Monitoring and Effect Evaluation of an Ecological Restoration Project Using Multi-Source Remote Sensing: A Case Study of Wuliangsuhai Watershed in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Preprocessing
2.2.1. Landsat Imagery
2.2.2. MODIS Imagery
2.2.3. Sentinel-1A Imagery
2.3. Research Method
2.3.1. Index System of Restoration Effect Evaluation
2.3.2. Calculation of Indicator Weights
2.3.3. Integrated Assessment of Ecological Status
2.3.4. Evaluation of the Effect on Environmental Restoration
2.3.5. Control Experiment
2.3.6. Sensitivity Analysis
3. Results
3.1. Dynamic Changes of the Ecological Status
3.2. Effect of Ecological Restoration
4. Discussion
4.1. Evaluation System of Ecological Restoration Effect
4.2. Methods for Assessing the Effectiveness of Ecological Restoration
4.3. Effectiveness of the Ecological Restoration Project in the Wuliangsuhai Watershed
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sperry, K.P.; Hilfer, H.; Lane, I.; Petersen, J.; Dixon, P.M.; Sullivan, L.L. Species diversity and dispersal traits alter biodiversity spillover in reconstructed grasslands. J. Appl. Ecol. 2019, 56, 2216–2224. [Google Scholar] [CrossRef]
- Luo, M.; Li, T. Spatial and temporal analysis of landscape ecological quality in Yulin. Environ. Technol. Innov. 2021, 23, 101700. [Google Scholar] [CrossRef]
- Wang, H.; Liu, X.; Zhao, C.; Chang, Y.; Liu, Y.; Zang, F. Spatial-temporal pattern analysis of landscape ecological risk assessment based on land use/land cover change in Baishuijiang National nature reserve in Gansu Province, China. Ecol. Indic. 2021, 124, 107454. [Google Scholar] [CrossRef]
- Han, J.; Junxing, L.; Xianyang, Y.; Chunguang, W.; Hao, G.; Haoxuan, C.; Shijie, T. Ecological evaluation of the Tongling pyrite mining district in Anhui Province. Earth Sci. Front. 2021, 28, 131–141. [Google Scholar]
- Li, Y.; Wu, L.; Han, Q.; Wang, X.; Zou, T.; Fan, C. Estimation of remote sensing based ecological index along the Grand Canal based on PCA-AHP-TOPSIS methodology. Ecol. Indic. 2021, 122, 107214. [Google Scholar] [CrossRef]
- Noble, M.M.; Harasti, D.; Pittock, J.; Doran, B. Linking the social to the ecological using GIS methods in marine spatial planning and management to support resilience: A review. Mar. Policy 2019, 108, 103657. [Google Scholar] [CrossRef]
- Chen, P.; Shi, X. Dynamic evaluation of China’s ecological civilization construction based on target correlation degree and coupling coordination degree. Environ. Impact Assess. Rev. 2022, 93, 106734. [Google Scholar] [CrossRef]
- Meraj, G.; Singh, S.K.; Kanga, S.; Islam, M.N. Modeling on comparison of ecosystem services concepts, tools, methods and their ecological-economic implications: A review. Model. Earth Syst. Environ. 2022, 8, 15–34. [Google Scholar] [CrossRef]
- Chang, Y.; Hou, K.; Wu, Y.; Li, X.; Zhang, J. A conceptual framework for establishing the index system of ecological environment evaluation—A case study of the upper Hanjiang River, China. Ecol. Indic. 2019, 107, 105568. [Google Scholar] [CrossRef]
- Wu, X.; Hu, F. Analysis of ecological carrying capacity using a fuzzy comprehensive evaluation method. Ecol. Indic. 2020, 113, 106243. [Google Scholar] [CrossRef]
- Hu, X.; Ma, C.; Huang, P.; Guo, X. Ecological vulnerability assessment based on AHP-PSR method and analysis of its single parameter sensitivity and spatial autocorrelation for ecological protection—A case of Weifang City, China. Ecol. Indic. 2021, 125, 107464. [Google Scholar] [CrossRef]
- Du, Y.-W.; Gao, K. Ecological security evaluation of marine ranching with AHP-entropy-based TOPSIS: A case study of Yantai, China. Mar. Policy 2020, 122, 104223. [Google Scholar] [CrossRef]
- Ghosh, S.; Das Chatterjee, N.; Dinda, S. Urban ecological security assessment and forecasting using integrated DEMATEL-ANP and CA-Markov models: A case study on Kolkata Metropolitan Area, India. Sustain. Cities Soc. 2021, 68, 102773. [Google Scholar] [CrossRef]
- Li, Y.; Gao, L.; Niu, L.; Zhang, W.; Yang, N.; Du, J.; Gao, Y.; Li, J. Developing a statistical-weighted index of biotic integrity for large-river ecological evaluations. J. Environ. Manag. 2021, 277, 111382. [Google Scholar] [CrossRef] [PubMed]
- Halme, E.; Pellikka, P.; Mõttus, M. Utility of hyperspectral compared to multispectral remote sensing data in estimating forest biomass and structure variables in Finnish boreal forest. Int. J. Appl. Earth Obs. Geoinf. 2019, 83, 101942. [Google Scholar] [CrossRef]
- Loozen, Y.; Rebel, K.T.; de Jong, S.M.; Lu, M.; Ollinger, S.V.; Wassen, M.J.; Karssenberg, D. Mapping canopy nitrogen in European forests using remote sensing and environmental variables with the random forests method. Remote Sens. Environ. 2020, 247, 111933. [Google Scholar] [CrossRef]
- Mohajane, M.; Costache, R.; Karimi, F.; Bao Pham, Q.; Essahlaoui, A.; Nguyen, H.; Laneve, G.; Oudija, F. Application of remote sensing and machine learning algorithms for forest fire mapping in a Mediterranean area. Ecol. Indic. 2021, 129, 107869. [Google Scholar] [CrossRef]
- Lei, T.; Feng, J.; Lv, J.; Wang, J.; Song, H.; Song, W.; Gao, X. Net Primary Productivity Loss under different drought levels in different grassland ecosystems. J. Environ. Manag. 2020, 274, 111144. [Google Scholar] [CrossRef] [PubMed]
- Abutaleb, K.; Freddy Mudede, M.; Nkongolo, N.; Newete, S.W. Estimating urban greenness index using remote sensing data: A case study of an affluent vs poor suburbs in the city of Johannesburg. Egypt. J. Remote Sens. Space Sci. 2020, 24, 343–351. [Google Scholar] [CrossRef]
- Chen, J.; Fan, W.; Li, K.; Liu, X.; Song, M. Fitting Chinese cities’ population distributions using remote sensing satellite data. Ecol. Indic. 2019, 98, 327–333. [Google Scholar] [CrossRef]
- Chen, H.; Liang, Q.; Liang, Z.; Liu, Y.; Ren, T. Extraction of connected river networks from multi-temporal remote sensing imagery using a path tracking technique. Remote Sens. Environ. 2020, 246, 111868. [Google Scholar] [CrossRef]
- Junqueira, A.M.; Mao, F.; Mendes, T.S.G.; Simões, S.J.C.; Balestieri, J.A.P.; Hannah, D.M. Estimation of river flow using CubeSats remote sensing. Sci. Total Environ. 2021, 788, 147762. [Google Scholar] [CrossRef]
- Leman, N.; Ramli, M.F.; Khirotdin, R.P.K. GIS-based integrated evaluation of environmentally sensitive areas (ESAs) for land use planning in Langkawi, Malaysia. Ecol. Indic. 2016, 61, 293–308. [Google Scholar] [CrossRef]
- Xianjin, H.; Huan, L.; Jinliao, H.; Yueguang, Z. Application of GIS-Based Models for Land-Use Planning in China. In Comprehensive Geographic Information Systems; Huang, B., Ed.; Elsevier: Oxford, UK, 2018; pp. 424–445. [Google Scholar]
- Luan, C.; Liu, R.; Peng, S. Land-use suitability assessment for urban development using a GIS-based soft computing approach: A case study of Ili Valley, China. Ecol. Indic. 2021, 123, 107333. [Google Scholar] [CrossRef]
- Boori, M.S.; Choudhary, K.; Paringer, R.; Kupriyanov, A. Eco-environmental quality assessment based on pressure-state-response framework by remote sensing and GIS. Remote Sens. Appl. Soc. Environ. 2021, 23, 100530. [Google Scholar] [CrossRef]
- Yang, X.; Liu, S.; Jia, C.; Liu, Y.; Yu, C. Vulnerability assessment and management planning for the ecological environment in urban wetlands. J. Environ. Manag. 2021, 298, 113540. [Google Scholar] [CrossRef]
- Santos, X.; Brito, J.C.; Sillero, N.; Pleguezuelos, J.M.; Llorente, G.A.; Fahd, S.; Parellada, X. Inferring habitat-suitability areas with ecological modelling techniques and GIS: A contribution to assess the conservation status of Vipera latastei. Biol. Conserv. 2006, 130, 416–425. [Google Scholar] [CrossRef]
- Chen, H.-S.; Liu, G.-S.; Yang, Y.-F.; Ye, X.-F.; Shi, Z. Comprehensive Evaluation of Tobacco Ecological Suitability of Henan Province Based on GIS. Agric. Sci. China 2010, 9, 583–592. [Google Scholar] [CrossRef]
- Morandi, D.T.; França, L.C.d.J.; Menezes, E.S.; Machado, E.L.M.; da Silva, M.D.; Mucida, D.P. Delimitation of ecological corridors between conservation units in the Brazilian Cerrado using a GIS and AHP approach. Ecol. Indic. 2020, 115, 106440. [Google Scholar] [CrossRef]
- Beveridge, C.; Hossain, F.; Biswas, R.K.; Haque, A.M.A.; Ahmad, S.K.; Biswas, N.K.; Hossain, M.A.; Bhuyan, M.A. Stakeholder-driven development of a cloud-based, satellite remote sensing tool to monitor suspended sediment concentrations in major Bangladesh rivers. Environ. Model. Softw. 2020, 133, 104843. [Google Scholar] [CrossRef]
- Zhai, L.; Cheng, S.; Sang, H.; Xie, W.; Gan, L.; Wang, T. Remote sensing evaluation of ecological restoration engineering effect: A case study of the Yongding River Watershed, China. Ecol. Eng. 2022, 182, 106724. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, F.; Duan, P.; Jim, C.Y.; Chan, N.W.; Shi, J.; Liu, C.; Wang, J.; Bahtebay, J.; Ma, X.J.C. Vegetation cover changes in China induced by ecological restoration-protection projects and land-use changes from 2000 to 2020. Catena 2022, 217, 106530. [Google Scholar] [CrossRef]
- Zuo, Q.; Ding, X.; Cui, G.; Zhang, W. Yellow River Basin Management under Pressure. The Present State, Restoration and Protection: Lessons from a Special Issue. Water 2022, 14, 3127. [Google Scholar] [CrossRef]
- Wang, Z.; Mei, B. Current Status and Challenges of the Ecological Environment of Wuliangsuhai Basin in China. IOP Conf. Ser. Earth Environ. Sci. 2021, 829, 012012. [Google Scholar] [CrossRef]
- Wan, F.; Zhang, F.; Zheng, X.; Xiao, L.J.W. Study on Ecological Water Demand and Ecological Water Supplement in Wuliangsuhai Lake. Water 2022, 14, 1262. [Google Scholar] [CrossRef]
- General Office of the Ministry of Natural Resources, General Office of the Ministry of Finance, General Office of the Ministry of Ecology and Environment of China. Landscape, Forest, Field, Lake and Grass Ecological Protection and Restoration Project Guide. China Natural Resources News: Beijing, China, 2020. Available online: https://www.dzxzch.cn/zcjx/tdsy/202008/P020200806599971347546.pdf (accessed on 15 January 2022).
- Sobol’, I.M. Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Exp. 1993, 1, 407–414. [Google Scholar]
- Society for Ecological Restoration Science & Policy Working Group. The SER Primer on Ecological Restoration [EB/OL]. 2002. Available online: www.ser.org/ (accessed on 15 January 2022).
- Morandi, B.; Piégay, H.; Lamouroux, N.; Vaudor, L. How is success or failure in river restoration projects evaluated? Feedback from French restoration projects. J. Environ. Manag. 2014, 137, 178–188. [Google Scholar] [CrossRef]
- Yuan, M.; Ouyang, J.; Zheng, S.; Tian, Y.; Sun, R.; Bao, R.; Li, T.; Yu, T.; Li, S.; Wu, D.; et al. Research on ecological effect assessment method of ecological restoration of open−pit coal mines in alpine regions. Int. J. Environ. Res. Public Health 2022, 19, 7682. [Google Scholar] [CrossRef]
- Tian, Y.; Feng, Q.; Tang, M.; Zheng, S.; Liu, C.; Wu, D.; Lina, W. Ecological protection and restoration of forest, wetland, grassland and cropland based on the perspective of ecosystem assessment: A case study in Wuliangsuhai Watershed. Acta Ecol. Sin. 2019, 39, 8826–8836. [Google Scholar]
- Yang, Y.; Liu, D.; Xiao, H.; Chen, J.; Ding, Y.; Xia, D.; Xia, Z.; Xu, W. Evaluating the effect of the ecological restoration of quarry slopes in Caidian District, Wuhan City. Sustainability 2019, 11, 6624. [Google Scholar] [CrossRef] [Green Version]
- Luo, M.; Zhou, Y.; Ju, Z.; Wei, H.; Zhang, S. Technological model and benefit pre-evaluation of eco-environmental rehabilitation engineering of typical mines in the Nanling area of Northern Guangdong Province under the pilot framework of the eco-restoration of mountains-rivers-forests-farmlands-lakes-grasslands. Acta Ecol. Sin. 2019, 23, 8911–8919. [Google Scholar]
- Qin, T.; He, S.; Liu, S.; Nie, H.; Dong, B.; Lv, X. Optimal Allocation of Slope Ecological Restoration for the Climate Change Mitigation and Natural Function Improvement. Front. Earth Sci. 2022, 10, 837311. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, K.; Wang, S.; Wu, T.; Li, X.; Wang, J.; Wang, D.; Zhu, H.; Tan, C.; Ji, Y. Spatiotemporal evolution of ecological vulnerability in the Yellow River Basin under ecological restoration initiatives. Ecol. Indic. 2022, 135, 108586. [Google Scholar] [CrossRef]
Image Type | Line Number/View Number/Track Number | Imaging Time | Spatial Resolution | |
---|---|---|---|---|
Column Number | Row Number | |||
Landsat8 | 128 | 31 | 2017-08-30 | 30m |
128 | 32 | 2017-08-30 | ||
129 | 31 | 2017-09-06 | ||
129 | 32 | 2017-08-05 | ||
130 | 31 | 2017-08-12 | ||
130 | 32 | 2017-08-12 | ||
128 | 31 | 2021-08-09 | ||
128 | 32 | 2021-08-25 | ||
129 | 31 | 2021-08-16 | ||
129 | 32 | 2021-08-16 | ||
130 | 31 | 2021-08-23 | ||
130 | 32 | 2021-07-06 | ||
MOD11A2 | 46 | 2017 | 1km | |
46 | 2021 | |||
MOD13Q1 | 46 | 2017 | 250m | |
46 | 2021 | |||
MOD17A2H | 46 | 2017 | 500m | |
46 | 2021 | |||
Sentinel-1A | 84 | 2017-12-30 | — | |
2021-12-21 |
Indicator Type | Detailed Indicator | Data Used | Calculation Method | Weight | |
---|---|---|---|---|---|
Ecosystem structure and quality | Vegetation coverage (FVC) | Landsat8 | where, VFC is the fraction vegetation coverage, NDVI is the vegetation index of a pixel, NDVImin is the smallest NDVI value among all pixels, and NDVImax is the largest NDVI value among all pixels. | (1) | 0.12 |
Degree of desertification index (DDI) | Landsat8 | where, DDI is the difference index for desertification monitoring, a is determined by the regression equation coefficient of the vegetation index and surface albedo, NDVI is the vegetation index, and Albedo is the surface albedo. | (2) | 0.21 | |
Shannon’s diversity index (SHDI) | Landsat8 | where, SHDI is Landscape enrichment, m is the number of plaque types and Pi the probability of occurrence of the ith type of plaque. | (3) | 0.11 | |
Landscape fragmentation index (LFI) | Landsat8 | where, LFI is landscape fragmentation, NP is the number of patches in an image element, and S is the area of the image element. | (4) | 0.18 | |
Relief Degree of Land Surface (RDLS) | Sentinel-1A | Inversion of the terrain, see Section 2.2.3 for more details. | 0.06 | ||
Ecosystem Service | Net primary productivity of vegetation (NPP) | MOD17A2H | Annual average NPP obtained using band synthesis, see Section 2.2.2 for more details. | 0.07 | |
Soil erosion (SE) | Landsat8, DEM | where, SE is soil erosion volume, R is the rainfall erosion force factor, K is the soil erodibility factor; LS is the slope length factor; C is the vegetation coverage factor; P is the soil and water conservation measure factor. | (5) | 0.16 | |
Ecosystem change driver | Temperature Vegetation Dryness Index (TVDI) | MOD11A2, MOD13Q1 | where, TVDI is the drought index, a1, b1, a2, b2 are the dry-side and wet-side fitting coefficients, LSTi is the surface temperature of any image element. | (6) | 0.09 |
Indicator | Level of Indicator | 2017 | 2021 | Value of Change | ||
---|---|---|---|---|---|---|
Area (km2) | Percentage | Area (km2) | Percentage | |||
FVC | Bare ground (<0.2) | 119 | 0.73% | 109 | 0.68% | −0.06% |
Low (0.2–0.4) | 66 | 0.41% | 72 | 0.44% | 0.04% | |
Medium–low (0.4–0.6) | 5361 | 33.12% | 4554 | 28.13% | –4.98% | |
Medium (0.6–0.8) | 4759 | 29.40% | 5075 | 31.35% | 1.95% | |
High (>0.8) | 5882 | 36.34% | 6377 | 39.40% | 3.06% | |
DDI | Extremely heavy (<0.3) | 2606 | 16.10% | 1841 | 11.37% | –4.73% |
Heavy (0.3–0.5) | 1943 | 12.00% | 1823 | 11.26% | –0.74% | |
Medium (0.5–0.7) | 3514 | 21.71% | 2786 | 17.21% | –4.50% | |
Mild (0.7–0.8) | 3675 | 22.70% | 1972 | 12.18% | –10.52% | |
No (>0.8) | 4448 | 27.48% | 7765 | 47.97% | 20.49% | |
SHDI | Single (0) | 1366 | 8.44% | 1380 | 8.52% | 0.08% |
Relatively single (0–0.5) | 1262 | 7.80% | 1273 | 7.86% | 0.07% | |
Enrichment (0.5–1) | 7078 | 43.73% | 7189 | 44.41% | 0.69% | |
General enrichment (1–1.5) | 5591 | 34.54% | 5515 | 34.07% | –0.47% | |
Very abundant (>1.5) | 890 | 5.50% | 830 | 5.12% | –0.37% | |
LFI | Consistency (<2) | 4199 | 25.94% | 4031 | 24.90% | –1.04% |
Compare consistency (2–3) | 4086 | 25.24% | 4089 | 25.26% | 0.02% | |
Crusher (3–4) | 3796 | 23.45% | 3811 | 23.54% | 0.09% | |
General crush (4–5) | 2575 | 15.91% | 2595 | 16.03% | 0.13% | |
Very crush (>5) | 1532 | 9.46% | 1661 | 10.26% | 0.80% | |
RDLS | (m) | 16187 | 2.65 | 16187 | 2.64 | –0.01m |
NPP | (g/m2·a) | 16187 | 125.35 | 16187 | 137.05 | 11.70 g/m2·a |
SE | No significant erosion (<3.5) | 15621 | 96.50% | 16012 | 98.92% | 2.41% |
Mild erosion (3.5–12.5) | 346 | 2.14% | 113 | 0.70% | –1.44% | |
Strength erosion (12.5–26.5) | 100 | 0.62% | 30 | 0.19% | –0.43% | |
Moderate erosion (26.5–43.5) | 40 | 0.25% | 12 | 0.07% | –0.18% | |
Extremely strong erosion (>43.5) | 81 | 0.50% | 21 | 0.13% | −0.37% | |
TVDI | Drought (<0.55) | 1183 | 7.31% | 1107 | 6.84% | −0.47% |
Mild drought (0.55–0.65) | 5278 | 32.61% | 4306 | 26.60% | −6.01% | |
Ordinary (0.65–0.75) | 9085 | 56.12% | 9669 | 59.73% | 3.61% | |
Mild fountain (0.75–0.85) | 566 | 3.50% | 926 | 5.72% | 2.22% | |
Fountain (>0.8) | 75 | 0.47% | 178 | 1.10% | 0.64% | |
Overall score | Extremely low (0–0.2) | 1225 | 7.57% | 1056 | 6.52% | −1.04% |
Low (0.2–0.4) | 2909 | 17.97% | 2589 | 15.99% | −1.98% | |
Medium (0.4–0.6) | 7924 | 48.95% | 7596 | 46.93% | −2.03% | |
High (0.6–0.8) | 3991 | 24.66% | 4779 | 29.52% | 4.87% | |
Extremely high (0.8–1) | 138 | 0.85% | 167 | 1.03% | 0.18% |
Classification of Restoration Effect | Restoration Rate | Area (km2) | Percentage (%) |
---|---|---|---|
Significant improvement | >50% | 632 | 3.90 |
Moderate improvement | 30%–50% | 1267 | 7.83 |
Slightly improvement | 10%–30% | 4229 | 26.13 |
No change | <10% | 10059 | 62.14 |
Classification of Restoration Effect | Sea Ring Ecological Zone | Water Ecological Restoration Zone | Forest and Grass Restoration Zone | Mine Treatment Zone | Desert Treatment Zone | Water System Protection Zone |
---|---|---|---|---|---|---|
Significant improvement | 69 | 19 | 41 | 43 | 13 | 447 |
Moderate improvement | 170 | 29 | 78 | 94 | 2 | 894 |
Slightly improvement | 562 | 78 | 297 | 315 | 16 | 2961 |
No change | 1121 | 128 | 730 | 703 | 60 | 7317 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, X.; Jin, Z.; Mei, X.; Wang, D.; Zhu, R.; Zhang, X.; Huang, Z.; Li, C.; Zhang, X. Monitoring and Effect Evaluation of an Ecological Restoration Project Using Multi-Source Remote Sensing: A Case Study of Wuliangsuhai Watershed in China. Land 2023, 12, 349. https://doi.org/10.3390/land12020349
Jia X, Jin Z, Mei X, Wang D, Zhu R, Zhang X, Huang Z, Li C, Zhang X. Monitoring and Effect Evaluation of an Ecological Restoration Project Using Multi-Source Remote Sensing: A Case Study of Wuliangsuhai Watershed in China. Land. 2023; 12(2):349. https://doi.org/10.3390/land12020349
Chicago/Turabian StyleJia, Xiang, Zhengxu Jin, Xiaoli Mei, Dong Wang, Ruoning Zhu, Xiaoxia Zhang, Zherui Huang, Caixia Li, and Xiaoli Zhang. 2023. "Monitoring and Effect Evaluation of an Ecological Restoration Project Using Multi-Source Remote Sensing: A Case Study of Wuliangsuhai Watershed in China" Land 12, no. 2: 349. https://doi.org/10.3390/land12020349
APA StyleJia, X., Jin, Z., Mei, X., Wang, D., Zhu, R., Zhang, X., Huang, Z., Li, C., & Zhang, X. (2023). Monitoring and Effect Evaluation of an Ecological Restoration Project Using Multi-Source Remote Sensing: A Case Study of Wuliangsuhai Watershed in China. Land, 12(2), 349. https://doi.org/10.3390/land12020349