Modelling Impact of Urban Expansion on Ecosystem Services: A Scenario-Based Approach in a Mixed Natural/Urbanised Landscape
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Landscape
2.2. Data Sources and Methods to Quantify the ESs
2.3. LULC Changes and Future Scenarios in the Karaj Landscape
2.3.1. Future Scenarios in the Karaj Landscape
Business as Usual Scenario (BAU)
Protection-Based Scenario (PB)
2.4. Assessing ESs
2.4.1. Water Yield
- Daily average, maximum and minimum temperatures.
- Mean daily maximum and minimum differences.
- Extra-terrestrial radiation.
2.4.2. Food Production
Calculation of Food Production Using the Yield Model
Calculation of the Relevant Capacity of LULC Classes for Food Production
2.4.3. Outdoor Recreation Opportunity
3. Results
3.1. LULC in CU Situation and Two Scenarios
3.2. Changes to ES Flows
3.2.1. Water Yield
3.2.2. Food Production
3.2.3. Outdoor Recreation Opportunity
4. Discussion
4.1. Changes to LULC under Scenarios in the Future
4.2. Spatial Distribution of ESs in the Karaj Landscape
4.2.1. Spatial Distribution of Water Yield
4.2.2. Spatial Distribution of Food Production
4.2.3. Spatial Distribution of Outdoor Recreation Opportunity
4.3. The Impact of Urban Expansion on ESs
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Distance From Roads (KM) | |||||
Distance from human-made areas (KM) | <1 | 1–5 | 5–10 | >10 | |
<5 | 1 | 2 | 2 | 4 | |
5–10 | 2 | 2 | 2 | 4 | |
10–25 | 3 | 3 | 3 | 4 | |
25–50 | 3 | 4 | 4 | 4 | |
>50 | 4 | 4 | 4 | 5 | |
1 | Neighbourhood | ||||
2 | Proximity | ||||
3 | Almost far | ||||
4 | Remote | ||||
5 | Very remote |
Appendix B
Recreation Potential Index (RPI) | |||||
Remoteness/accessibility (proximity) | 1 | 2 | 3 | ||
<0.19 | 0.19–0.25 | >0.25 | |||
1 | Neighbourhood | 1 | 4 | 7 | |
2 | Proximity | 1 | 4 | 7 | |
3 | Almost far | 2 | 5 | 8 | |
4 | Remote | 3 | 6 | 9 | |
5 | Very remote | 3 | 6 | 9 | |
1 Low provision—easily accessible | |||||
2 Low provision—accessible | |||||
3 Low provision—not easily accessible | |||||
4 Medium provision—easily accessible | |||||
5 Medium provision—accessible | |||||
6 Medium provision—not easily accessible | |||||
7 High provision—easily accessible | |||||
8 High provision—accessible | |||||
9 High provision—not easily accessible |
References
- Das, M.; Das, A. Estimation of ecosystem services (EESs) loss due to transformation of Local climatic zones (LCZs) in Sriniketan-santiniketan planning area (SSPA) West Bengal, India. Sustain. Cities Soc. 2019, 47, 101474. [Google Scholar] [CrossRef]
- Wood, S.L.; Jones, S.K.; Johnson, J.A.; Brauman, K.A.; Chaplin-Kramer, R.; Fremier, A.; Girvetzg, E.; Gordon, L.; Kappel, C.; Mandle, L.; et al. Distilling the role of ecosystem services in the Sustainable Development Goals. Ecosyst. Serv. 2018, 29, 70–82. [Google Scholar] [CrossRef] [Green Version]
- Zhai, T.; Zhang, D.; Zhao, C. How to optimize ecological compensation to alleviate environmental injustice in different cities in the Yellow River Basin? A case of integrating ecosystem service supply, demand and flow. Sustain. Cities Soc. 2021, 75, 103341. [Google Scholar] [CrossRef]
- Connor, J.D.; Summers, D.; Regan, C.; Abbott, H.; Van Der Linden, L.; Frizenschaf, J. Sensitivity analysis in economic evaluation of payments for water and carbon ecosystem services. Ecosyst. Serv. 2022, 54, 101416. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment (MEA). Ecosystems and Human Well-Being: Current State and Trends; Island Press: Washington, DC, USA, 2015. [Google Scholar]
- Sharon, O.; Fishman, S.N.; Ruhl, J.B.; Olander, L.; Roady, S.E. Ecosystem services and judge-made law: A review of legal cases in common law countries. Ecosyst. Serv. 2018, 32, 9–21. [Google Scholar] [CrossRef]
- Xie, Z.; Li, X.; Chi, Y.; Jiang, D.; Zhang, Y.; Ma, Y.; Chen, S. Ecosystem service value decreases more rapidly under the dual pressures of land use change and ecological vulnerability: A case study in Zhujiajian Island. Ocean Coast Manag. 2021, 201, 105493. [Google Scholar] [CrossRef]
- Balasubramanian, M. Economic value of regulating ecosystem services: A comprehensive global level review. Environ. Monit. Assess. 2019, 191, 616. [Google Scholar] [CrossRef]
- Blanco, E.; Raskin, K.; Clergeau, P. Towards regenerative neighbourhoods: An international survey on urban strategies promoting the production of ecosystem services. Sustain. Cities Soc. 2022, 80, 103784. [Google Scholar] [CrossRef]
- Athukorala, D.; Estoque, R.C.; Murayama, Y.; Matsushita, B. Ecosystem Services Monitoring in the Muthurajawela Marsh and Negombo Lagoon, Sri Lanka, for Sustainable Landscape Planning. Sustainability 2021, 13, 11463. [Google Scholar] [CrossRef]
- Karimi, F.; Sultana, S.; Shirzadi Babakan, A.; Suthaharan, S. An enhanced support vector machine model for urban expansion prediction. Comput. Environ. Urban Syst. 2019, 75, 61–75. [Google Scholar] [CrossRef]
- Sun, X.; Crittenden, J.C.; Li, F.; Lu, Z.; Dou, X. Urban expansion simulation and the spatio-temporal changes of ecosystem services, a case study in Atlanta Metropolitan area, USA. Sci. Total Environ. 2018, 622–623, 974–987. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Tang, X.; Lin, S.; Bian, H. The influence of land use change on key ecosystem services and their relationships in a mountain region from past to future (1995–2050). Forests 2021, 12, 616. [Google Scholar] [CrossRef]
- Li, S.; He, Y.; Xu, H.; Zhu, C.; Dong, B.; Lin, Y.; Wang, K. Impacts of urban expansion forms on ecosystem services in urban agglomerations: A case study of Shanghai-Hangzhou Bay urban agglomeration. Remote Sens. 2021, 13, 1908. [Google Scholar] [CrossRef]
- Zhang, D.; Huang, Q.; He, C.H.; Wu, J. Impacts of urban expansion on ecosystem services in the Beijing-Tianjin- Hebei urban agglomeration, China: A scenario analysis based on the Shared Socioeconomic Pathways. Resour. Conserv. Recycl. 2017, 125, 115–130. [Google Scholar] [CrossRef]
- Wang, S.; Hu, M.; Wang, Y.; Xia, B. Dynamics of ecosystem services in response to urbanisation across temporal and spatial scales in a mega metropolitan area. Sustain. Cities Soc. 2022, 77, 103561. [Google Scholar] [CrossRef]
- Zarandian, A.; Baral, H.; Stork, N.E.; Ling, M.A.; Yavari, A.R.; Jafari, H.R.; Amirnejad, H. Modelling of ecosystem services informs spatial planning in lands adjacent to the Sarvelat and Javaherdasht protected area in northern Iran. Land Use Policy 2017, 61, 487–500. [Google Scholar] [CrossRef]
- Jopke, C.; Kreyling, J.; Maes, J.; Koellner, T. Interactions among ecosystem services across Europe: Bag plots and cumulative correlation coefficients reveal synergies, trade-offs, and regional patterns. Ecol. Indic. 2014, 49, 46–52. [Google Scholar] [CrossRef]
- Sun, X.; Li, F. Spatiotemporal assessment and trade-offs of multiple ecosystem services based on land use changes in Zengcheng, China. Sci. Total Environ. 2017, 609, 1569–1581. [Google Scholar] [CrossRef]
- Robinson, C.J.; Maclean, K.; Hill, R.; Bock, E.; Rist, P. Participatory mapping to negotiate indigenous knowledge used to assess environmental risk. Sustain. Sci. 2016, 11, 115–126. [Google Scholar] [CrossRef]
- Zhao, C.; Sander, H. Assessing the sensitivity of urban ecosystem service maps to input spatial data resolution and method choice. Landsc. Urban Plan. 2018, 175, 11–22. [Google Scholar] [CrossRef]
- Shoyama, K.; Kamiyama, C.; Morimoto, J.; Ooba, M.; Okuro, T. A review of modelling approaches for ecosystem services assessment in the Asian region. Ecosyst. Serv. 2017, 26, 316–328. [Google Scholar] [CrossRef]
- Xie, V.; Huang, Q.; He, C.H.; Zhao, X. Projecting the impacts of urban expansion on simultaneous losses of ecosystem services: A case study in Beijing, China. Ecol. Indic. 2018, 84, 183–193. [Google Scholar] [CrossRef]
- Mirsanjari, M.M.; Zarandian, A.; Mohammadyari, F.; Suziedelyte-visockiene, J. Investigation of the impacts of urban vegetation loss on the ecosystem service of air pollution mitigation in Karaj metropolis, Iran. Environ. Monit. Assess. 2020, 192, 501. [Google Scholar] [CrossRef] [PubMed]
- Nie, X.; Lu, B.; Chen, Z.; Yang, Y.; Chen, S.; Chen, Z.; Wang, H. Increase or decrease? Integrating the CLUMondo and InVEST models to assess the impact of the implementation of the Major Function Oriented Zone planning on carbon storage. Ecol. Indic. 2021, 118, 106708. [Google Scholar] [CrossRef]
- Ma, S.H.; Wang, L.J.; Zhu, D.; Zhang, J. Spatiotemporal changes in ecosystem services in the conservation priorities of the southern hill and mountain belt, China. Ecol. Indic. 2021, 122, 107225. [Google Scholar] [CrossRef]
- Pessacg, N.; Flaherty, S.; Brandizi, L.; Solman, C.; Pascual, M. Getting water right: A case study in water yield modelling based on precipitation data. Sci. Total Environ. 2015, 537, 225–234. [Google Scholar] [CrossRef]
- Gunnarsdottir, M.J.; Persson, K.M.; Andradottir, H.O.; Gardarsson, S.M. Status of small water supplies in the Nordic countries: Characteristics, water quality and challenges. Int. J. Hyg. Environ. Health 2017, 220, 1309–1317. [Google Scholar] [CrossRef]
- Levrel, H.; Cabral, P.; Feger, C.; Chambolle, M.; Basque, D. How to overcome the implementation gap in ecosystem services? A user-friendly and inclusive tool for improved urban management. Land Use Policy 2017, 68, 574–584. [Google Scholar] [CrossRef]
- Li, T.; Cui, Y.; Liu, A. Spatiotemporal dynamic analysis of forest ecosystem services using Big data: A case study of Anhui province, central-eastern China. J. Clean. Prod. 2017, 142, 589–599. [Google Scholar] [CrossRef]
- Peng, J.; Tian, L.; Liu, Y.; Zhao, M.; Hu, Y.; Wu, J. Ecosystem services response to urbanisation in metropolitan areas: Thresholds identification. Sci. Total Environ. 2017, 607–608, 706–714. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, D.; Wang, P. Urban simulation incorporating coordination relationships of multiple ecosystem services. Sustain. Cities Soc. 2022, 76, 103432. [Google Scholar] [CrossRef]
- Li, R.; Shi, Y.; Feng, C.C.; Guo, L. The spatial relationship between ecosystem service scarcity value and urbanisation from the perspective of heterogeneity in typical arid and semi-arid regions of China. Ecol. Indic. 2021, 132, 108299. [Google Scholar] [CrossRef]
- Li, G.; Jiang, C.; Zhang, Y.; Jiang, G. Whether land greening in different geomorphic units are beneficial to water yield in the Yellow River Basin? Ecol. Indic. 2021, 120, 106926. [Google Scholar] [CrossRef]
- Hu, W.; Li, G.; Gao, Z.; Jia, G.; Wang, Z.; Li, Y. Assessment of the impact of the Poplar Ecological Retreat Project on water conservation in the Dongting Lake wetland region using the InVEST model. Sci. Total Environ. 2020, 733, 139423. [Google Scholar] [CrossRef] [PubMed]
- Cunha, J.; Elliott, M.; Ramos, S. Linking modelling and empirical data to assess recreation services provided by coastal habitats: The case of NW Portugal. Ocean Coast. Manag. 2018, 162, 60–70. [Google Scholar] [CrossRef]
- González-García, A.; Palomo, I.; González, J.; López, G.; Montes, G. Quantifying spatial supply-demand mismatches in ecosystem services provides insights for land-use planning. Land Use Policy 2020, 94, 104493. [Google Scholar] [CrossRef]
- Früh- Müller, A.; Hotes, S.; Breuer, L.; Wolters, V.; Koellner, T. Regional Patterns of Ecosystem Services in Cultural Landscapes. Land 2016, 5, 17. [Google Scholar] [CrossRef]
- Morse, W.C.; Stern, M.; Blahna, D.; Stein, T. Recreation as a transformative experience: Synthesizing the literature on outdoor recreation and recreation ecosystem services into a systems framework. J. Outdoor Recreat. Tour. 2022, 38, 100492. [Google Scholar] [CrossRef]
- Lavorel, S.; Rey, P.L.; Grigulis, K.; Zawada, M.; Byczek, G. Interactions between outdoor recreation and iconic terrestrial vertebrates in two French alpine national parks. Ecosyst. Serv. 2020, 45, 101155. [Google Scholar] [CrossRef]
- Lopes, R.; Videira, N. Modelling feedback processes underpinning management of ecosystem services: The role of participatory systems mapping. Ecosyst. Serv. 2017, 28, 28–42. [Google Scholar] [CrossRef]
- Baró, F.; Gómez-Baggethun, E.; Haase, D. Ecosystem service bundles along the urban-rural gradient: Insights for landscape planning and management. Ecosyst. Serv. 2017, 24, 147–159. [Google Scholar] [CrossRef] [Green Version]
- Gong, J.; Liu, D.; Zhang, J.; Xie, Y.; Cao, E.; Li, H. Trade-offs/synergies of multiple ecosystem services based on land use simulation in a mountain-basin area, Western China. Ecol. Indic. 2019, 99, 283–293. [Google Scholar] [CrossRef]
- Kain, J.H.; Larondelle, N.; Haase, D.; Kaczorowska, A. Exploring local consequences of two land-use alternatives for the supply of urban ecosystem services in Stockholm year 2050. Ecol. Indic. 2016, 70, 615–629. [Google Scholar] [CrossRef]
- Mexia, T.; Vieira, J.; Príncipe, A.; Anjos, A.; Silva, P.; Lopes, N.; Freitas, C.; Reis, M.S.; Correia, O.; Branquinho, C.; et al. Ecosystem services: Urban parks under a magnifying glass. Environ. Res. 2018, 160, 469–478. [Google Scholar] [CrossRef]
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. InVEST 3.7.0 User’s Guide; The Natural Capital Project; Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund: Stanford, CA, USA, 2020; Available online: https://invest-userguide.readthedocs.io/en/3.5.0/ (accessed on 1 December 2022).
- Zulian, G.; Paracchini, M.L.; Maes, J.; Liquete, C. ESTIMAP: Ecosystem Services Mapping at European Scale; EUR 26474; Publications Office of the European Union: Luxembourg, 2013; p. JRC87585. [Google Scholar] [CrossRef]
- Heydari, S.H.; Mountrakis, G. Meta-analysis of deep neural networks in remote sensing: A comparative study of mono-temporal classification to support vector machines. ISPRS J. Photogramm. Remote Sens. 2019, 152, 192–210. [Google Scholar] [CrossRef]
- Alassery, F.; Alzahrani, A.; Khan, A.; Irshad, K.; Kshirsagar, S.R. An artificial intelligence-based solar radiation prophesy model for green energy utilization in energy management system. Sustain. Energy Technol. Assess. 2022, 52, 102060. [Google Scholar] [CrossRef]
- Zhang, Y.; Chang, X.; Liu, Y.; Lu, Y.; Wang, Y.; Liu, Y. Urban expansion simulation under constraint of multiple ecosystem services (MESs) based on cellular automata (CA)-Markov model: Scenario analysis and policy implications. Land Use Policy 2021, 108, 105667. [Google Scholar] [CrossRef]
- Mohammadyari, F.; Mirsanjari, M.M.; Suziedelyte Visockiene, J.; Zarandian, A. Evaluation of Change in Land-Usage and Land-Cover in IRAN, KARAJ City. In Proceedings of the Environmental Engineering 11th International Conference, Vilnius Gediminas Technical University, Vilnius, Lithuania, 21–22 May 2020; VGTU Press: Vilnius, Lithuania, 2020; pp. 1–8. [Google Scholar]
- Mohammadyari, F.; Purkhabbaz, H.; Aghdar, H.; Tavakoli, M. Predicted trends in land use City Behbahan years 2014 to 2028 Using LCM model. Geogr. Space 2019, 65, 37–56. [Google Scholar]
- Silva, L.P.; Xavier, A.; Silva, R.M.; Santos, G. Modelling land cover change based on an artificial neural network for a semi-arid river basin in north-eastern Brazil. Glob. Ecol. Conserv. 2019, 21, e00811. [Google Scholar] [CrossRef]
- Mohammad, A.; Worku, H. Simulating urban land use and cover dynamics using cellular automata and Markov chain approach in Addis Ababa and the surrounding. Urban Clim. 2020, 31, 100545. [Google Scholar] [CrossRef]
- Al Kafy, A.; Rahman, M.; Al- Faisal, A.; Hasan, M.M.; Islam, M. Modelling future land use land cover changes and their impacts on land surface temperatures in Rajshahi, Bangladesh. Remote Sens. Appl. Soc. Environ. 2020, 18, 100314. [Google Scholar] [CrossRef]
- Islam, N.; Irshad, K. Artificial ecosystem optimization with Deep Learning Enabled Water Quality Prediction and Classification model. Chemosphere 2022, 309, 136615. [Google Scholar] [CrossRef] [PubMed]
- Mirsanjari, M.M.; Visockienė, J.S.; Mohammadyari, F.; Zarandian, A. Modelling of expansion changes of Vilnius city area and impacts on landscape patterns using an Artificial Neural Network. Ecol. Chem. Eng. 2021, 28, 429–447. [Google Scholar] [CrossRef]
- Simwanda, M.; Murayama, Y.; Phiri, D.; Nyirenda, V.R.; Ranagalage, M. Simulating Scenarios of Future Intra-Urban Land-Use Expansion Based on the Neural Network–Markov Model: A Case Study of Lusaka, Zambia. Remote Sens. 2021, 13, 942. [Google Scholar] [CrossRef]
- Hajehforooshnia, S.; Soffianian, A.; Mahiny, A.; Fakheran, S. Multi objective land allocation (MOLA) for zoning Ghamishloo Wildlife Sanctuary in Iran. J. Nat. Conserv. 2011, 19, 254–262. [Google Scholar] [CrossRef]
- Quesada-Ruiz, L.C.; Perez, L.; Rodriguez-Galiano, V. Spatiotemporal analysis of the housing bubble′s contribution to the proliferation of illegal landfills—The case of Gran Canaria. Sci. Total Environ. 2019, 687, 104–117. [Google Scholar] [CrossRef]
- Rahimi, V.; Pourkhabbaz, H.R.; Aghdar, H.; Mohammadyari, F. Comparison of fuzzy AHP buckley and ANP models in forestry capability evaluation (Case Study: Behbahan City Fringe). Iran. J. Appl. Ecol. 2015, 4, 15–31. [Google Scholar] [CrossRef]
- Ghosh, P.; Lepcha, K. Weighted linear combination method versus grid-based overlay operation method—A study for potential soil erosion susceptibility analysis of Malda district (West Bengal) in India. Egypt. J. Remote Sens. Space Sci. 2019, 22, 95–115. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, B.; Lehner, I.; Orlowsky, B.; Teuling, A. Investigating soil moisture–climate interactions in a changing climate: A review. Earth Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Cascone, S.; Coma, J.; Gagliano, A.; Perez, G. The evapotranspiration process in green roofs: A review. Build. Environ. 2019, 147, 337–355. [Google Scholar] [CrossRef]
- Nachtergaele, F.; Van Velthuizen, H.; Verelst, L.; Batjes, N.; Dijkshoorn, K.; VanEngelen, V.; Fischer, G.; Jones, A.; Montanarella, L.; Petri, M. Harmonized World Soil Database; Food and Agriculture Organization of the United Nations: Rome, Italy, 2008. [Google Scholar]
- Burkhard, B.; Kroll, F.; Nedkov, S.; Müller, F. Mapping supply, demand and budgets of ecosystem services. Ecol. Indic. 2012, 21, 17–20. [Google Scholar] [CrossRef]
- Burkhard, B.; Kroll, F.; Müller, F.; Windhorst, W. Landscapes′ capacities to provide ecosystem services-a concept for land-cover based assessments. Landsc. Online 2009, 15, 1–22. [Google Scholar] [CrossRef]
- Haines-Young, R.H.; Potschin, M.P. The links between biodiversity, ecosystem services and human well-being. In Ecosystem Ecology: A New Synthesis; Raffaelli, D.G., Frid, C.L.J., Eds.; Cambridge University Press: Cambridge, UK, 2010; p. 162. [Google Scholar] [CrossRef]
- Paracchini, M.L.; Zulian, G.; Kopperoinen, L.; Maes, J.; Schägner, J.P.; Termansen, M.; Zandersen, M.; Perez-Soba, M.; Scholefield, P.A.; Bidoglio, G. Mapping cultural ecosystem services: A framework to assess the potential for outdoor recreation across the EU. Ecol. Indic. 2014, 45, 371–385. [Google Scholar] [CrossRef] [Green Version]
- Maes, J.; Paracchini, M.L.; Zulian, G.; Dunbar, M.B.; Alkemade, R. Synergies and trade-offs between ecosystem service supply, biodiversity, and habitat conservation status in Europe. Biol. Conserv. 2012, 155, 1–12. [Google Scholar] [CrossRef]
- Kienast, F.; Degenhardt, B.; Weilenmann, B.; Waeger, Y.; Buchecker, M. GIS-assisted mapping of landscape suitability for nearby recreation. Landsc. Urban Plan. 2012, 105, 385–399. [Google Scholar] [CrossRef]
- Paracchini, M.L.; Capitani, C. Implementation of an EU Wide Indicator for the Rural-Agrarian Landscape: In Support of COM (2011) 508 Development of Agri-Environmental Indicators for Monitoring the Integration of Environmental Concerns into the Common Agricultural Policy; Publications Office: Luxembourg, 2011; ISBN 978929223952. [Google Scholar] [CrossRef]
- Tavakoli, M.; Mohammadyari, F. Modeling the spatial distribution of multiple ecosystem services in Ilam dam watershed, Western Iran: Identification of areas for spatial planning. Urban Ecosyst. 2022, 1–20. [Google Scholar] [CrossRef]
- Vallecillo, S.; La Notte, A.; Zulian, G.; Ferrini, S.; Maes, J. Ecosystem services accounts: Valuing the actual flow of nature-based recreation from ecosystems to people. Ecol. Model. 2019, 392, 196–211. [Google Scholar] [CrossRef] [PubMed]
- Ghermandi, A. Benefits of coastal recreation in Europe: Identifying trade-offs and priority regions for sustainable management. J. Environ. Manag. 2015, 152, 218–229. [Google Scholar] [CrossRef]
- Xiaonan, Y.; Zixiang, Z.; Jing, L.; Xin, F.; Xingmin, M.; Ting, L. Trade-offs between carbon sequestration, soil retention and water yield in the Guanzhong-Tianshui Economic Region of China. J. Geogr. Sci. 2016, 26, 1449–1462. [Google Scholar] [CrossRef]
- Shi, M.; Wu, H.; Fan, X.; Jia, H.; Dong, T.; He, P.; Jiang, P. Trade-offs and synergies of multiple ecosystem services for different land use scenarios in the yili river valley, China. Sustainability 2021, 13, 1577. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Xiong, N.; Liang, B.; Wang, Z.; Cressey, E.L. Spatial and Temporal Variation, Simulation and Prediction of Land Use in Ecological Conservation Area of Western Beijing. Remote Sens. 2022, 14, 1452. [Google Scholar] [CrossRef]
- Baig, M.F.; Mustafa, M.R.U.; Baig, I.; Takaijudin, H.B.; Zeshan, M.T. Assessment of land use land cover changes and future predictions using CA-ANN simulation for selangor, Malaysia. Water 2022, 14, 402. [Google Scholar] [CrossRef]
- Gao, L.; Tao, F.; Liu, R.; Wang, Z.; Leng, H.; Zhou, T. Multi-scenario simulation and ecological risk analysis of land use based on the PLUS model: A case study of Nanjing. Sci. Total Environ. 2022, 85, 104055. [Google Scholar] [CrossRef]
- Lang, Y.Q.; Song, W.; Zhang, Y. Responses of the water-yield ecosystem service to climate and land use change in Sancha River Basin, China. Phys. Chem. Earth 2017, 101, 102–111. [Google Scholar] [CrossRef]
- Yang, D.; Liu, W.; Tang, L.; Chen, L.; Li, X.; Xu, X. Estimation of water provision service for monsoon catchments of South China: Applicability of the InVEST model. Landsc. Urban Plan. 2019, 182, 133–143. [Google Scholar] [CrossRef]
- Betru, T.; Tolera, M.; Sahle, K.; Kassa, H. Trends and drivers of land use/land cover change in Western Ethiopia. Appl. Geogr. 2019, 104, 83–93. [Google Scholar] [CrossRef]
- Chen, Y.L.; Wang, S.S.; Ren, Z.G.; Jingfeng, H.; Xiuzhen, W.; Shanshan, L.; Haijun, D.; Wenke, L. Increased evapotranspiration from land cover changes intensified water crisis in an arid river basin in northwest China. J. Hydrol. 2019, 574, 383–397. [Google Scholar] [CrossRef]
- Gaertner, B.A.; Zegre, N.; Warner, T.; Fernandez, R.; He, Y.; Merriam, E.R. Climate, forest growing season, and evapotranspiration changes in the central Appalachian Mountains, USA. Sci. Total Environ. 2019, 650, 1371–1381. [Google Scholar] [CrossRef]
- Aghsaei, H.; Dinan, N.M.; Moridi, A.; Asadolahi, Z.; Delavar, M.; Fohrer, N.; Wagner, P.D. Effects of dynamic land use/land cover change on water resources and sediment yield in the Anzali wetland catchment, Gilan, Iran. Sci. Total Environ. 2020, 712, 136449. [Google Scholar] [CrossRef]
- Chemura, A.; Rwasoka, D.; Mutanga, O.; Dube, T.; Mushore, T. The impact of land-use/land cover changes on water balance of the heterogeneous Buzi sub-catchment, Zimbabwe. Remote Sens. Appl. Soc. Environ. 2020, 18, 100292. [Google Scholar] [CrossRef]
- Zhan, C.S.; Xu, Z.X.; Ye, A.Z.; Su, H.B. LUCC and its impact on run-off yield in the Bai River catchment–upstream of the Miyun Reservoir basin. J Plant Ecol. 2011, 4, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Daneshi, A.; Brouwer, R.; Najafinejad, A.; Panahi, M.; Zarandian, A.; Maghsood, F.F. Modelling the impacts of climate and land use change on water security in a semi-arid forested watershed using InVEST. J. Hydrol. 2021, 593, 125621. [Google Scholar] [CrossRef]
- Abera, W.; Tamene, L.; Abegaz, A.; Solomon, D. Understanding climate and land surface changes impact on water resources using Budyko framework and remote sensing data in Ethiopia. J. Arid Environ. 2019, 167, 56–64. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, B.; Li Liu, D.; Zhang, M.; Feng, P.; Cheng, L.; Yu, Q.; Eamus, D. Impacts of future climate change on water resource availability of eastern Australia: A case study of the Manning River basin. J. Hydrol. 2019, 573, 49–59. [Google Scholar] [CrossRef]
- Zarandian, A.; Baral, H.; Yavari, A.R.; Jafari, H.R.; Stork, N.E.; Ling, M.A.; Amirnejad, H. Anthropogenic Decline of Ecosystem Services Threatens the Integrity of the Unique Hyrcanian (Caspian) Forests in Northern Iran. Forests 2016, 7, 51. [Google Scholar] [CrossRef]
- D′Amour, C.B.; Reitsma, F.; Baiocchi, G.; Barthel, S.; Güneralp, B.; Erb, K.; Haberl, H.; Creutzig, F.; Seto, K. Future urban land expansion and implications for global croplands. Proc. Natl. Acad. Sci. USA 2017, 114, 8939–8944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Zhang, G.; Zhuang, Z.; Cheng, Q.; Gao, Y.; Chen, T.; Huang, Q.; Xu, L.; Chen, D. A new perspective for urban development boundary delineation based on SLEUTH-InVEST model. Habitat Int. 2017, 70, 13–23. [Google Scholar] [CrossRef]
- Locher-Krause, K.E.; Lautenbach, S.; Volk, M. Spatio-temporal change of ecosystem services as a key to understand natural resource utilisation in Southern Chile. Reg. Environ. Chang. 2017, 17, 2477–2493. [Google Scholar] [CrossRef]
- Tolessa, T.; Senbeta, F.; Kidane, M. The impact of land use/land cover change on ecosystem services in the central highlands of Ethiopia. Ecosyst. Serv. 2017, 23, 47–54. [Google Scholar] [CrossRef]
- Van Vliet, J.; Eitelberg, D.A.; Verburg, P.H. A global analysis of land take in cropland areas and production displacement from urbanisation. Glob. Environ. Chang. 2017, 43, 107–115. [Google Scholar] [CrossRef]
- Mohammadyari, F.; Mirsanjari, M.M.; Zarandian, A. Evaluating Ecological Networks of Urban Landscape (Case Study: Karaj Metropolis). Town Ctry. Plan. 2018, 10, 225–247. [Google Scholar]
- Song, W.; Deng, X. Land-use/land-cover change and ecosystem service provision in China. Sci. Total Environ. 2017, 576, 705–719. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.Q.; Zhao, W.W.; Liu, Y.X.; Wang, S.; Wang, J.; Zhai, R.J. Influence of land use change on the ecosystem service trade-offs in the ecological restoration area: Dynamics and scenarios in the Yanhe watershed, China. Sci. Total Environ. 2018, 644, 556–566. [Google Scholar] [CrossRef]
- Jie, X.; Yu, X.; Na, L.; Hao, W. Spatial and temporal patterns of supply and demand balance of water supply services in the Dongjiang Lake Basin and its beneficiary areas. J. Resour. Ecol. 2015, 6, 386–396. [Google Scholar] [CrossRef]
- Cortinovis, S.; Geneletti, D. Ecosystem services in urban plans: What is there, and what is still needed for better decisions. Land Use Policy 2018, 70, 298–312. [Google Scholar] [CrossRef]
- Redhead, J.W.; Stratford, C.; Sharps, K.; Jones, L.; Ziv, G.; Clarke, D.; Oliver, T.H.; Bullock, N.M. Empirical validation of the InVEST water yield ecosystem service model at a national scale. Sci. Total Environ. 2016, 569, 1418–1426. [Google Scholar] [CrossRef] [PubMed]
Data Types | Model | Input Data | Description |
---|---|---|---|
LULC | Support Vector Machines (SVM) Markov Chain MOLA | LULC data | Landsat 5 and Landsat 8 satellite images were downloaded for 2006, 2011 and 2017 from the United States Geological Survey (www.usgs.gov, 1 June 2006, 2011 and 2017). |
Digital elevation model | Aster satellite | ||
Provisioning Service Water yield | InVEST model [46] | LULC map | A GIS raster dataset with an LULC code for each cell |
Precipitation (mm) | A GIS raster dataset with a non-zero value for average annual precipitation for each cell. | ||
Average annual reference evapotranspiration (mm) | A GIS raster dataset with an annual average evapotranspiration value for each cell. | ||
Root restricting layer depth (mm) | A GIS raster dataset with an average root restricting layer depth value for each cell. | ||
Plant available water (PAWC) | A GIS raster dataset with a plant available water content value for each cell. | ||
Watersheds | One polygon per watershed (shape file). | ||
Sub-watersheds | A shape file with one polygon per sub-watershed within the main watersheds specified in the Watersheds shape file. | ||
Biophysical Table | Tables of LULC classes, including data on biophysical coefficients used in this tool. | ||
Demand Table | A table of LULC classes showing consumption water use for each LULC type. | ||
Food production | Yield model [19] | LULC map | A GIS raster dataset with an LULC code for each cell. |
Cultural Service Outdoor recreation opportunity | ROS model [37,38,47] | Cultivated land Number of fruit-producing tress | Statistical information on agricultural and garden products obtained from the Statistics Centre of Iran. |
Natural area | Degree of naturalness: Hemeroby index | ||
Water component | Water bodies (extracted from LULC) | ||
River (extracted from LULC) | |||
proximity | Road network | ||
Urban areas (extracted from LULC) |
Criteria | Shape of Membership Functions | Control Points | |||
---|---|---|---|---|---|
a | b | c | d | ||
Distance from River | Decreasing linear | - | - | 500 | 1000 |
Distance from Water bodies | Decreasing linear | - | - | 30 | 2000 |
Distance from Human-Made | Decreasing linear | - | - | 2000 | 5000 |
Distance from Roads | Decreasing linear | - | - | 500 | 5000 |
Land Use Type | Area (ha) | ||
---|---|---|---|
CU | BAU | PB | |
Human-made | 14,478.66 | 18,729.64 | 17,630.64 |
Agriculture | 6511.86 | 5199.85 | 6473.16 |
Garden | 7036.67 | 6834.29 | 6995.71 |
Water body | 326.97 | 326.97 | 325.5 |
Low dense grassland | 22,584.96 | 20,197.93 | 19,899.67 |
Dense grassland | 40,167.09 | 39,810.59 | 39,774.65 |
Barren | 227.43 | 227.43 | 226.63 |
Rocky outcrop | 24,393.78 | 24,401.78 | 24,402.09 |
Green space | 802.42 | 801.36 | 801.79 |
River | 990.36 | 990.36 | 990.36 |
Average Precipitation (mm) | Average Evapotranspiration (mm) | Water-Related (Million m3/Year) | |||
---|---|---|---|---|---|
Water Yield | Water Supply | Water Demand | |||
CU | 523.21 | 288.08 | 235.10 | −105.62 | 340.72 |
BAU | 523.19 | 282.58 | 240.61 | −106.98 | 347.59 |
PB | 523.19 | 283.75 | 238.41 | −108.26 | 346.67 |
Sub-Basin Code | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Area (ha) | 76,114.00 | 963.18 | 3131.216 | 34,540.50 | 2771.277 |
Average Precipitation (mm/year) | 573.62 | 407.49 | 407.44 | 431.46 | 454.05 |
Evapotranspiration (mm/pixel) | |||||
Potential | 550.91 | 127.31 | 273.22 | 450.4 | 597.59 |
Actual | 338.77 | 92.26 | 139.98 | 198.6 | 245.32 |
Water yield volume (million m3/year) | |||||
CU | 234.7 | 315.2 | 267.5 | 232.9 | 208.7 |
BAU scenario | 233.3 | 331.9 | 277.3 | 253.1 | 208.7 |
PB scenario | 234.6 | 314.4 | 269.4 | 247.4 | 208.7 |
Water supply (million m3/year) | |||||
CU | 121.1 | −868.8 | −813.9 | −539.0 | 134.4 |
BAU scenario | 119.8 | −666.1 | −698.1 | −556.7 | 131.5 |
PB scenario | 120.0 | −871.6 | −830.5 | −610.3 | 134.3 |
Water demand (million m3/year) | |||||
CU | 113.6 | 1184.0 | 1081.4 | 771.9 | 74.3 |
BAU scenario | 113.5 | 998.0 | 975.4 | 809.8 | 77.2 |
PB scenario | 114.6 | 1186.0 | 1099.9 | 857.7 | 75.4 |
Food | Landscape District | Area Agriculture and Garden Land (ha) | Production (Ton/ha) | ||||
---|---|---|---|---|---|---|---|
CU | BAU | PB | CU | BAU | PB | ||
Grains (Agriculture land) | upstream | 0 | 0 | 0 | 0 | 0 | 0 |
downstream | 6511.8 | 5199.8 | 6473.1 | 110,024.9 | 88,170.88 | 109,271.3 | |
Fruits (Garden land) | upstream | 6105.9 | 6031.8 | 6035.7 | 56,602.3 | 56,759.23 | 57,588.5 |
downstream | 930.7 | 802.4 | 959.9 | 1259.2 | 1015.15 | 1361.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammadyari, F.; Zarandian, A.; Mirsanjari, M.M.; Suziedelyte Visockiene, J.; Tumeliene, E. Modelling Impact of Urban Expansion on Ecosystem Services: A Scenario-Based Approach in a Mixed Natural/Urbanised Landscape. Land 2023, 12, 291. https://doi.org/10.3390/land12020291
Mohammadyari F, Zarandian A, Mirsanjari MM, Suziedelyte Visockiene J, Tumeliene E. Modelling Impact of Urban Expansion on Ecosystem Services: A Scenario-Based Approach in a Mixed Natural/Urbanised Landscape. Land. 2023; 12(2):291. https://doi.org/10.3390/land12020291
Chicago/Turabian StyleMohammadyari, Fatemeh, Ardavan Zarandian, Mir Mehrdad Mirsanjari, Jurate Suziedelyte Visockiene, and Egle Tumeliene. 2023. "Modelling Impact of Urban Expansion on Ecosystem Services: A Scenario-Based Approach in a Mixed Natural/Urbanised Landscape" Land 12, no. 2: 291. https://doi.org/10.3390/land12020291
APA StyleMohammadyari, F., Zarandian, A., Mirsanjari, M. M., Suziedelyte Visockiene, J., & Tumeliene, E. (2023). Modelling Impact of Urban Expansion on Ecosystem Services: A Scenario-Based Approach in a Mixed Natural/Urbanised Landscape. Land, 12(2), 291. https://doi.org/10.3390/land12020291