Response of Two Major Lakes in the Changtang National Nature Reserve, Tibetan Plateau to Climate and Anthropogenic Changes over the Past 50 Years
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Processing
2.2.1. Remote Sensing (RS) Data
2.2.2. Meteorological Data
2.2.3. Glacier Data
2.2.4. Other Auxiliary Data
2.2.5. Data Preparation
2.2.6. Data Analysis
3. Results
3.1. Pattern of Lake Changes
3.2. Environmental Impacts on Lake Changes
3.3. Human Impacts on Lake Changes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aysen, D.; Erhan, S.; Sehnaz, S. Evaluation of climate and human effects on the hydrology and water quality of Burdur Lake, Turkey. J. Afr. Earth Sci. 2019, 158, 103569. [Google Scholar]
- Liu, W.; Ma, L.; Abuduwaili, J. Anthropogenic Influences on Environmental Changes of Lake Bosten, the Largest Inland Freshwater Lake in China. Sustainability 2020, 12, 711. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.D.; Sheng, Y.W.; Wada, Y. Little impact of the Three Gorges Dam on recent decadal lake decline across China’s Yangtze Plain. Water Resour. Res. 2017, 53, 3854–3877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wufu, A.; Wang, H.W.; Chen, Y.; Rusuli, Y.; Ma, L.G.; Yang, S.T.; Zhang, F.; Wang, D.; Li, Q.; Li, Y.B. Lake water volume fluctuations in response to climate change in Xinjiang, China from 2002 to 2018. PeerJ 2020, 8, e9683. [Google Scholar] [CrossRef]
- Grant, L.; Vanderkelen, I.; Gudmundsson, L.; Tan, Z.L.; Perroud, M.; Stepanenko, M.V.; Debolskiy, V.A.; Droppers, B.; Janssen, B.G.A.; Woolway, I.R.; et al. Attribution of global lake systems change to anthropogenic forcing. Nat. Geosci. 2021, 14, 849–854. [Google Scholar] [CrossRef]
- Yang, K.; Yu, Z.Y.; Luo, Y.; Zhou, X.L.; Shang, C.X. Spatial-Temporal Variation of Lake Surface Water Temperature and Its Driving Factors in Yunnan-Guizhou Plateau. Water Resour. Res. 2019, 55, 4688–4703. [Google Scholar] [CrossRef]
- Liu, W.; Wu, J.L.; Zeng, H.A.; Ma, L. Geochemical evidence of human impacts on deep Lake Fuxian, southwest China. Limnologica 2014, 45, 1–6. [Google Scholar] [CrossRef]
- Luo, S.X.; Song, C.Q.; Zhan, P.F.; Liu, K.; Chen, T.; Li, W.K.; Ke, L.H. Refined estimation of lake water level and storage changes on the Tibetan Plateau from ICESat/ICESat-2. Catena 2021, 200, 105177. [Google Scholar] [CrossRef]
- Li, H.Y.; Mao, D.H.; Li, X.Y.; Wang, Z.M.; Wang, C.Z. Monitoring 40-Year Lake Area Changes of the Qaidam Basin, Tibetan Plateau, Using Landsat Time Series. Remote Sens. 2019, 11, 343. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.Q.; Luo, W.; Chen, W.F.; Zheng, G.X. A robust but variable lake expansion on the Tibetan Plateau. Sci. Bull. 2019, 64, 1306–1309. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.Y.; Song, C.Q.; Wang, J.D.; Ke, L.H. China’s inland water dynamics: The significance of water body types. Proc. Natl. Acad. Sci. USA 2020, 117, 13876–13878. [Google Scholar] [CrossRef] [PubMed]
- Cooley, S.W.; Ryan, J.C.; Smith, L.C. Human alteration of global surface water storage variability. Nature 2021, 591, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Mammides, C. A global assessment of the human pressure on the world’s lakes. Glob. Environ. Change 2020, 63, 102084. [Google Scholar] [CrossRef]
- Ebner, M.; Schirpke, U.; Tappeiner, U. How do anthropogenic pressures affect the provision of ecosystem services of small mountain lakes? Anthropocene 2022, 38, 100336. [Google Scholar] [CrossRef]
- Zheng, W.X.; Zhang, E.L.; Wang, R.; Langdon, G.P. Human impacts alter driver–response relationships in lakes of Southwest China. Limnol. Oceanogr. 2022, 67, S390–S402. [Google Scholar] [CrossRef]
- Zhang, Q.; Sannigrahi, S.; Bilintoh, M.T.; Zhang, R.; Xiong, B.; Tao, S.Q.; Bilsborrow, R.; Song, C.H. Understanding human-environment interrelationships under constrained land-use decisions with a spatially explicit agent-based model. Anthropocene 2022, 38, 100337. [Google Scholar] [CrossRef]
- Wang, L.Z.; Wehrly, K.; Breck, E.J.; Kraft, S.L. Landscape based assessment of human disturbance for Michigan lakes. Environ. Manag. 2010, 46, 471–483. [Google Scholar] [CrossRef] [Green Version]
- Musie, M.; Sen, S.; Chaubey, I. Hydrologic Responses to Climate Variability and Human Activities in Lake Ziway Basin, Ethiopia. Water 2020, 12, 164. [Google Scholar] [CrossRef] [Green Version]
- Hong, C.P.; Burney, J.A.; Pongratz, J.; Nabel, J.E.M.S.; Mueller, N.D.; Jackson, R.B.; Davis, S.J. Global and regional drivers of land-use emissions in 1961–2017. Nature 2021, 589, 554–561. [Google Scholar] [CrossRef]
- Winkler, K.; Fuchs, R.; Rounsevell, M.; Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 2021, 12, 2501. [Google Scholar] [CrossRef]
- Girardin, C.A.J.; Jenkins, S.; Seddon, N.; Allen, M.; Lewis, S.L.; Wheeler, C.E.; Griscom, B.W.; Malhi, Y. Nature-based solutions can help cool the planet—If we act now. Nature 2021, 593, 191–194. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Altermatt, F.; Yang, J.; An, S.; Li, A.; Zhang, X. Human activities’ fingerprint on multitrophic biodiversity and ecosystem functions across a major river catchment in China. Glob. Change Biol. 2020, 26, 6867–6879. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.H.; Peng, Y.J.; Wang, R.F.; Cui, G.F.; Zhang, B.; Lu, N.C. Exploring the Rapid Assessment Method for Nature Reserve Landscape Protection Effectiveness—A Case Study of Liancheng National Nature Reserve, Gansu, China. Sustainability 2021, 13, 3904. [Google Scholar] [CrossRef]
- Shrestha, N.; Xu, X.T.; Meng, J.H.; Wang, Z.H. Vulnerabilities of protected lands in the face of climate and human footprint changes. Nat. Commun. 2021, 12, 1632. [Google Scholar] [CrossRef] [PubMed]
- Li, S.C.; Su, S.; Liu, Y.X.; Zhou, X.W.; Luo, Q.X.; Paudel, B. Effectiveness of the Qilian Mountain Nature Reserve of China in Reducing Human Impacts. Land 2022, 11, 1071. [Google Scholar] [CrossRef]
- Yao, T.D.; Thompson, L.G.; Mosbrugger, V.; Zhang, F.; Ma, Y.M.; Luo, T.X.; Xu, B.Q.; Yang, X.X.; Joswiak, D.R.; Wang, W.C.; et al. Third pole environment (TPE). Environ. Dev. 2012, 3, 52–64. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; van Beek, L.P.; Bierkens, M.F. Climate change will affect the Asian water towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Chen, W.F.; Xie, H.J. Tibetan Plateau’s Lake level and volume changes from NASA’s ICESat/ICESat-2 and Landsat Missions. Geophys. Res. Lett. 2019, 46, 13107–13118. [Google Scholar] [CrossRef]
- Liang, J.; Lupien, L.R.; Xie, H.C.; Vachula, S.R.; Stevenson, A.M.; Han, B.P.; Liu, Q.Q.; He, Y.; Wang, M.D.; Liang, P.; et al. Lake ecosystem on the Qinghai–Tibetan Plateau severely altered by climatic warming and human activity. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2021, 576, 110509. [Google Scholar] [CrossRef]
- Li, S.; Zhang, H.; Zhou, X.; Yu, H.; Li, W. Enhancing protected areas for biodiversity and ecosystem services in the Qinghai–Tibet Plateau. Ecosyst. Serv. 2020, 43, 101090. [Google Scholar] [CrossRef]
- Zhou, L.; Zhu, Y.N.; Du, M.Y.; Wang, S.Y.; He, C.C.; Luo, T.; Wu, J.J.; Zhang, J.; Yang, K. The Long-Time Variation of Lake in Typical Desert Area and Its Human and Climate Change Causes: A Case Study of the Hongjian Nur. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 416–425. [Google Scholar] [CrossRef]
- Felicia, C.; Omid, M.; Amir, A. Evidence of anthropogenic impacts on global drought frequency, duration, and intensity. Nat. Commun. 2021, 12, 2754. [Google Scholar]
- Li, B.V.; Pimm, S.L. How China expanded its protected areas to conserve biodiversity. Curr. Biol. 2020, 30, R1334–R1340. [Google Scholar] [CrossRef]
- Zhao, Z.L.; Zhang, Y.; Hu, Z.Z.; Nie, X.H. Contrasting Evolution Patterns of Endorheic and Exorheic Lakes on the Central Tibetan Plateau and Climate Cause Analysis during 1988–2017. Water 2021, 13, 1962. [Google Scholar] [CrossRef]
- Yang, K.; Lu, H.; Yue, S.Y.; Zhang, G.Q.; Lei, Y.B.; La, Z.; Wang, W. Quantifying recent precipitation change and predicting lake expansion in the Inner Tibetan Plateau. Clim. Change 2018, 147, 149–163. [Google Scholar] [CrossRef]
- Zhang, Z.; Chang, J.; Xu, C.Y.; Zhou, Y.; Wu, Y.; Chen, X.; Jiang, S.; Duan, Z. The response of lake area and vegetation cover variations to climate change over the Qinghai-Tibetan Plateau during the past 30 years. Sci. Total Environ. 2018, 635, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Song, C.Q.; Huang, B.; Ke, L.H.; Richards, K.S. Remote sensing of alpine lake water environment changes on the Tibetan Plateau and surroundings: A review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 26–37. [Google Scholar] [CrossRef]
- Dong, S.Y.; Peng, F.; You, Q.G.; Guo, J.; Xue, X. Lake dynamics and its relationship to climate change on the Tibetan Plateau over the last four decades. Reg. Environ. Change 2018, 18, 477–487. [Google Scholar] [CrossRef]
- Woolway, R.I.; Kraemer, B.M.; Lenters, J.D.; Merchant, C.J.; O’Reilly, C.M.; Sharma, S. Global lake responses to climate change. Nat. Rev. Earth Environ. 2020, 1, 388–403. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Yao, T.D.; Chen, W.F.; Zheng, G.X.; Shum, C.K.; Yang, K.; Piao, S.L.; Sheng, Y.W.; Yi, S.; Li, J.L.; et al. Regional differences of lake evolution across China during 1960s–2015 and its natural and anthropogenic causes. Remote Sens. Environ. 2019, 221, 386–404. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Yao, T.D.; Xie, H.J.; Yang, K.; Zhu, L.P.; Shum, C.K.; Bolch, T.; Yi, S.; Allen, S.; Jiang, L.G.; et al. Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms. Earth-Sci. Rev. 2020, 208, 103269. [Google Scholar] [CrossRef]
- Lei, Y.B.; Yang, K.; Wang, B.; Sheng, Y.W.; Bird, B.W.; Zhang, G.Q.; Tian, L.D. Response of inland lake dynamics over the Tibetan Plateau to climate change. Clim. Change 2014, 125, 281–290. [Google Scholar] [CrossRef]
- Wu, Y.H.; Zhu, L.P. The response of lake-glacier variations to climate change in Nam Co Catchment, central Tibetan Plateau, during 1970–2000. J. Geogr. Sci. 2008, 18, 177–189. [Google Scholar] [CrossRef]
- Wang, X.; Siegert, F.; Zhou, A.G.; Franke, J. Glacier and glacial lake changes and their relationship in the context of climate change, Central Tibetan Plateau 1972–2010. Glob. Planet. Change 2013, 111, 246–257. [Google Scholar] [CrossRef]
- Khadka, N.; Zhang, G.Q.; Thakuri, S. Glacial Lakes in the Nepal Himalaya: Inventory and Decadal Dynamics (1977–2017). Remote Sens. 2018, 10, 1913. [Google Scholar] [CrossRef] [Green Version]
- Fu, B.J.; Ouyang, Z.Y.; Shi, P.; Fan, J.; Wang, X.D.; Zheng, H.; Zhao, W.W.; Wu, F. Current Condition and Protection Strategies of Qinghai-Tibet Plateau Ecological Security Barrier. Bull. Chin. Acad. Sci. 2021, 36, 1298–1306, (In Chinese with English Abstract). [Google Scholar]
- Qiao, B.J.; Zhu, L.P. Differences and cause analysis of changes in lakes of different supply types in the north-western Tibetan Plateau. Hydrol. Process. 2017, 31, 2752–2763. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Wu, X.; Qi, W.; Li, S.C.; Bai, W.Q. Characteristics and protection effectiveness of nature reserves on the Tibetan Plateau, China. Resour. Sci. 2015, 37, 1455–1464, (In Chinese with English Abstract). [Google Scholar]
- Li, Z.G.; Li, H.Z.; Wu, H.B.; Zhu, X.Y.; Li, X.X. Glaciers and lake changes (1991–2013) and their causes in the Jiezechaka Basin, northwest Tibetan Platea. J. Arid Land Resour. Environ. 2016, 30, 185–191, (In Chinese with English Abstract). [Google Scholar]
- Li, J.L.; Sheng, Y.W.; Luo, J.C.; Shen, Z.F. Remotely sensed mapping of inland lake area changes in the Tibetan plateau. J. Lake Sci. 2011, 23, 311–320, (In Chinese with English Abstract). [Google Scholar]
- Song, C.Q.; Sheng, Y.W. Contrasting evolution patterns between glacier-fed and non-glacier-fed lakes in the Tanggula Mountains and climate cause analysis. Clim. Change 2016, 135, 493–507. [Google Scholar] [CrossRef]
- Guo, W.Q.; Liu, S.Y.; Xu, J.L.; Wu, L.Z.; Shangguan, D.H.; Yao, X.J.; Wei, J.F.; Bao, W.J.; Yu, P.C.; Liu, Q.; et al. The second Chinese glacier inventory: Data, methods and results. J. Glaciol. 2015, 61, 357–372. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.L.; Li, B.Y.; Zheng, D. Datasets of the Boundary and Area of the Tibetan Plateau. Glob. Change Res. Data Publ. Repos. 2014, 69, 164–168. [Google Scholar]
- Zhang, G.Q.; Bolch, T.; Chen, W.F.; Crétaux, J.-F. Comprehensive estimation of lake volume changes on the Tibetan Plateau during 1976–2019 and basin-wide glacier contribution. Sci. Total Environ. 2021, 772, 145463. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.S.; Lyu, X.G.; Chen, Z.K.; Zhang, Z.S.; Jiang, M.; Zhang, K.; Lyu, Y.L. Spatial and Temporal Changes of Wetlands on the Qinghai-Tibetan Plateau from the 1970s to 2010s. Chin. Geogr. Sci. 2018, 28, 935–945. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.Y.; Shen, W.S.; Wang, T. Spatial-temporal characteristics of cultivated land in Tibet in recent 30 years. Trans. Chin. Soc. Agric. Eng. 2015, 31, 264–271, (In Chinese with English Abstract). [Google Scholar]
- Zhao, Z.L.; Liu, F.G.; Zhang, Y.L.; Liu, L.S.; Qi, W. The dynamic response of lakes in the Tuohepingco Basin of the Tibetan Plateau to climate change. Environ. Earth Sci. 2017, 76, 137. [Google Scholar] [CrossRef]
- Nie, Y.; Zhang, Y.L.; Ding, M.J.; Liu, L.S.; Wang, Z.F. Lake change and its implication in the vicinity of Mt. Qomolangma (Everest), central high Himalayas, 1970–2009. Environ. Earth Sci. 2013, 68, 251–265. [Google Scholar] [CrossRef]
- Tomé, A.R.; Miranda, P.M.A. Piecewise linear fitting and trend changing points of climate parameters. Geophys. Res. Lett. 2004, 31, 02207. [Google Scholar] [CrossRef] [Green Version]
- Van, D.V.H.; Van, S.B.; De, T.R.; Hamdi, R.; Termonia, P. Modeling the scaling of short-duration precipitation extremes with temperature. Earth Space Sci. 2019, 6, 2031–2041. [Google Scholar]
- Phan, V.; Lindenbergh, R.; Menenti, M. Geometric dependency of Tibetan lakes on glacial runoff. Hydrol. Earth Syst. Sci. 2013, 17, 4061–4077. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.Q. Exploitation and Utilization of Salt Lake Mineral Resources in the Basin of Chaidamu. CHN. Geol. Min. Econ. 2003, 2, 11–13, (In Chinese with English Abstract). [Google Scholar]
- Chen, Y.D.; Yang, Q.Y. Temporal and Spatial Characteristics and Driving Factors of Land Use/Cover Change in Tibet Autonomous Region. J. Soil Water Conserv. 2022, 36, 173–180, (In Chinese with English Abstract). [Google Scholar]
- Mao, D.H.; Wang, Z.M.; Yang, H.; Li, H.Y.; Thompson, J.R.; Li, L.; Song, K.S.; Chen, B.; Gao, H.K.; Wu, J.G. Impacts of Climate Change on Tibetan Lakes: Patterns and Processes. Remote Sens. 2018, 10, 358. [Google Scholar] [CrossRef] [Green Version]
- Qiao, B.J.; Zhu, L.P. Difference and cause analysis of water storage changes for glacier-fed and non-glacier-fed lakes on the Tibetan Plateau. Sci. Total Environ. 2019, 693, 133399. [Google Scholar] [CrossRef]
- Lei, Y.B.; Yao, T.D.; Yang, K.; Bird, B.W.; Tian, L.D.; Zhang, X.W.; Wang, W.C.; Xiang, Y.; Dai, Y.F.; La, Z.; et al. An integrated investigation of lake storage and water level changes in the Paiku Co basin, central Himalayas. J. Hydrol. 2018, 562, 599–608. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.L.; Wang, C.Y.; Linderholm, H.W.; Tian, J.F.; Shi, Y.; Xu, J.X.; Liu, Y.J. Agricultural Adaptation to Global Warming in the Tibetan Plateau. Int. J. Environ. Res. Public Health 2019, 16, 3686. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Li, J.; Yao, X.J.; Luo, J.; Huang, Y.S.; Feng, Y.Y. Changes of the three holy lakes in recent years and quantitative analysis of the influencing factors. Quat. Int. 2014, 349, 339–345. [Google Scholar] [CrossRef]
- Yao, T.D.; Li, Z.G.; Yang, W.; Guo, X.J.; Zhu, L.P.; Kang, S.C.; Wu, Y.H.; Yu, W.S. Glacial distribution and mass balance in the Yarlung Zangbo River and its influence on lakes. Chin. Sci. Bull. 2010, 55, 2072–2078. [Google Scholar] [CrossRef]
- Sun, H.Z.; Wang, J.Y.; Xiong, J.N.; Bian, J.H.; Jin, H.A.; Cheng, W.M.; Li, A.N. Vegetation change and its response to climate change in Yunnan Province, China. Adv. Meteorol. 2021, 2021, 8857589. [Google Scholar] [CrossRef]
- Chen, K.; Bowler, J.M. Late Pleistocene evolution of salt lakes in the Qaidam Basin, Qinghai Province, China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1986, 54, 87–104. [Google Scholar]
Path | Row | Date | Name | Sensor Source | Resolution (m) | Cloud Cover (%) |
---|---|---|---|---|---|---|
156 | 36 | 19 December 1972 | LM11560361972354AAA02 | Landsat MSS | 60 | 20.00 |
145 | 36 | 7 November 1987 | LT51450361987311SGI00 | Landsat TM | 30 | 5.11 |
145 | 36 | 24 October 1988 | LT51450361988298SGI00 | Landsat TM | 30 | 3.89 |
145 | 36 | 9 December 1993 | LT51450361993343ISP00 | Landsat TM | 30 | 4.34 |
145 | 36 | 25 October 1994 | LT51450361994298ISP00 | Landsat TM | 30 | 1.89 |
145 | 36 | 15 November 1996 | LT51450361996320ISP00 | Landsat TM | 30 | 2.56 |
145 | 36 | 2 November 1997 | LT51450361997306ISP00 | Landsat TM | 30 | 25.80 |
145 | 36 | 29 September 1999 | LE71450361999272SGS01 | Landsat ETM+ | 30 | 1.00 |
145 | 36 | 4 December 2000 | LE71450362000339SGS00 | Landsat ETM+ | 30 | 15.00 |
145 | 36 | 20 October 2001 | LE71450362001293SGS00 | Landsat ETM+ | 30 | 4.00 |
145 | 36 | 24 November 2002 | LE71450362002328SGS05 | Landsat ETM+ | 30 | 8.00 |
145 | 36 | 11 November 2003 | LE71450362003315ASN01 | Landsat ETM+ | 30 | 4.68 |
145 | 36 | 10 September 2004 | LE71450362004254ASN01 | Landsat ETM+ | 30 | 1.48 |
145 | 36 | 2 December 2005 | LE71450362005336SGS00 | Landsat ETM+ | 30 | 6.36 |
145 | 36 | 18 October 2006 | LE71450362006291PFS00 | Landsat ETM+ | 30 | 6.62 |
145 | 36 | 22 November 2007 | LE71450362007326PFS00 | Landsat ETM+ | 30 | 4.95 |
145 | 36 | 2 December 2008 | LT51450362008337BJC00 | Landsat TM | 30 | 18.81 |
145 | 36 | 3 November 2009 | LT51450362009307KHC00 | Landsat TM | 30 | 17.91 |
145 | 36 | 8 December 2010 | LT51450362010342KHC00 | Landsat TM | 30 | 3.67 |
145 | 36 | 22 September 2011 | LT51450362011265KHC00 | Landsat TM | 30 | 4.00 |
145 | 36 | 16 September 2012 | LE71450362012260PFS00 | Landsat ETM+ | 30 | 16.98 |
145 | 36 | 27 September 2013 | LC81450362013270LGN01 | Landsat OLI | 30 | 1.53 |
145 | 36 | 17 November 2014 | LC81450362014321LGN00 | Landsat OLI | 30 | 2.51 |
145 | 36 | 20 November 2015 | LC81450362015324LGN00 | Landsat OLI | 30 | 1.80 |
145 | 36 | 8 December 2016 | LC81450362016343LGN00 | Landsat OLI | 30 | 2.10 |
145 | 36 | 22 September 2017 | LC81450362017265LGN00 | Landsat OLI | 30 | 2.43 |
145 | 36 | 25 September 2018 | LC81450362018268LGN00 | Landsat OLI | 30 | 12.40 |
145 | 36 | 12 September 2019 | LC81450362019255LGN02 | Landsat OLI | 30 | 1.19 |
145 | 36 | 30 September 2020 | LC81450362020274LGN00 | Landsat OLI | 30 | 0.72 |
145 | 36 | 4 November 2021 | LC81450362021308LGN00 | Landsat OLI | 30 | 9.65 |
Period | Lake | Annual Mean Temperature | Annual Precipitation |
---|---|---|---|
1972–2021 | LongmuCo | 0.588 ** | 0.180 |
1972–2021 | Jiezechaqia | 0.502 * | 0.124 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Hu, Z.; Zhou, J.; Kan, R.; Li, W. Response of Two Major Lakes in the Changtang National Nature Reserve, Tibetan Plateau to Climate and Anthropogenic Changes over the Past 50 Years. Land 2023, 12, 267. https://doi.org/10.3390/land12020267
Zhao Z, Hu Z, Zhou J, Kan R, Li W. Response of Two Major Lakes in the Changtang National Nature Reserve, Tibetan Plateau to Climate and Anthropogenic Changes over the Past 50 Years. Land. 2023; 12(2):267. https://doi.org/10.3390/land12020267
Chicago/Turabian StyleZhao, Zhilong, Zengzeng Hu, Jun Zhou, Ruliang Kan, and Wangjun Li. 2023. "Response of Two Major Lakes in the Changtang National Nature Reserve, Tibetan Plateau to Climate and Anthropogenic Changes over the Past 50 Years" Land 12, no. 2: 267. https://doi.org/10.3390/land12020267
APA StyleZhao, Z., Hu, Z., Zhou, J., Kan, R., & Li, W. (2023). Response of Two Major Lakes in the Changtang National Nature Reserve, Tibetan Plateau to Climate and Anthropogenic Changes over the Past 50 Years. Land, 12(2), 267. https://doi.org/10.3390/land12020267