RePlant Alfa: Integrating Google Earth Engine and R Coding to Support the Identification of Priority Areas for Ecological Restoration
Abstract
:1. Introduction
2. RePlant alpha
3. RePlant alpha in Action
3.1. Selection of Indicators
3.2. Indicator’s Building Process
3.2.1. Cloud Data Processing
3.2.2. Local Data Processing
3.3. Integration of Indicators
3.4. Cache of Different Weights Combinations
3.5. Visualization Platform
4. Results
4.1. SMCA Output
4.2. Processing Times
4.3. Sensitivity Analysis
5. Future Improvements
5.1. Code and Indicators
5.2. Data Visualization
5.3. Recommendations for Restoration Activities, Costs, and Funding
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Province | Commune | Area (ha) | Area (%) | % of Total Area |
---|---|---|---|---|
Los Andes (1%) | Calle larga | 4758 | 28.9 | 0.3 |
Los andes | 2684 | 16.3 | 0.2 | |
Rinconada | 3096 | 18.8 | 0.2 | |
San esteban | 5946 | 36.1 | 0.4 | |
Subtotal | 16,484 | |||
Marga Marga (1.8%) | Limache | 10,466 | 35.3 | 0.6 |
Olmué | 2559 | 8.6 | 0.2 | |
Quilpué | 12,395 | 41.8 | 0.8 | |
Villa Alemana | 4241 | 14.3 | 0.3 | |
Subtotal | 29,661 | |||
Petorca (2.2%) | Cabildo | 6921 | 19.4 | 0.4 |
La Ligua | 11,049 | 30.9 | 0.7 | |
Papudo | 3600 | 10.1 | 0.2 | |
Petorca | 7666 | 21.5 | 0.5 | |
Zapallar | 6473 | 18.1 | 0.4 | |
Subtotal | 35,709 | |||
Quillota (1.6%) | Calera | 1790 | 7.1 | 0.1 |
Hijuelas | 3275 | 13.0 | 0.2 | |
La Cruz | 3171 | 12.6 | 0.2 | |
Nogales | 6572 | 26.1 | 0.4 | |
Quillota | 10,403 | 41.3 | 0.6 | |
Subtotal | 25,211 | |||
San Antonio (4%) | Algarrobo | 13,900 | 21.6 | 0.9 |
Cartagena | 10,139 | 15.7 | 0.6 | |
El quisco | 3075 | 4.8 | 0.2 | |
El tabo | 7834 | 12.1 | 0.5 | |
San Antonio | 21,297 | 33.0 | 1.3 | |
Santo Domingo | 8239 | 12.8 | 0.5 | |
Subtotal | 64,484 | |||
San Felipe de Aconcagua (2.5%) | Catemu | 5738 | 14.4 | 0.4 |
Llaillay | 5720 | 14.3 | 0.4 | |
Panquehue | 4996 | 12.5 | 0.3 | |
Putaendo | 8237 | 20.7 | 0.5 | |
San Felipe | 9270 | 23.2 | 0.6 | |
Santa María | 5920 | 14.8 | 0.4 | |
Subtotal | 39,881 | |||
Valparaíso (5.5%) | Casablanca | 47,015 | 53.1 | 2.9 |
Concón | 2006 | 2.3 | 0.1 | |
Puchuncaví | 6503 | 7.3 | 0.4 | |
quintero | 10,704 | 12.1 | 0.7 | |
Valparaíso | 17,452 | 19.7 | 1.1 | |
Viña del mar | 4875 | 5.5 | 0.3 | |
Subtotal | 88,555 | |||
Total | 299,985 |
References
- Lewis, S.L.; Maslin, M.A. Defining the Anthropocene. Nature 2015, 519, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Chapter 2.1—Tenets of soil and landscape Restoration. In Land Restoration; Chabay, I., Frick, M., Helgeson, J., Eds.; Academic Press: Boston, MA, USA, 2016; pp. 79–96. ISBN 978-0-12-801231-4. [Google Scholar]
- Ellis, E.C.; Gauthier, N.; Klein Goldewijk, K.; Bliege Bird, R.; Boivin, N.; Díaz, S.; Fuller, D.Q.; Gill, J.L.; Kaplan, J.O.; Kingston, N.; et al. People Have Shaped Most of Terrestrial Nature for at Least 12,000 Years. Proc. Natl. Acad. Sci. USA 2021, 118, e2023483118. [Google Scholar] [CrossRef] [PubMed]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Planetary Boundaries: Guiding Human Development on a Changing Planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abhilash, P.C. Restoring the Unrestored: Strategies for Restoring Global Land during the UN Decade on Ecosystem Restoration (UN-DER). Land 2021, 10, 201. [Google Scholar] [CrossRef]
- Aronson, J.; Goodwin, N.; Orlando, L.; Eisenberg, C.; Cross, A.T. A World of Possibilities: Six Restoration Strategies to Support the United Nation’s Decade on Ecosystem Restoration. Restor. Ecol. 2020, 28, 730–736. [Google Scholar] [CrossRef]
- Brancalion, P.H.S.; Niamir, A.; Broadbent, E.; Crouzeilles, R.; Barros, F.S.M.; Almeyda Zambrano, A.M.; Baccini, A.; Aronson, J.; Goetz, S.; Reid, J.L.; et al. Global Restoration Opportunities in Tropical Rainforest Landscapes. Sci. Adv. 2019, 5, eaav3223. [Google Scholar] [CrossRef] [Green Version]
- Morales, N.S.; Fernández, I.C.; Duran, L.P.; Venegas-González, A. Community-Driven Post-Fire Restoration Initiatives in Central Chile: When Good Intentions Are Not Enough. Restor. Ecol. 2021, 29, e13389. [Google Scholar] [CrossRef]
- Mendoza, G.A.; Martins, H. Multi-Criteria Decision Analysis in Natural Resource Management: A Critical Review of Methods and New Modelling Paradigms. For. Ecol. Manag. 2006, 230, 1–22. [Google Scholar] [CrossRef]
- Malczewski, J. GIS-based Multicriteria Decision Analysis: A Survey of the Literature. Int. J. Geogr. Inf. Sci. 2006, 20, 703–726. [Google Scholar] [CrossRef]
- Huang, I.B.; Keisler, J.; Linkov, I. Multi-Criteria Decision Analysis in Environmental Sciences: Ten Years of Applications and Trends. Sci. Total Environ. 2011, 409, 3578–3594. [Google Scholar] [CrossRef]
- Strassburg, B.B.N.; Iribarrem, A.; Beyer, H.L.; Cordeiro, C.L.; Crouzeilles, R.; Jakovac, C.C.; Braga Junqueira, A.; Lacerda, E.; Latawiec, A.E.; Balmford, A.; et al. Global Priority Areas for Ecosystem Restoration. Nature 2020, 586, 724–729. [Google Scholar] [CrossRef] [PubMed]
- Orsi, F.; Geneletti, D. Identifying Priority Areas for Forest Landscape Restoration in Chiapas (Mexico): An Operational Approach Combining Ecological and Socioeconomic Criteria. Landsc. Urban Plan. 2010, 94, 20–30. [Google Scholar] [CrossRef]
- Vettorazzi, C.A.; Valente, R.A. Priority Areas for Forest Restoration Aiming at the Conservation of Water Resources. Ecol. Eng. 2016, 94, 255–267. [Google Scholar] [CrossRef]
- Fernandez, I.C.; Morales, N.S. A Spatial Multicriteria Decision Analysis for Selecting Priority Sites for Plant Species Restoration: A Case Study from the Chilean Biodiversity Hotspot. Restor. Ecol. 2016, 24, 599–608. [Google Scholar] [CrossRef]
- Sharpe, L.M.; Harwell, M.C.; Jackson, C.A. Integrated Stakeholder Prioritization Criteria for Environmental Management. J. Environ. Manag. 2021, 282, 111719. [Google Scholar] [CrossRef]
- Castillo-Mandujano, J.; Smith-Ramírez, C. The Need for Holistic Approach in the Identification of Priority Areas to Restore: A Review. Restor. Ecol. 2022, 30, e13637. [Google Scholar] [CrossRef]
- Carrasco Henríquez, N.; Mendoza Leal, C. Restoration as a Re-Commoning Process. Territorial Initiative and Global Conditions in the Process of Water Recovery in the ‘Cordillera de Nahuelbuta’, Chile. Ecosyst. People 2021, 17, 556–573. [Google Scholar] [CrossRef]
- Lanfredi, M.; Egidi, G.; Bianchini, L.; Salvati, L. One Size Does Not Fit All: A Tale of Polycentric Development and Land Degradation in Italy. Ecol. Econ. 2022, 192, 107256. [Google Scholar] [CrossRef]
- Gobierno de Chile. MMA Estado Del Medio Ambiente En Chile, Sexto Reporte; Ministerio de Medio Ambiente; Gobierno de Chile: Santiago, Chile, 2021.
- Kumar, L.; Mutanga, O. Google Earth Engine Applications Since Inception: Usage, Trends, and Potential. Remote Sens. 2018, 10, 1509. [Google Scholar] [CrossRef] [Green Version]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for Geo-Big Data Applications: A Meta-Analysis and Systematic Review. ISPRS J. Photogramm. Remote Sens. 2020, 164, 152–170. [Google Scholar] [CrossRef]
- Fernández, I.; Morales, N.; Olivares, L.; Salvatierra, J.; Gomez, M.; Montenegro, G. Restauración Ecológica Para Ecosistemas Vegetales Nativos Afectados Por Incendios Forestales; LOM: Santiago, Chile, 2010. [Google Scholar]
- Ushey, K.; Allaire, J.J.; Tang, Y. Reticulate: Interface to “Python”. 2022. Available online: https://github.com/rstudio/reticulate (accessed on 9 January 2023).
- Aybar, C. Rgee: R Bindings for Calling the “Earth Engine” API. 2022. Available online: https://r-spatial.github.io/rgee/ (accessed on 9 January 2023).
- Pebesma, E.J.; Bivand, R.S. Classes and Methods for Spatial Data in R. R News 2005, 5, 9–13. [Google Scholar]
- Pebesma, E. Simple Features for R: Standardized Support for Spatial Vector Data. R J. 2018, 10, 439–446. [Google Scholar] [CrossRef] [Green Version]
- Pebesma, E. Stars: Spatiotemporal Arrays, Raster and Vector Data Cubes. 2022. Available online: https://r-spatial.github.io/stars/ (accessed on 9 January 2023).
- Wickham, H.; Girlich, M. Tidyr: Tidy Messy Data. 2022. Available online: https://tidyr.tidyverse.org/ (accessed on 9 January 2023).
- Hijmans, R.J.; van Etten, J. Raster: Geographic Analysis and Modeling with Raster Data. 2022. Available online: https://cran.r-project.org/web/packages/raster/index.html (accessed on 9 January 2023).
- CIREN (Centro de Información de Recursos Naturales); Flores, J.P.; Martínez, E.; Espinosa, M.; Avendaño, P.; Ahumada, I.; Torres, P.; Henríquez, G. Determinación de la Erosión Actual y Potencial de los Suelos de Chile: Región de Valparaíso. Síntesis de Resultados. (Pub. CIREN N°145); Red Instituciones Ministerio de Agricultura: Bogota, Colombia, 2010. [Google Scholar]
- Gilmore, R.; Santacruz, A. DiffeR: Metrics of Difference for Comparing Pairs of Maps or Pairs of Variables. 2019. Available online: https://cran.r-project.org/web/packages/diffeR/diffeR.pdf (accessed on 9 January 2023).
- Schulz, J.J.; Schröder, B. Identifying Suitable Multifunctional Restoration Areas for Forest Landscape Restoration in Central Chile. Ecosphere 2017, 8, e01644. [Google Scholar] [CrossRef]
- Heilmayr, R.; Echeverría, C.; Fuentes, R.; Lambin, E.F. A Plantation-Dominated Forest Transition in Chile. Appl. Geogr. 2016, 75, 71–82. [Google Scholar] [CrossRef] [Green Version]
- Ghazoul, J.; Chazdon, R. Degradation and Recovery in Changing Forest Landscapes: A Multiscale Conceptual Framework. Annu. Rev. Environ. Resour. 2017, 42, 161–188. [Google Scholar] [CrossRef] [Green Version]
- Moilanen, A.; Leathwick, J.R.; Quinn, J.M. Spatial Prioritization of Conservation Management. Conserv. Lett. 2011, 4, 383–393. [Google Scholar] [CrossRef]
- Welch, H.; Brodie, S.; Jacox, M.G.; Bograd, S.J.; Hazen, E.L. Decision-Support Tools for Dynamic Management. Conserv. Biol. 2020, 34, 589–599. [Google Scholar] [CrossRef]
Indicator | Category | Description/Objective | Source | Scale |
---|---|---|---|---|
NDVI | Ecological | Calculation of NDVI over the last 5 years for each sample unit to evaluate the trajectory of vegetation in the sector | Landsat | 30 m/pixel |
dNBR | Ecological | Calculation of dNBR based on the difference between pre- and post-fire seasons, to estimate damage severity | Landsat | 30 m/pixel |
Slope | Ecological | Calculation of slope in percentage to estimate erosion potential | Digital Elevation Model/Aster | 30 m/pixel |
Potential erosion index | Ecological | Estimation of potential erosion are based on an empirical qualitative model (IREPOT) and represent risk of erosion using specific characteristics of the studied areas. | Spatial data/IDE | 1/50,000 |
Population Density | Social | Estimation of population density to calculate the potential for community support | Spatialized census data/IDE | Census block |
Proximity to roads | Economic | Generation of distance map to main and secondary roads to estimate ease of access to the area | Spatial data/IDE | 1/10,000 |
Weights | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Indicators | −1 | −0.8 | −0.6 | −0.4 | −0.2 | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1 |
Population Density | 98 | 98 | 98 | 99 | 99 | 99 | 99 | 100 | 100 | 100 | 100 |
EJH | 4 | 9 | 16 | 25 | 34 | 45 | 57 | 66 | 75 | 86 | 100 |
Erosion | 40 | 41 | 43 | 46 | 53 | 62 | 72 | 79 | 84 | 90 | 100 |
NBR | 16 | 26 | 36 | 88 | 45 | 54 | 63 | 70 | 79 | 88 | 100 |
NDVI | 0 | 2 | 7 | 17 | 30 | 42 | 53 | 63 | 73 | 85 | 100 |
Proximity to roads | 2 | 2 | 3 | 3 | 4 | 12 | 32 | 50 | 66 | 80 | 100 |
Slope | 0 | 1 | 4 | 10 | 17 | 25 | 40 | 55 | 68 | 82 | 100 |
Indicador | Category | Focus | Description/Indicator Objective | Data Source | Data Source Scale |
---|---|---|---|---|---|
NDVI temporal changes | Ecological | Land degradation | NDVI was calculated using the last 5 years for each sample unit to evaluate the trajectory of vegetation in the sector | Landsat | 30 m/pixel |
dNBR | Ecological | Land degradation | Calculated using the difference between pre- and post-fire seasons, to estimate damage severity | Landsat | 30 m/pixel |
Land use | Ecological | Land degradation | Classification of land uses (e.g., urban, agricultural, forestry, natural) according to their potential for restoration | National Native Forest Inventory | 1/5000 |
Slope | Ecological | Abiotic factors (erosion proxy) | Calculation of slope in percentage to estimate erosion potential | Aster Digital elevation model | 30 m/pixel |
Aspect | Ecological | Abiotic Factors (HR and T° proxy) | Calculation of exposure in degrees to estimate potential soil moisture/temperature conditions. | Aster Digital elevation model | 30 m/pixel |
Proximity to Priority Conservation Sites | Ecological | Landscape Continuity | Generation of a map including proximity to a priority site and/or areas part of priority sites to prioritize landscape continuity | Chilean Geospatial Data Infrastructure | 1/10,000 |
Proximity to SNASPE | Ecological | Landscape Continuity | Creation of a map of belonging and proximity to priority protected areas of the State to prioritize landscape continuity | Chilean Geospatial Data Infrastructure | 1/10,000 |
Proximity to a native vegetation fragment | Ecological | Landscape Continuity | Map representing the distance to native vegetation patches to prioritize landscape continuity | National Native Forest Inventory | 1/5000 |
Vegetation cover type | Ecological | Landscape Diversity | Vegetation cover map categorized by functional types (herbaceous, evergreen, deciduous), to prioritize functional groups to be reforested | Landsat | 30 m/pixel |
Particulate Matter | Social/Economic | Social Impact | Urban particulate matter maps for 2.5- and 10-micron, o establish priority zones for restoration | National Air Quality Information System and proprietary network of contamination monitor (Fernández IC) | 1/10,000 |
Land tenure | Social/Economic | Social Impact | Map of properties and/or land ownership to evaluate accessibility to areas with restoration priority | Chilean Natural Resources Information Center | 100 m/pixel |
Multidimensional Poverty | Social | Social Impact | District map of multidimensional poverty to prioritize by level of socioeconomic vulnerability | National Socioeconomic Characterization Survey | Census block |
Extreme Poverty by Income | Social | Social Impact | District map of extreme poverty to prioritize by level of socioeconomic vulnerability | National Socioeconomic Characterization Survey | Commune |
Unemployment Rate | Social | Social Impact | District unemployment map to estimate the need for jobs in affected areas | National Socioeconomic Characterization Survey | Commune |
Percentage of population with Higher Education | Economic | Human Capital | District unemployment map to estimate the need for jobs in affected areas | National Socioeconomic Characterization Survey | Commune |
Distance from population centers | Economic | Logistic | Map representing the distance to population centers to estimate the ease of obtaining inputs | Chilean Geospatial Data Infrastructure | Commune |
Population Density | Economic | Logistic | Estimation of population density to estimate the potential to recruit local labor | Chilean Geospatial Data Infrastructure | Commune |
Proximity to roads | Economic | Logistic | Map of distances to main and secondary roads to estimate ease of access to the area | Chilean Geospatial Data Infrastructure | 1/10,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales, N.S.; Fernández, I.C.; Durán, L.P.; Pérez-Martínez, W.A. RePlant Alfa: Integrating Google Earth Engine and R Coding to Support the Identification of Priority Areas for Ecological Restoration. Land 2023, 12, 303. https://doi.org/10.3390/land12020303
Morales NS, Fernández IC, Durán LP, Pérez-Martínez WA. RePlant Alfa: Integrating Google Earth Engine and R Coding to Support the Identification of Priority Areas for Ecological Restoration. Land. 2023; 12(2):303. https://doi.org/10.3390/land12020303
Chicago/Turabian StyleMorales, Narkis S., Ignacio C. Fernández, Leonardo P. Durán, and Waldo A. Pérez-Martínez. 2023. "RePlant Alfa: Integrating Google Earth Engine and R Coding to Support the Identification of Priority Areas for Ecological Restoration" Land 12, no. 2: 303. https://doi.org/10.3390/land12020303
APA StyleMorales, N. S., Fernández, I. C., Durán, L. P., & Pérez-Martínez, W. A. (2023). RePlant Alfa: Integrating Google Earth Engine and R Coding to Support the Identification of Priority Areas for Ecological Restoration. Land, 12(2), 303. https://doi.org/10.3390/land12020303