 0.03 | 0.66 | 0.69 | 0.19 | 0.23 | 0.11 | 0.00 | 0.90 |
54 | Nan | 0.06 | 0.03 | 0.36 | 0.79 | 0.19 | 0.24 | 0.11 | 0.00 | 1.00 |
55 | Taojiang | 0.00 | 0.04 | 1.02 | 0.72 | 0.24 | 0.18 | 0.16 | 0.11 | 0.45 |
56 | Anhua | 0.03 | 0.03 | 0.27 | 0.65 | 0.26 | 0.09 | 0.11 | 0.37 | 0.27 |
57 | Chenzhou | 0.37 | 0.33 | 1.48 | 0.31 | 0.34 | 0.29 | 0.38 | 0.49 | 0.35 |
58 | Zixing | 0.03 | 0.02 | 0.11 | 0.63 | 0.14 | 0.71 | 0.48 | 0.62 | 0.19 |
59 | Datonghu | 0.01 | 0.00 | 0.10 | 0.80 | 0.95 | 0.23 | 0.11 | 0.01 | 0.77 |
60 | Guiyang | 0.07 | 0.04 | 0.21 | 0.31 | 0.00 | 0.29 | 0.34 | 0.28 | 0.44 |
61 | Yizhang | 0.08 | 0.03 | 0.59 | 0.21 | 0.13 | 0.16 | 0.25 | 0.46 | 0.32 |
62 | Yongxing | 0.05 | 0.03 | 0.05 | 0.39 | 0.02 | 0.34 | 0.45 | 0.18 | 0.37 |
63 | Jiahe | 0.06 | 0.02 | 0.60 | 0.28 | 0.34 | 0.19 | 0.34 | 0.16 | 0.55 |
64 | Linwu | 0.08 | 0.02 | 0.99 | 0.25 | 0.02 | 0.21 | 0.33 | 0.48 | 0.40 |
65 | Rucheng | 0.05 | 0.02 | 0.39 | 0.37 | 0.07 | 0.06 | 0.12 | 0.66 | 0.07 |
66 | Guidong | 0.02 | 0.00 | 0.21 | 0.45 | 0.14 | 0.07 | 0.11 | 1.00 | 0.00 |
67 | Anren | 0.05 | 0.02 | 0.40 | 0.45 | 0.05 | 0.11 | 0.12 | 0.18 | 0.43 |
68 | Yongzhou | 0.20 | 0.30 | 3.92 | 0.45 | 0.21 | 0.17 | 0.30 | 0.18 | 0.67 |
69 | Qiyang | 0.10 | 0.03 | 1.02 | 0.65 | 0.18 | 0.19 | 0.32 | 0.23 | 0.60 |
70 | Dong’an | 0.08 | 0.02 | 0.88 | 0.64 | 0.14 | 0.16 | 0.29 | 0.32 | 0.59 |
71 | Shuangpai | 0.02 | 0.00 | 0.22 | 0.41 | 0.27 | 0.26 | 0.27 | 0.52 | 0.43 |
72 | Dao | 0.08 | 0.03 | 0.67 | 0.35 | 0.02 | 0.14 | 0.27 | 0.42 | 0.52 |
73 | Jiangyong | 0.07 | 0.01 | 1.06 | 0.40 | 0.32 | 0.13 | 0.19 | 0.49 | 0.41 |
74 | Ningyuan | 0.17 | 0.04 | 2.14 | 0.44 | 0.08 | 0.12 | 0.31 | 0.40 | 0.44 |
75 | Lanshan | 0.07 | 0.02 | 0.76 | 0.38 | 0.12 | 0.16 | 0.23 | 0.54 | 0.37 |
76 | Xintian | 0.05 | 0.02 | 0.41 | 0.38 | 0.06 | 0.07 | 0.17 | 0.20 | 0.47 |
77 | Jianghua | 0.05 | 0.02 | 0.52 | 0.32 | 0.22 | 0.09 | 0.20 | 0.63 | 0.34 |
78 | Huaihua | 0.20 | 0.26 | 2.97 | 0.55 | 0.49 | 0.14 | 0.23 | 0.20 | 0.33 |
79 | Hongjiang | 0.06 | 0.01 | 0.80 | 0.89 | 0.25 | 0.14 | 0.20 | 0.43 | 0.29 |
80 | Zhongfang | 0.05 | 0.01 | 0.59 | 0.58 | 0.69 | 0.29 | 0.22 | 0.36 | 0.31 |
81 | Yuanling | 0.06 | 0.02 | 0.53 | 0.72 | 0.16 | 0.13 | 0.20 | 0.30 | 0.20 |
82 | Chenxi | 0.06 | 0.02 | 0.67 | 0.67 | 0.06 | 0.08 | 0.13 | 0.27 | 0.30 |
83 | Xupu | 0.09 | 0.02 | 1.11 | 0.63 | 0.16 | 0.04 | 0.08 | 0.53 | 0.24 |
84 | Huitong | 0.01 | 0.01 | 0.12 | 0.60 | 0.14 | 0.09 | 0.12 | 0.26 | 0.30 |
85 | Mayang | 0.08 | 0.01 | 1.14 | 0.61 | 0.12 | 0.08 | 0.09 | 0.21 | 0.25 |
86 | Xinhuang | 0.03 | 0.01 | 0.30 | 0.63 | 0.39 | 0.11 | 0.16 | 0.36 | 0.18 |
87 | Zhijiang | 0.02 | 0.01 | 0.04 | 0.69 | 0.16 | 0.12 | 0.19 | 0.25 | 0.24 |
88 | Tongdao | 0.06 | 0.01 | 0.85 | 0.40 | 0.21 | 0.15 | 0.11 | 0.40 | 0.26 |
89 | Jingzhou | 0.05 | 0.01 | 0.64 | 0.46 | 0.10 | 0.07 | 0.09 | 0.34 | 0.28 |
90 | Loudi | 0.19 | 0.21 | 2.06 | 0.42 | 0.40 | 0.21 | 0.28 | 0.11 | 0.52 |
91 | Lengshuijiang | 0.09 | 0.03 | 1.04 | 0.36 | 0.44 | 0.46 | 0.35 | 0.26 | 0.57 |
92 | Lianyuan | 0.06 | 0.04 | 0.13 | 0.57 | 0.18 | 0.13 | 0.10 | 0.22 | 0.46 |
93 | Shuangfeng | 0.03 | 0.03 | 0.18 | 0.63 | 0.06 | 0.16 | 0.12 | 0.10 | 0.59 |
94 | Xinhua | 0.12 | 0.04 | 1.18 | 0.38 | 0.12 | 0.03 | 0.13 | 0.43 | 0.40 |
95 | Jishou | 0.04 | 0.15 | 3.20 | 0.40 | 0.42 | 0.08 | 0.19 | 0.25 | 0.15 |
96 | Luxi | 0.01 | 0.01 | 0.04 | 0.54 | 0.13 | 0.09 | 0.08 | 0.18 | 0.20 |
97 | Fenghuang | 0.05 | 0.01 | 0.46 | 0.39 | 0.27 | 0.04 | 0.18 | 0.31 | 0.15 |
98 | Huayuan | 0.02 | 0.01 | 0.05 | 0.36 | 0.76 | 0.09 | 0.13 | 0.44 | 0.17 |
99 | Baojing | 0.00 | 0.01 | 0.28 | 0.57 | 0.17 | 0.10 | 0.03 | 0.48 | 0.15 |
100 | Guzhang | 0.04 | 0.00 | 0.61 | 0.57 | 0.28 | 0.07 | 0.09 | 0.43 | 0.08 |
101 | Yongshun | 0.12 | 0.02 | 1.74 | 0.45 | 0.05 | 0.01 | 0.06 | 0.47 | 0.11 |
102 | Longshan | 0.05 | 0.02 | 0.22 | 0.41 | 0.10 | 0.00 | 0.09 | 0.65 | 0.17 |
References
- Waitt, G.; Knobel, H. Embodied Geographies of Liveability and Urban Parks. Urban Stud. 2018, 55, 3151–3167. [Google Scholar] [CrossRef]
- Zhang, C.; Su, Q.; Zhu, Y.Q. Urban Park System on Public Health: Underlying Driving Mechanism and Planning Thinking. Front. Public Health 2023, 11, 1193604. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Ma, G.Q.; Lin, X.; Dai, H.Y. Accessibility in A Multiple Transport Mode Urban Park Based on the “D-D” Model: A Case Study in Park City, Chengdu. Cities 2023, 134, 104191. [Google Scholar] [CrossRef]
- Biernacka, M.; Kronenberg, J.; Laszkiewicz, E.; Czembrowski, P.; Parsa, V.A.; Sikorska, D. Beyond Urban Parks: Mapping Informal Green Spaces in An Urban-Peri-Urban Gradient. Land Use Policy 2023, 131, 106746. [Google Scholar] [CrossRef]
- Tate, A. Urban Parks in the Twentieth Century. Environ. Hist. 2018, 24, 81–101. [Google Scholar] [CrossRef]
- Luo, J.; Wang, X.; Zhao, Y.; Meng, L.; Gou, Y.M.; Yuan, Y.D.; Sun, J.; Qin, N. A Study on Urban Spatial System Planning of Qingdao City Park Based on Intelligent Monitoring Sensors. Secur. Commun. Netw. 2022, 2022, 8932773. [Google Scholar] [CrossRef]
- Li, C.Y.; Zhang, T.T.; Wang, X.; Lian, Z.F. Site Selection of Urban Parks Based on Fuzzy-Analytic Hierarchy Process (F-AHP): A Case Study of Nanjing, China. Int. J. Environ. Res. Public Health 2022, 19, 13159. [Google Scholar] [CrossRef]
- Fasihi, H.; Parizadi, T. Analysis of Spatial Equity and Access to Urban Parks in Ilam, Iran. J. Environ. Manag. 2020, 260, 110122. [Google Scholar] [CrossRef]
- Li, Z.; Bai, X.; Xu, Z.J.; Ma, H.Q.; Xu, Y.A.; Wang, N.; Yue, X. The Optimal Spatial Delineation Method for the Service Level of Urban Park Green Space from the Perspective of Opportunity Equity. Environ. Sci. Pollut. Res. 2023. [Google Scholar] [CrossRef]
- Yilmaz, S.; Ozguner, H.; Mumcu, S. An Aesthetic Approach to Planting Design in Urban Parks and Greenspaces. Landsc. Res. 2018, 43, 965–983. [Google Scholar] [CrossRef]
- Li, J.; Fu, J.; Gao, J.; Zhou, R.; Wang, K.Y.; Zhou, K.Y. Effects of the Spatial Patterns of Urban Parks on Public Satisfaction: Evidence from Shanghai, China. Landsc. Ecol. 2023, 38, 1265–1277. [Google Scholar] [CrossRef]
- Liang, H.L.; Zhang, Q.P. Temporal and Spatial Assessment of Urban Park Visits from Multiple Social Media Data Sets: A Case Study of Shanghai, China. J. Clean. Prod. 2021, 297, 126682. [Google Scholar] [CrossRef]
- Zhang, J.G.; Cheng, Y.Y.; Zhao, B. How to Accurately Identify the Underserved Areas of Peri-Urban Parks? An Integrated Accessibility Indicator. Ecol. Indic. 2021, 122, 107263. [Google Scholar] [CrossRef]
- Gelo, D.; Turpie, J. Bayesian Analysis of Demand for Urban Green Space: A Contingent Valuation of Developing a New Urban Park. Land Use Policy 2021, 109, 105623. [Google Scholar] [CrossRef]
- Ferreira, F.; Vasconcelos, L.; Fereira, J.C. Socio-Ecological and Economic Evaluation of Urban Parks—A Methodology Integrating and Articulating Diverse Components. J. Outdoor Recreat. Tour.-Res. Plan. Manag. 2022, 40, 100512. [Google Scholar] [CrossRef]
- Park, J.; Kim, J. Economic Impacts of a Linear Urban Park on Local Businesses: The Case of Gyeongui Line Forest Park in Seoul. Landsc. Urban Plan. 2019, 181, 139–147. [Google Scholar] [CrossRef]
- Kim, H.; Yoon, H. The Impact of the Urban Park Sunset Rule on Land Value: The Case of Yongin in Gyeonggi Province, South Korea. Habitat Int. 2023, 132, 102746. [Google Scholar] [CrossRef]
- Long, F.J.; Shi, L. Growth in Surrounding Consumer Amenities: The Economic Externality of Urban Parks. Growth Chang. 2021, 52, 1062–1079. [Google Scholar] [CrossRef]
- Neckel, A.; Da Silva, J.L.; Saraiva, P.P.; Kujawa, H.A.; Araldi, J.; Paladini, E.P. Estimation of the Economic Value of Urban Parks in Brazil, the Case of the City of Passo Fundo. J. Clean. Prod. 2020, 264, 121369. [Google Scholar] [CrossRef]
- Silva, T.M.; Silva, S.; Carvalho, A. Economic Valuation of Urban Parks with Historical Importance: The Case of Quinta Do Castelo, Portugal. Land Use Policy 2022, 115, 106042. [Google Scholar] [CrossRef]
- Kim, H.S.; Lee, G.E.; Lee, J.S.; Choi, Y. Understanding the Local Impact of Urban Park Plans and Park Typology on Housing Price: A Case Study of the Busan Metropolitan Region, Korea. Landsc. Urban Plan. 2019, 184, 1–11. [Google Scholar] [CrossRef]
- Chen, K.D.; Lin, H.M.; You, S.Y.; Han, Y. Review of the Impact of Urban Parks and Green Spaces on Residence Prices in the Environmental Health Context. Front. Public Health 2022, 10, 993801. [Google Scholar] [CrossRef]
- Baltazar, D.E.; Labadz, J.; Smith, R.; Telford, A.; Di Bonito, M. Socio-Cultural Valuation of Urban Parks: The Case of Jose Rizal Plaza in Calamba City, the Philippines. Sustainability 2022, 14, 13711. [Google Scholar] [CrossRef]
- Mullenbach, L.E. Critical Discourse Analysis of Urban Park and Public Space Development. Cities 2022, 120, 103458. [Google Scholar] [CrossRef]
- Triguero-Mas, M.; Anguelovski, I.; Connolly, J.J.T.; Martin, N.; Matheney, A.; Cole, H.V.S.; Perez-Del-Pulgar, C.; Garcia-Lamarca, M.; Shokry, G.; Arguelles, L.; et al. Exploring Green Gentrification in 28 Global North Cities: The Role of Urban Parks and Other Types of Greenspaces. Environ. Res. Lett. 2022, 17, 104035. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Jie, W.; Yang, C.; Ye, J.P. An Assessment of Urban Parks Distribution from Multiple Dimensions at the Community Level: A Case Study of Beijing. Environ. Impact Assess. Rev. 2021, 91, 106663. [Google Scholar] [CrossRef]
- Nazmfar, H.; Alavi, S.; Feizizadeh, B.; Masodifar, R.; Eshghei, A. Spatial Analysis of Security and Insecurity in Urban Parks: A Case Study of Tehran, Iran. Prof. Geogr. 2020, 72, 383–397. [Google Scholar] [CrossRef]
- Sezavar, N.; Pazhouhanfar, M.; Dongen, R.P.; Grahn, P. The Importance of Designing the Spatial Distribution and Density of Vegetation in Urban Parks for Increased Experience of Safety. J. Clean. Prod. 2023, 403, 136768. [Google Scholar] [CrossRef]
- Taylor, R.B.; Haberman, C.P.; Groff, E.R. Urban Park Crime: Neighborhood Context and Park Features. J. Crim. Justice 2019, 64, 13–22. [Google Scholar] [CrossRef]
- Schwartz, A.J.; Dodds, P.S.; O’Neil-Dunne, J.P.M.; Ricketts, T.H.; Danforth, C.M. Gauging the Happiness Benefit of Us Urban Parks through Twitter. PLoS ONE 2022, 17, e0261056. [Google Scholar] [CrossRef]
- Scopelliti, M.; Carrus, G.; Adinolfi, C.; Suarez, G.; Colangelo, G.; Lafortezza, R.; Panno, A.; Sanesi, G. Staying in Touch with Nature and Well-Being in Different Income Groups: The Experience of Urban Parks in Bogota. Landsc. Urban Plan. 2016, 148, 139–148. [Google Scholar] [CrossRef]
- Sheng, Q.; Wan, D.Y.; Yu, B.Y. Effect of Space Configurational Attributes on Social Interactions in Urban Parks. Sustainability 2021, 13, 7805. [Google Scholar] [CrossRef]
- Yin, Z.; Zhang, Y.X.; Ma, K.M. Evaluation of PM2.5 Retention Capacity and Structural Optimization of Urban Park Green Spaces in Beijing. Forests 2022, 13, 415. [Google Scholar] [CrossRef]
- Ji, H.M.; Wang, J.; Zhu, Y.R.; Shi, C.S.; Wang, S.H.; Zhi, G.Q.; Meng, B. Spatial Distribution of Urban Parks’ Effect on Air Pollution-Related Health and the Associated Factors in Beijing City. Isprs Int. J. Geo-Inf. 2022, 11, 616. [Google Scholar] [CrossRef]
- Gratani, L.; Varone, L. Atmospheric Arbon Dioxide Concentration Variations in Rome: Relationship with Traffic Level and Urban Park Size. Urban Ecosyst. 2014, 17, 501–511. [Google Scholar] [CrossRef]
- Simsek, C.K.; Serter, G.; Odul, H. A Study on the Cooling Capacities of Urban Parks and Their Interactions with the Surrounding Urban Patterns. Appl. Spat. Anal. Policy 2022, 15, 1287–1317. [Google Scholar] [CrossRef]
- Yao, X.; Yu, K.Y.; Zeng, X.J.; Lin, Y.B.; Ye, B.J.; Shen, X.B.; Liu, J. How Can Urban Parks Be Planned to Mitigate Urban Heat Island Effect in “Furnace Cities”? An Accumulation Perspective. J. Clean. Prod. 2022, 330, 129852. [Google Scholar] [CrossRef]
- Du, C.L.; Jia, W.X.; Chen, M.; Yan, L.; Wang, K. How Can Urban Parks Be Planned to Maximize Cooling Effect in Hot Extremes? Linking Maximum and Accumulative Perspectives. J. Environ. Manag. 2022, 317, 115346. [Google Scholar] [CrossRef]
- Park, H.M.; Jo, H.K. Ecological Design and Construction Strategies through Life Cycle Assessment of Carbon Budget for Urban Parks in Korea. Forests 2021, 12, 1399. [Google Scholar] [CrossRef]
- Jo, H.K.; Kim, J.Y.; Park, H.M. Carbon Reduction and Planning Strategies for Urban Parks in Seoul. Urban For. Urban Green. 2019, 41, 48–54. [Google Scholar] [CrossRef]
- Sikorski, P.; Gawryszewska, B.; Sikorska, D.; Chormanski, J.; Schwerk, A.; Jojczyk, A.; Ciezkowski, W.; Archicinski, P.; Lepkowski, M.; Dymitryszyn, I.; et al. The Value of Doing Nothing—How Informal Green Spaces Can Provide Comparable Ecosystem Services to Cultivated Urban Parks. Ecosyst. Serv. 2021, 50, 101339. [Google Scholar] [CrossRef]
- Villasenor, N.R.; Chiang, L.A.; Hernandez, H.J.; Escobar, M.A.H. Contribution of Informal Greenspace to Bird Conservation in Cities: A Comparative Study on the Diversity of Bird Communities in Vacant Lands, Urban Parks, and Residential Areas. Ornitol. Neotrop. 2021, 32, 179–187. [Google Scholar] [CrossRef]
- Halecki, W.; Stachura, T.; Fudala, W.; Stec, A.; Kubon, S. Assessment and Planning of Green Spaces in Urban Parks: A Review. Sustain. Cities Soc. 2023, 88, 104280. [Google Scholar] [CrossRef]
- Loughran, K. Imbricated Spaces: The High Line, Urban Parks, and the Cultural Meaning of City and Nature. Sociol. Theory 2016, 34, 311–334. [Google Scholar] [CrossRef]
- Uggla, Y. Protecting Urban Greenery: The Case of Stockholm’s National City Park. City Community 2014, 13, 360–380. [Google Scholar] [CrossRef]
- Ozguner, H. Cultural Differences in Attitudes towards Urban Parks and Green Spaces. Landsc. Res. 2011, 36, 599–620. [Google Scholar] [CrossRef]
- Khahro, S.H.; Talpur, M.A.H.; Bhellar, M.G.; Das, G.; Shaikh, H.; Sultan, B. GIS-Based Sustainable Accessibility Mapping of Urban Parks: Evidence from the Second Largest Settlement of Sindh, Pakistan. Sustainability 2023, 15, 6228. [Google Scholar] [CrossRef]
- Semenzato, P.; Costa, A.; Campagnaro, T. Accessibility to Urban Parks: Comparing Gis Based Measures in the City of Padova (Italy). Urban For. Urban Green. 2023, 82, 127896. [Google Scholar] [CrossRef]
- Li, Z.H.; Chen, H.; Yan, W.T. Exploring Spatial Distribution of Urban Park Service Areas in Shanghai Based on Travel Time Estimation: A Method Combining Multi-Source Data. Isprs Int. J. Geo-Inf. 2021, 10, 608. [Google Scholar] [CrossRef]
- Shi, J.R.; Guo, Q.Y.; Lv, Q.W.; Zhao, X.M. From Accessibility of Traffic to Accessibility of Service: The Spatial Analysis of N-Minute Service Circle of Urban Park System. J. Asian Archit. Build. Eng. 2023. [Google Scholar] [CrossRef]
- Long, Y.H.; Qin, J.X.; Wu, Y.; Wang, K. Analysis of Urban Park Accessibility Based on Space Syntax: Take the Urban Area of Changsha City as an Example. Land 2023, 12, 1061. [Google Scholar] [CrossRef]
- Maniruzzaman, K.M.; Alqahtany, A.; Abou-Korin, A.; Al-Shihri, F.S. An Analysis of Residents’ Satisfaction with Attributes of Urban Parks in Dammam City, Saudi Arabia. Ain Shams Eng. J. 2021, 12, 3365–3374. [Google Scholar] [CrossRef]
- Yilmaz, S.; Zengin, M.; Yildiz, N.D. Determination of User Profile at City Parks: A Sample from Turkey. Build. Environ. 2007, 42, 2325–2332. [Google Scholar] [CrossRef]
- Mantymaa, E.; Jokinen, M.; Louhi, P.; Juutinen, A. Visitors? Heterogeneous Preferences for Urban Park Management: The Case of a City Park in Oulu, Finland. Urban For. Urban Green. 2022, 77, 127751. [Google Scholar] [CrossRef]
- Van Vliet, E.; Dane, G.; Weijs-Perree, M.; van Leeuwen, E.; van Dinter, M.; van den Berg, P.; Borgers, A.; Chamilothori, K. The Influence of Urban Park Attributes on User Preferences: Evaluation of Virtual Parks in an Online Stated-Choice Experiment. Int. J. Environ. Res. Public Health 2021, 18, 212. [Google Scholar] [CrossRef]
- Song, Y.; Newman, G.; Huang, X.K.; Ye, X.Y. Factors Influencing Long-Term City Park Visitations for Mid-Sized Us Cities: A Big Data Study Using Smartphone User Mobility. Sustain. Cities Soc. 2022, 80, 103815. [Google Scholar] [CrossRef]
- Wang, X.K.; Meng, Q.Y.; Liu, X.Z.; Allam, M.; Zhang, L.L.; Hu, X.L.; Bi, Y.X.; Jancso, T. Evaluation of Fairness of Urban Park Green Space Based on an Improved Supply Model of Green Space: A Case Study of Beijing Central City. Remote Sens. 2023, 15, 244. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, S.; Zhang, P.; Zhou, Y.; Li, K. Dynamics and Driving Mechanism of Real Estate in China’s Small Cities: A Case Study of Gansu Province. Buildings 2022, 12, 1512. [Google Scholar] [CrossRef]
- Gao, X.C.; Wang, S.; Ahmad, F.; Chandio, A.A.; Ahmad, M.; Xue, D. The nexus between misallocation of land resources and green technological innovation: A novel investigation of Chinese cities. Clean Technol. Environ. Policy 2021, 23, 2101–2115. [Google Scholar] [CrossRef]
- Li, L.X.; Ren, Y.; Qian, X. Spatial Mismatch Evolution of Global Population and Food and Its Influencing Factors. J. Nat. Resour. 2021, 36, 1381–1397. [Google Scholar] [CrossRef]
- Qu, Y.C.M.; Zhang, Z.O.; Feng, Y.C. Effects of Land Finance on Resource Misallocation in Chinese Cities during 2003–2017: A Dynamic Panel Econometric Analysis. Discret. Dyn. Nat. Soc. 2020, 2020, 2639024. [Google Scholar] [CrossRef]
- Zhou, X.; Li, J.F.; Yao, Y.; Wu, D. Spatial-temporal Evolution and Influencing Factors of Tourism Efficiency in Guizhou Province. Areal Res. Dev. 2020, 39, 82–93. [Google Scholar]
- Sun, W.W.; Jin, H.Y.; Chen, Y.; Hu, X.; Li, Z.R.; Kidd, A.; Liu, C.L. Spatial mismatch analyses of school land in China using a spatial statistical approach. Land Use Policy 2021, 108, 105543. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhao, K.; Han, J.; Zhao, S.; Cao, J. Geographical Pattern Evolution of Health Resources in China: Spatio-Temporal Dynamics and Spatial Mismatch. Trop. Med. Infect. Dis 2022, 7, 292. [Google Scholar] [CrossRef] [PubMed]
- Song, X.L.; Mi, W.B.; Li, L.T.; Song, Y.Y.; Zhao, Y.N.; Yu, G.L. Spatial Mismatch of Tourism Economy and Ecological Environment System in Ningxia. Arid Land Geogr. 2022, 45, 593–605. [Google Scholar]
- Zhang, C.; Yao, D.; Zhen, Y.; Li, W.; Li, K. Mismatched Relationship between Urban Industrial Land Consumption and Growth of Manufacturing: Evidence from the Yangtze River Delta. Land 2022, 11, 1390. [Google Scholar] [CrossRef]
- Zhang, P.; Yang, X.; Chen, H.; Zhao, S. Matching Relationship between Urban Service Industry Land Expansion and Economy Growth in China. Land 2023, 12, 1139. [Google Scholar] [CrossRef]
- Miyamoto, S.; Chacon, A.; Hossain, M.; Martinez, L. Soil salinity of urban turf areas irrigated with saline water I. Spatial variability. Landsc. Urban Plan. 2005, 71, 233–241. [Google Scholar]
- Zhao, S.; Zhao, K.; Zhang, P. Spatial Inequality in China’s Housing Market and the Driving Mechanism. Land 2021, 10, 841. [Google Scholar] [CrossRef]
- Watson, S.I. Efficient design of geographically-defined clusters with spatial autocorrelation. J. Appl. Stat. 2021, 49, 3300–3318. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Li, W.; Zhao, K.; Zhao, S. Spatial Pattern and Driving Mechanism of Urban–Rural Income Gap in Gansu Province of China. Land 2021, 10, 1002. [Google Scholar] [CrossRef]
- Marquaridt, D.W. Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation. Technometrics 1970, 12, 591–612. [Google Scholar] [CrossRef]
- Fortheringham, S.; Brunsdon, C.H.; Charlton, M. Quantitative Geography; SAGE Publications: London, UK, 2000. [Google Scholar]
- Li, W.; Wang, M.; Zhao, S. The Spatio-Temporal Dynamics, Driving Mechanism, and Management Strategies for International Students in China under the Background of the Belt and Road Initiatives. ISPRS Int. J. Geo-Inf. 2023, 12, 405. [Google Scholar] [CrossRef]
- Li, W.; Zhang, P.; Zhao, K.; Chen, H.; Zhao, S. The Evolution Model of and Factors Influencing Digital Villages: Evidence from Guangxi, China. Agriculture 2023, 13, 659. [Google Scholar] [CrossRef]
- You, Z.; Feng, Z.M.; Yang, Y.Z. Relief Degree of Land Surface Dataset of China (1km). Digit. J. Glob. Chang. Data Repos. 2018. [Google Scholar] [CrossRef]
- Kim, D.; Jin, J. Does Happiness Data Say Urban Parks Are Worth It? Landsc. Urban Plan. 2018, 178, 1–11. [Google Scholar] [CrossRef]
- Zhang, W.J.; Li, J.K. A Quasi-Experimental Analysis on the Causal Effects of COVID-19 on Urban Park Visits: The Role of Park Features and the Surrounding Built Environment. Urban For. Urban Green. 2023, 82, 127898. [Google Scholar] [CrossRef]
- Zhang, P.; Li, W.; Zhao, K.; Zhao, Y.; Chen, H.; Zhao, S. The Impact Factors and Management Policy of Digital Village Development: A Case Study of Gansu Province, China. Land 2023, 12, 616. [Google Scholar] [CrossRef]
- Yang, L.; Li, Y.T. Analysis on the Spatial Differentiation of National Wetland Park and Influencing Factors in Hunan Province. J. Cent. South Univ. For. Technol. (Soc. Sci.) 2019, 13, 99–106. [Google Scholar] [CrossRef]
- Li, L.; Zhao, K.; Wang, X.; Zhao, S.; Liu, X.; Li, W. Spatio-Temporal Evolution and Driving Mechanism of Urbanization in Small Cities: Case Study from Guangxi. Land 2022, 11, 415. [Google Scholar] [CrossRef]
- Zhao, S.; Yan, Y.; Han, J. Industrial Land Change in Chinese Silk Road Cities and Its Influence on Environments. Land 2021, 10, 806. [Google Scholar] [CrossRef]
- Dang, Y.; Wang, C.J.; Chen, P.R. Identification and Optimization Strategy of Urban Park Service Areas Based on Accessibility by Public Transport: Beijing as a Case Study. Sustainability 2022, 14, 7112. [Google Scholar] [CrossRef]
- Heshani, A.L.S.; Winijkul, E. Numerical Simulations of the Effects of Green Infrastructure on Pm2.5 Dispersion in An Urban Park in Bangkok, Thailand. Heliyon 2022, 8, e10475. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Liu, J.J. The Spatiotemporal Trend of City Parks in Mainland China between 1981 and 2014: Implications for the Promotion of Leisure Time Physical Activity and Planning. Int. J. Environ. Res. Public Health 2017, 14, 1150. [Google Scholar] [CrossRef]
- Rigolon, A. A Complex Landscape of Inequity in Access to Urban Parks: A Literature Review. Landsc. Urban Plan. 2016, 153, 160–169. [Google Scholar] [CrossRef]
- Tan, C.D.; Tang, Y.H.; Wu, X.F. Evaluation of the Equity of Urban Park Green Space Based on Population Data Spatialization: A Case Study of a Central Area of Wuhan, China. Sensors 2019, 19, 2929. [Google Scholar] [CrossRef]
- Gao, W.X.; Lyu, Q.; Fan, X.; Yang, X.C.; Liu, J.T.; Zhang, X.R. Building-Based Analysis of the Spatial Provision of Urban Parks in Shenzhen, China. Int. J. Environ. Res. Public Health 2017, 14, 1521. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Lu, H.T.; Zheng, T.C.; Rong, Y.J.; Wang, C.X.; Zhang, W.; Yan, Y.; Tang, L. Vitality of Urban Parks and Its Influencing Factors from the Perspective of Recreational Service Supply, Demand, and Spatial Links. Int. J. Environ. Res. Public Health 2020, 17, 1615. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.; Hong, I. Measuring Spatial Accessibility in the Context of Spatial Disparity between Demand and Supply of Urban Park Service. Landsc. Urban Plan. 2013, 119, 85–90. [Google Scholar] [CrossRef]
- Yang, Y.; He, R.Z.; Tian, G.H.; Shi, Z.; Wang, X.Y. Equity Study on Urban Park Accessibility Based on Improved 2SFCA Method in Zhengzhou, China. Land 2022, 11, 2045. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Liu, J.M.; Song, C.; Chan, C.S.; Pei, T.; Yu, W.T.; Zhang, X. Spatial-Temporal Distribution Characteristics and Evolution Mechanism of Urban Parks in Beijing, China. Urban For. Urban Green. 2021, 64, 127265. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Tan, P.Y. Assessment of Spatial Equity of Urban Park Distribution from the Perspective of Supply-Demand Interactions. Urban For. Urban Green. 2023, 80, 127827. [Google Scholar] [CrossRef]
- Cheng, Y.; Shi, Y.; Andrew, S. Exploring the Link between Fiscal Arrangements and the Quality of Public Services: Evidence from Major Us Urban Park Systems. Public Perform. Manag. Rev. 2020, 43, 1445–1470. [Google Scholar] [CrossRef]
- Nam, J.; Dempsey, N. Place-Keeping for Health? Charting the Challenges for Urban Park Management in Practice. Sustainability 2019, 11, 4383. [Google Scholar] [CrossRef]
- Smith, A.; Whitten, M.; Ernwein, M. De-municipalisation? Legacies of Austerity for England’s Urban Parks. Geogr. J. 2023. [Google Scholar] [CrossRef]
- Luo, T.; Yang, F.M.; Wu, L.L.; Gao, X.H. Equity Evaluation of Urban Park System: A Case Study of Xiamen, China. J. Environ. Eng. Landsc. Manag. 2020, 28, 125–136. [Google Scholar] [CrossRef]
- Feng, S.; Chen, L.D.; Sun, R.H.; Feng, Z.Q.; Li, J.R.; Khan, M.S.; Jing, Y.C. The Distribution and Accessibility of Urban Parks in Beijing, China: Implications of Social Equity. Int. J. Environ. Res. Public Health 2019, 16, 4894. [Google Scholar] [CrossRef]
- Kim, K.; Lee, C.K.; Kim, H.W. Understanding the Accessibility of Urban Parks and Connectivity of Green Spaces in Single-Person Household Distribution: Case Study of Incheon, South Korea. Land 2022, 11, 1441. [Google Scholar] [CrossRef]
- Guo, S.H.; Song, C.; Pei, T.; Liu, Y.X.; Ma, T.; Du, Y.Y.; Chen, J.; Fan, Z.D.; Tang, X.L.; Peng, Y.; et al. Accessibility to Urban Parks for Elderly Residents: Perspectives from Mobile Phone Data. Landsc. Urban Plan. 2019, 191, 103642. [Google Scholar] [CrossRef]
- Guo, S.H.; Yang, G.G.; Pei, T.; Ma, T.; Song, C.; Shu, H.; Du, Y.Y.; Zhou, C.H. Analysis of Factors Affecting Urban Park Service Area in Beijing: Perspectives from Multi-Source Geographic Data. Landsc. Urban Plan. 2019, 181, 103–117. [Google Scholar] [CrossRef]
- Chen, Q.X.; Wang, C.; Lou, G.; Zhang, M.Y.; Wu, S. Measurement of Urban Park Accessibility from the Quasi-Public Goods Perspective. Sustainability 2019, 11, 4573. [Google Scholar] [CrossRef]
- Pecina, V.; Juricka, D.; Galiova, M.V.; Kynicky, J.; Balakova, L.; Brtnicky, M. Polluted Brownfield Site Converted into A Public Urban Park: A Place Providing Ecosystem Services or A Hidden Health Threat? J. Environ. Manag. 2021, 291, 112669. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.Y.; Ye, B.R.; Liu, T.D. Research on an Aging-Friendly Design of Urban Park Landscape Based on Computer Virtual Simulation Technology. Wirel. Commun. Mob. Comput. 2022, 2022, 7983757. [Google Scholar] [CrossRef]
- Hui, L.C.; Jim, C.Y. Unraveling Visiting-Activity Patterns of Heterogeneous Communities for Urban-Park Planning and Design. Forests 2022. 13, 841. [CrossRef]
- Gungor, S.; Polat, A.T. The Evaluation of the Urban Parks in Konya Province in Terms of Quality, Sufficiency, Maintenance, and Growth Rate. Environ. Monit. Assess. 2017, 189, 172. [Google Scholar] [CrossRef] [PubMed]
- Oh, C.S. Institutional Changes to Long-Term Unexecuted Urban Parks in South Korea-From 1967 to the Present Day. Urban For. Urban Green. 2019, 46, 126447. [Google Scholar] [CrossRef]
- Wang, X.H.; Liu, K.W.; Wang, K.; Gong, J.; Wang, Y.J.; Fan, Y.J. Spatiotemporal Dynamics of Urban Parks and Their Driving Forces in Xi’an, China From 1949 To 2015. Open House Int. 2017, 42, 112–115. [Google Scholar] [CrossRef]
Type | Index | Meaning |
---|---|---|
High Positive-Spatial Mismatch | ≥ 0.5 | A serious shortage of land supply for urban parks, reducing the quality of urban habitat; a serious imbalance between supply and demand, requiring the government to increase land supply. |
Low Positive-Spatial Mismatch | > 0 | Slightly insufficient land supply for urban parks, with highly intensive utilization of land resources and self-regulation by the city, requiring no government intervention but to keep the current land supply pattern unchanged. |
Spatial Matching | = 0 | Land supply and population demand for urban parks in a mutual match, with supply and demand in balance in an ideal state; rare in reality, requiring the current land supply pattern to remain unchanged. |
Low Negative-Spatial Mismatch | > −0.5 | Slight oversupply of land for urban parks, with sloppy utilization of land resources and self-regulation by the city, requiring no government intervention but to keep the current land supply pattern unchanged. |
High Negative-Spatial Mismatch | ≤ −0.5 | Serious oversupply of land for urban parks, a prominent waste of land resources; serious imbalance between supply and demand, requiring the government to control or reduce land supply. |
Indicator | Code | Nature | Meaning | VIF |
---|---|---|---|---|
Urban-parkland supply | + | The total amount of land allocated by the superior government to each city for the urban park construction. | -- | |
Spatial Mismatch-Contribution Rate Index | - | The contribution of each city to the spatial mismatch between urban-parkland supply and population demand in Hunan province. | -- | |
Population Aging | - | The proportion of population aged 60 and above in the total permanent population [77]. | 1.69 | |
Population Outflow | - | The Proportion of population with different registered residence and permanent residence in the total population [78]. | 1.59 | |
Economic Development | + | Per capita GDP—the GDP of each city divided by its resident population [79,80]. | 4.72 | |
Financial Capacity | + | Fiscal self-sufficiency rate—the fiscal revenue of each city divided by fiscal expenditure [81,82]. | 4.91 | |
Natural Environment | + | The undulation of the topography in each city [83]. | 2.57 | |
Air Quality | - | The average concentration of PM2.5 in each city [84]. | 2.84 |
Urban-Parkland Supply | Spatial Mismatch-Contribution Rate Index | |||
---|---|---|---|---|
OLS | GWR | OLS | GWR | |
AICc | −162.42 | −156.06 | 320.10 | 325.94 |
R2 | 0.32 | 0.36 | 0.17 | 0.22 |
Type | Cities |
---|---|
High-Scale–High-Growth | Ningxiang, Liuyang, Wangcheng, Xiangtan, Xiangtanxian, Leiyang, Changning, Hengshan, Hengdong, Qidong, Wugang, Dongkou, Xinning, Yueyang, Linxiang, Huarong, Pingjiang, Anxiang, Shimen, Zhangjiajie, Yiyang, Yuanjiang, Yizhang, Linwu, Dong’an, Dao, Jiangyong, Ningyuan, Huaihua, Hongjiang, Xupu, Mayang, Tongdao, Loudi, Xinhua, Yongshun. |
High-Scale–Low-Growth | Changsha, Changshaxian, Zhuzhou, Liling, Chaling, Hengyang, Shaoyang, Shaoyangxian, Changde, Cili, Chenzhou, Guiyang, Yongzhou, Qiyang, Lanshan, Lengshuijiang. |
Low-Scale–High-Growth | Suining, Yueyangxian, Xiangyin, Jin, Taoyuan, Nan, Yongxing, Shuangpai, Xintian, Zhongfang, Shuangfeng, Luxi, Fenghuang, Guzhang, Longshan. |
Low-Scale–Low-Growth | You, Yanling, Xiangxiang, Shaoshan, Hengyangxian, Hengnan, Nanyue, Shaodong, Xinshao, Longhui, Chengbu, Miluo, Hanshou, Li, Linli, Sangzhi, Taojiang, Anhua, Zixing, Datonghu, Jiahe, Rucheng, Guidong, Anren, Jianghua, Yuanling, Chenxi, Huitong, Xinhuang, Zhijiang, Jingzhou, Lianyuan, Jishou, Huayuan, Baojing. |
Type | 2015 | 2020 |
---|---|---|
High Negative-Spatial Mismatch | Xinning, Wugang, Wangcheng, Jiahe, Qiyang, Lengshuijiang, Changsha, Changshaxian, Chaling, You, Zhuzhou. | Linwu, Qiyang, Lengshuijiang, Jiangyong, Linxiang, Xupu, Mayang, Leiyang, Xinhua, Pingjiang, Xinning, Qidong, Anxiang, Wugang, Hengdong, Yongshun, Ningxiang, Chaling, Ningyuan, Shimen. |
Low Negative-Spatial Mismatch | Linli, Jiangyong, Hengshan, Liling, Yongxing, Miluo, Longshan, Lianyuan, Shaoyangxian, Chengbu, Zixing, Huayuan, Datonghu, Linxiang, Zhijiang, Yizhang, Changning, Fenghuang, Ningyuan, Yongshun, Yuanjiang, Mayang, Nanyue, Hongjiang, Tongdao, Sangzhi, Xinhua, Jianghua, Rucheng, Shimen, Xiangxiang, Anxiang, Jin, Qidong, Linwu, Yuanling, Xinhuang, Cili, Chenxi, Yanling, Hengdong, Guidong, Jingzhou, Shaoshan, Anren, Lanshan, Guiyang. | Yongxing, Huayuan, Chengbu, Linli, Datonghu, Yueyangxian, Sangzhi, Lianyuan, Xiangyin, Wangcheng, Shaoyangxian, Miluo, Guiyang, Guidong, Longshan, Shuangpai, Nanyue, Xinhuang, Nan, Suining, Rucheng, Anren, Xintian, Changshaxian, Yanling, Fenghuang, Dongkou, Shaoshan, Jianghua, Yuanling, Huarong, Cili, Zhongfang, Yizhang, Jiahe, Xiangtanxian, Guzhang, Jingzhou, Yuanjiang, Chenxi, Dao, Changning, Jin, Lanshan, Hongjiang, Hengshan, Tongdao, Dong’an. |
Low Positive-Spatial Mismatch | Ningxiang, Yueyangxian, Huarong, Changde, Shuangfeng, Dong’an, Shaodong, Hengnan, Hengyangxian, Dao, Xinshao, Li, Nan, Hanshou, Taoyuan, Luxi, Xiangyin, Pingjiang, Suining, Longhui, Xintian, Xupu, Shuangpai, Baojing, Zhongfang, Huitong, Anhua, Dongkou, Chenzhou, Xiangtanxian, Guzhang. | Liuyang, Shaodong, Li, Hanshou, Longhui, Yiyang, Hengnan, Zhangjiajie, You, Xinshao, Hengyangxian, Baojing, Taoyuan, Xiangxiang, Anhua, Shuangfeng, Liling, Xiangtan, Huitong, Zixing, Zhijiang, Luxi. |
High Positive-Spatial Mismatch | Yueyang, Yongzhou, Huaihua, Xiangtan, Shaoyang, Jishou, Hengyang, Loudi, Liuyang, Leiyang, Yiyang, Zhangjiajie, Taojiang. | Changsha, Zhuzhou, Shaoyang, Hengyang, Yongzhou, Jishou, Huaihua, Changde, Yueyang, Loudi, Chenzhou, Taojiang. |
Code | Variable | Min | Max | Mean | Median |
---|---|---|---|---|---|
Population Aging | −0.0269 | −0.0050 | −0.0165 | −0.0168 | |
Population Outflow | 0.0033 | 0.0183 | 0.0107 | 0.0099 | |
Economic Development | −0.0481 | −0.0104 | −0.0266 | −0.0260 | |
Financial Capacity | 0.0451 | 0.0703 | 0.0565 | 0.0566 | |
Natural Environment | −0.0131 | 0.0138 | 0.0005 | −0.0006 | |
Air Quality | 0.0301 | 0.0480 | 0.0378 | 0.0366 |
Code | Variable | Min | Max | Mean | Median |
---|---|---|---|---|---|
Population Aging | −0.1420 | −0.0115 | −0.0693 | −0.0706 | |
Population Outflow | 0.0863 | 0.2711 | 0.1788 | 0.1754 | |
Economic Development | −0.8930 | −0.3557 | −0.6040 | −0.6138 | |
Financial Capacity | 0.4589 | 0.7209 | 0.5867 | 0.5926 | |
Natural Environment | −0.2900 | −0.0290 | −0.1343 | −0.1253 | |
Air Quality | 0.1300 | 0.3797 | 0.2464 | 0.2477 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, Z.; Zhao, S.; Li, K. Evolution Pattern and Spatial Mismatch of Urban Greenspace and Its Impact Mechanism: Evidence from Parkland of Hunan Province. Land 2023, 12, 2071. https://doi.org/10.3390/land12112071
Xing Z, Zhao S, Li K. Evolution Pattern and Spatial Mismatch of Urban Greenspace and Its Impact Mechanism: Evidence from Parkland of Hunan Province. Land. 2023; 12(11):2071. https://doi.org/10.3390/land12112071
Chicago/Turabian StyleXing, Zhipeng, Sidong Zhao, and Kerun Li. 2023. "Evolution Pattern and Spatial Mismatch of Urban Greenspace and Its Impact Mechanism: Evidence from Parkland of Hunan Province" Land 12, no. 11: 2071. https://doi.org/10.3390/land12112071
APA StyleXing, Z., Zhao, S., & Li, K. (2023). Evolution Pattern and Spatial Mismatch of Urban Greenspace and Its Impact Mechanism: Evidence from Parkland of Hunan Province. Land, 12(11), 2071. https://doi.org/10.3390/land12112071