A Partitioned and Heterogeneous Land-Use Simulation Model by Integrating CA and Markov Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Processing
2.3. Methods
2.3.1. Overall Framework of the PHLUS Model
2.3.2. Establishment of the Evaluation System
2.3.3. Determination of Evaluation Sets and Weights
2.3.4. Determination of Membership Function
2.3.5. Fuzzy Comprehensive Evaluation Division
2.3.6. Heterogeneous Model
2.3.7. CA-Markov Model
3. Results
3.1. Results of the Geographical Partitioning of the Pearl River Delta Urban Agglomeration
3.2. Comparative Analysis of Land-Use Change Simulation Results
3.3. Land-Use Forecasting in the Pearl River Delta Based on PHLUS
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, C.; Zhang, D.; Huang, Q.; Zhao, Y. Assessing the potential impacts of urban expansion on regional carbon storage by linking the LUSD-urban and InVEST models. Environ. Model. Softw. 2016, 75, 44–58. [Google Scholar] [CrossRef]
- Zhang, D.; Huang, Q.; He, C.; Wu, J. Impacts of urban expansion on ecosystem services in the Beijing-Tianjin-Hebei urban agglomeration, China: A scenario analysis based on the Shared Socioeconomic Pathways. Resour. Conserv. Recycl. 2017, 125, 115–130. [Google Scholar] [CrossRef]
- Song, W.; Pijanowski, B.C. The effects of China’s cultivated land balance program on potential land productivity at a national scale. Appl. Geogr. 2014, 46, 158–170. [Google Scholar] [CrossRef]
- Song, W.; Pijanowski, B.C.; Tayyebi, A. Urban expansion and its consumption of high-quality farmland in Beijing, China. Ecol. Indic. 2015, 54, 60–70. [Google Scholar] [CrossRef]
- Tobler, W.R. Cellular geography. Philos. Geogr. 1979, 20, 379–386. [Google Scholar] [CrossRef]
- Tong, X.; Feng, Y. A review of assessment methods for cellular automata models of land-use change and urban growth. Int. J. Geogr. Inf. Sci. 2020, 34, 866–898. [Google Scholar] [CrossRef]
- Guzman, L.A.; Escobar, F.; Peña, J.; Cardona, R. A cellular automata-based land-use model as an integrated spatial decision support system for urban planning in developing cities: The case of the Bogotá region. Land Use Policy 2020, 92, 104445. [Google Scholar] [CrossRef]
- Wu, H.; Li, Z.; Clarke, K.C.; Shi, W.; Fang, L.; Lin, A.; Zhou, J. Examining the sensitivity of spatial scale in cellular automata Markov chain simulation of land use change. Int. J. Geogr. Inf. Sci. 2019, 33, 1040–1061. [Google Scholar] [CrossRef]
- Bertoni, D.; Aletti, G.; Ferrandi, G.; Micheletti, A.; Cavicchioli, D.; Pretolani, R. Farmland use transitions after the CAP greening: A preliminary analysis using Markov chains approach. Land Use Policy 2018, 79, 789–800. [Google Scholar] [CrossRef]
- Wang, Y.F. Analysis of Land Use and Landscape Patterns in Fanyang Town Based on CA-Markov Model. Sichuan For. Explor. Des. 2015, 2, 4. [Google Scholar] [CrossRef] [Green Version]
- Iacono, M.; Levinson, D.; El-Geneidy, A.; Wasfi, R. A Markov chain model of land use change. TeMA J. Land Use Mobil. Environ. 2015, 8, 263–276. [Google Scholar] [CrossRef]
- Hamad, R.; Balzter, H.; Kolo, K. Predicting land use/land cover changes using a CA-Markov model under two different scenarios. Sustainability 2018, 10, 3421. [Google Scholar] [CrossRef]
- Karimi, H.; Jafarnezhad, J.; Khaledi, J.; Ahmadi, P. Monitoring and prediction of land use/land cover changes using CA-Markov model: A case study of Ravansar County in Iran. Arab. J. Geosci. 2018, 11, 592. [Google Scholar] [CrossRef]
- Mansour, S.; Al-Belushi, M.; Al-Awadhi, T. Monitoring land use and land cover changes in the mountainous cities of Oman using GIS and CA-Markov modelling techniques. Land Use Policy 2020, 91, 104414. [Google Scholar] [CrossRef]
- Fang, Z.; Song, S.; He, C.; Liu, Z.; Qi, T.; Zhang, J.; Li, J. Evaluating the impacts of future urban expansion on surface runoff in an alpine basin by coupling the LUSD-urban and SCS-CN models. Water 2020, 12, 3405. [Google Scholar] [CrossRef]
- Song, S.; Liu, Z.; He, C.; Lu, W. Evaluating the effects of urban expansion on natural habitat quality by coupling localized shared socioeconomic pathways and the land use scenario dynamics-urban model. Ecol. Indic. 2020, 112, 106071. [Google Scholar] [CrossRef]
- Liu, D.; Zheng, X.; Wang, H. Land-use Simulation and Decision-Support system (LandSDS): Seamlessly integrating system dynamics, agent-based model, and cellular automata. Ecol. Model. 2020, 417, 108924. [Google Scholar] [CrossRef]
- Ronneberger, K.; Berrittella, M.; Bosello, F.; Tol, R. Klum@Gtap: Spatially-Explicit, Biophysical Land Use in a Computable General Equilibrium Model; AgEcon Search: St. Paul, MN, USA.
- Mustafa, A.; Rienow, A.; Saadi, I.; Cools, M.; Teller, J. Comparing support vector machines with logistic regression for calibrating cellular automata land use change models. Eur. J. Remote Sens. 2018, 51, 391–401. [Google Scholar] [CrossRef]
- López, S. Modeling agricultural change through logistic regression and cellular automata: A case study on shifting cultivation. J. Geogr. Inf. Syst. 2014, 2014, 46914. [Google Scholar] [CrossRef]
- Xu, Q.; Wang, Q.; Liu, J.; Liang, H. Simulation of land-use changes using the partitioned ANN-CA model and considering the influence of land-use change frequency. ISPRS Int. J. Geo-Inf. 2021, 10, 346. [Google Scholar] [CrossRef]
- Islam, K.; Rahman, M.F.; Jashimuddin, M. Modeling land use change using cellular automata and artificial neural network: The case of Chunati Wildlife Sanctuary, Bangladesh. Ecol. Indic. 2018, 88, 439–453. [Google Scholar] [CrossRef]
- Hagenauer, J.; Helbich, M. Mining urban land-use patterns from volunteered geographic information by means of genetic algorithms and artificial neural networks. Int. J. Geogr. Inf. Sci. 2012, 26, 963–982. [Google Scholar] [CrossRef]
- Xu, T.; Gao, J.; Coco, G. Simulation of urban expansion via integrating artificial neural network with Markov chain–cellular automata. Int. J. Geogr. Inf. Sci. 2019, 33, 1960–1983. [Google Scholar] [CrossRef]
- Shafizadeh-Moghadam, H.; Helbich, M. Spatiotemporal variability of urban growth factors: A global and local perspective on the megacity of Mumbai. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 187–198. [Google Scholar] [CrossRef]
- Moghadam, H.S.; Helbich, M. Spatiotemporal urbanization processes in the megacity of Mumbai, India: A Markov chains-cellular automata urban growth model. Appl. Geogr. 2013, 40, 140–149. [Google Scholar] [CrossRef]
- Liu, D.; Zheng, X.; Zhang, C.; Wang, H. A new temporal–spatial dynamics method of simulating land-use change. Ecol. Model. 2017, 350, 1–10. [Google Scholar] [CrossRef]
- Lin, J.; He, P.; Yang, L.; He, X.; Lu, S.; Liu, D. Predicting future urban waterlogging-prone areas by coupling the maximum entropy and FLUS model. Sustain. Cities Soc. 2022, 80, 103812. [Google Scholar] [CrossRef]
- Liu, D.; Zheng, X.; Wang, H.; Zhang, C.; Li, J.; Lv, Y. Interoperable scenario simulation of land-use policy for Beijing–Tianjin–Hebei region, China. Land Use Policy 2018, 75, 155–165. [Google Scholar] [CrossRef]
- da Cunha, E.R.; Santos, C.A.G.; da Silva, R.M.; Bacani, V.M.; Pott, A. Future scenarios based on a CA-Markov land use and land cover simulation model for a tropical humid basin in the Cerrado/Atlantic forest ecotone of Brazil. Land Use Policy 2021, 101, 105141. [Google Scholar] [CrossRef]
- Liang, X.; Liu, X.; Li, D.; Zhao, H.; Chen, G. Urban growth simulation by incorporating planning policies into a CA-based future land-use simulation model. Int. J. Geogr. Inf. Sci. 2018, 32, 2294–2316. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Liu, X.; Chen, Y.; Ai, B. Knowledge transfer and adaptation for land-use simulation with a logistic cellular automaton. Int. J. Geogr. Inf. Sci. 2013, 27, 1829–1848. [Google Scholar] [CrossRef]
- Lin, J.; Li, X.; Wen, Y.; He, P. Modeling urban land-use changes using a landscape-driven patch-based cellular automaton (LP-CA). Cities 2023, 132, 103906. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, B.; Wang, M.; Liu, B.; Yang, X. Analysis of the future land cover change in Beijing using CA–Markov chain model. Environ. Earth Sci. 2020, 79, 60. [Google Scholar] [CrossRef]
- Liu, J.; Liu, M.; Tian, H.; Zhuang, D.; Zhang, Z.; Zhang, W.; Tang, X.; Deng, X. Spatial and temporal patterns of China’s cropland during 1990–2000: An analysis based on Landsat TM data. Remote Sens. Environ. 2005, 98, 442–456. [Google Scholar] [CrossRef]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Song, W.; Deng, X. Land-use/land-cover change and ecosystem service provision in China. Sci. Total Environ. 2017, 576, 705–719. [Google Scholar] [CrossRef] [PubMed]
- White, R.; Uljee, I.; Engelen, G. Integrated modelling of population, employment and land-use change with a multiple activity-based variable grid cellular automaton. Int. J. Geogr. Inf. Sci. 2012, 26, 1251–1280. [Google Scholar] [CrossRef]
- Allan, A.; Soltani, A.; Abdi, M.H.; Zarei, M. Driving Forces behind Land Use and Land Cover Change: A Systematic and Bibliometric Review. Land 2022, 11, 1222. [Google Scholar] [CrossRef]
- Wu, H.; Lin, A.; Xing, X.; Song, D.; Li, Y. Identifying core driving factors of urban land use change from global land cover products and POI data using the random forest method. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102475. [Google Scholar] [CrossRef]
- Kasraian, D.; Raghav, S.; Miller, E.J. A multi-decade longitudinal analysis of transportation and land use co-evolution in the Greater Toronto-Hamilton Area. J. Transp. Geogr. 2020, 84, 102696. [Google Scholar] [CrossRef]
- Xie, H.; He, Y.; Xie, X. Exploring the factors influencing ecological land change for China’s Beijing–Tianjin–Hebei Region using big data. J. Clean. Prod. 2017, 142, 677–687. [Google Scholar] [CrossRef]
- Saputra, M.H.; Lee, H.S. Prediction of land use and land cover changes for north sumatra, indonesia, using an artificial-neural-network-based cellular automaton. Sustainability 2019, 11, 3024. [Google Scholar] [CrossRef]
- Gao, L.; Tao, F.; Liu, R.; Wang, Z.; Leng, H.; Zhou, T. Multi-scenario simulation and ecological risk analysis of land use based on the PLUS model: A case study of Nanjing. Sustain. Cities Soc. 2022, 85, 104055. [Google Scholar] [CrossRef]
- Wang, Q.; Guan, Q.; Lin, J.; Luo, H.; Tan, Z.; Ma, Y. Simulating land use/land cover change in an arid region with the coupling models. Ecol. Indic. 2021, 122, 107231. [Google Scholar] [CrossRef]
- Ke, X.; Deng, X.; Liu, C. Interregional Farmland Layout Optimization Model Based on the Partition Asynchronous Cellular Automata: A Case Study of the Wuhan City Circle. Prog. Geogr. 2010, 29, 1442–1450. [Google Scholar]
- Chen, Y.; Li, W.; Ren, L.; Li, J.; Ma, R. Changes in the Distribution of Rural Residential Land on a Coastal Plain. Resour. Sci. 2014, 36, 2273–2281. [Google Scholar]
- Wang, Y.; Ma, R.; Sun, D. Multi-dimensional Measurement of Land-island Metropolitan Area Structure. J. Ningbo Univ. (NSEE) 2015, 28, 63–68. [Google Scholar]
- Li, W.; Chen, Y.; Ma, R.; Yu, T.; Ren, L.; Li, J. Land-use pattern in coastal zone from the perspective of development potentiality: A case study of the southern bank of Hangzhou Bay. Geogr. Res. 2016, 35, 1061–1073. [Google Scholar]
- Yue, Q.; Liu, F.; Liu, Z. Comprehensive assessment of plain reservoir healthbased on fuzzy and hierarchy analyses. Hydro-Sci. Eng. 2016, 2, 62–68. [Google Scholar] [CrossRef]
- Xu, R.; Sun, J.; Han, H.; Zhou, L.; Yang, W. Simulation of Spatio-temporal Changes of Land Use Based on MCE-Markov-CA in Zhengzhou. Geogr. Geo-Inf. Sci. 2020, 36, 93–99. [Google Scholar]
- Wang, Q.; Wang, H. An integrated approach of logistic-MCE-CA-Markov to predict the land use structure and their micro-spatial characteristics analysis in Wuhan metropolitan area, Central China. Environ. Sci. Pollut. Res. 2022, 29, 30030–30053. [Google Scholar] [CrossRef] [PubMed]
- Ke, X.; Qi, L.; Zeng, C. A partitioned and asynchronous cellular automata model for urban growth simulation. Int. J. Geogr. Inf. Sci. 2016, 30, 637–659. [Google Scholar] [CrossRef]
- Dan, H.; Jing, Z.; Wei, G. An integrated CA-Markov model for dynamic simulation of land use change in Lake Dianchi Watershed. Acta Sci. Nat. Univ. Pekin. 2014, 50, 1095–1105. [Google Scholar] [CrossRef]
- Xiao, M.; Wu, J.; Chen, Q.; Jin, M.; Hao, X.; Zhang, Y. Dynamic change of land use in Changhua downstream watershed based on CA-Markov model. Trans. Chin. Soc. Agric. Eng. 2012, 28, 231–238. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, X.; Liu, P.; Chen, G.; He, J. Urban expansion simulation and early warning based on geospatial partition and FLUS model. J. Geo-Inf. Sci 2020, 22, 517–530. [Google Scholar] [CrossRef]
- Dang, A.N.; Kawasaki, A. A review of methodological integration in land-use change models. Int. J. Agric. Environ. Inf. Syst. 2016, 7, 1–25. [Google Scholar] [CrossRef] [Green Version]
Data | Type | Year | |
---|---|---|---|
Natural factors | Elevation | Raster | 2020 |
Slope | Raster | 2020 | |
Precipitation | Raster | 2010, 2020 | |
River network | Shape | 2020 | |
Social-economic factors | Expressway network | Shape | 2020 |
Railway network | Shape | 2020 | |
National highway network | Shape | 2020 | |
Provincial highway network | Shape | 2020 | |
Market features | Shape | 2010, 2020 | |
Restaurant features | Shape | 2010, 2020 | |
Scenic spot features | Shape | 2010, 2020 | |
Traffic station features | Shape | 2010, 2020 | |
Night light intensity | Raster | 2010, 2020 | |
Population | Continuous variable | 2010, 2020 | |
Gross Domestic Product | Continuous variable | 2010, 2020 |
Tier 1 Indicator | Tier 2 Indicator | Indicator Calculation Formula |
---|---|---|
Natural ecological potential | Elevation | Extracted from 250 m resolution DEM data |
Slope | Extracted from 250 m resolution DEM data | |
Land class composition | According to the current land-use category | |
Ecosystem service value | ∑(Value of ecosystem services per unit area by land class × Area of each land category) | |
Forest cover | Woodland area/Total land area × 100% | |
Socio-economic potential | GDP per capita | GDP/Total population |
Population density | Population/Total land area | |
The proportion of secondary and tertiary industry output | Secondary and tertiary GDP/Total GDP | |
The proportion of land-use change for construction | Built-up land area/Total land area | |
Spatial structural potential | Land dominance | / |
Nearest proximity | ∑(Erosion intensity classification value × Area weight) | |
High- and low- value clustering | / | |
Land clustering | / |
Indicator | Level | ||||
---|---|---|---|---|---|
Elevation | <150 | 150~300 | 300~400 | 400~600 | >600 |
Slope | <10 | 10~20 | 20~30 | 30~40 | >40 |
Land class composition | Urban and rural built-up land | Cultivated land, Other agricultural lands | Water, Built-up Land | Woodland, Grassland | Water body, Nature reserves |
Forest cover | >50% | 40~50% | 30~40% | 20~30% | <20% |
GDP per capita | >17 | 14~17 | 11~14 | 8~11 | 5~8 |
Population density | >1000 | 800~1000 | 500~800 | 100~500 | <100 |
The proportion of secondary and tertiary industry output | >90% | 80~90% | 60~80% | 40~60% | <40% |
The proportion of land-use change for construction | >90% | 80~90% | 60~80% | 40~60% | <40% |
Land dominance | >1.5 | 1.0~1.5 | 0.5~1.0 | 0.1~0.5 | <0.1 |
Nearest proximity | <0.4 | 0.4~0.6 | 0.6~1.0 | 1.0~1.5 | >1.5 |
High- and low- | >2.58 | 1.96~2.58 | 0~1.96 | −1.96~0 | <−1.96 |
value clustering | >0.5 | 0.3~0.5 | 0.1~0.3 | 0.05~0.1 | <0.05 |
Tier 1 Indicator | Weight | Tier 2 Indicator | Weight |
---|---|---|---|
Natural ecological potential | 0.4647 | Elevation | 0.0943 |
Slope | 0.0588 | ||
Land class composition Ecosystem service value Forest cover | 0.1421 0.0902 0.0793 | ||
Socio-economic potential | 0.3425 | GDP per capita Population density | 0.1325 0.0679 |
The proportion of secondary and tertiary industry output The proportion of land-use change for construction | 0.0543 0.0878 | ||
Spatial structural potential | 0.1928 | Land dominance | 0.0402 |
Nearest proximity | 0.0523 | ||
High- and low-value clustering | 0.0397 | ||
Land clustering | 0.0606 |
Zoning | Potential Level | Description | Region |
---|---|---|---|
Partition 1 | Extreme high potential area | Suitable for high-intensity land development, environmental artificiality, high economic development agglomeration area | Guangzhou Shenzhen |
Partition 2 | High potential area | Adaptable to certain intensity land development, good land economic benefits, weak ecological sensitivity | Foshan Zhuhai |
Partition 3 | Medium potential area | Localized areas suitable for artificial land development, rough economic benefits, fragile ecological environment | Dongguan Huizhou |
Partition 4 | Low potential area | Unsuitable for large-scale artificial land development, important ecological protection area, strong ecological sensitivity | Jiangmen Zhongshan |
Partition 5 | Extreme low potential area | Low suitability for land development, low economic benefits, high ecological sensitivity | Zhaoqing |
2010 | 2020 | |||
---|---|---|---|---|
Overall Accuracy | Kappa Coefficient | Overall Accuracy | Kappa Coefficient | |
Unzoned Scenario | 72.36% | 0.7097 | 74.98% | 0.7269 |
Zoned Scenarios | 83.91% | 0.8326 | 82.12% | 0.8217 |
Cultivated Land | Woodland | Grassland | Water Body | Built-Up Land | ||
---|---|---|---|---|---|---|
2010 | Actual Area | 14,138 | 30,437 | 985 | 3902 | 5271 |
PHLUS-Simulated Area | 13,727 | 29,362 | 1176 | 5034 | 5234 | |
Error | 2.91% | 1.89% | 19.39% | 29.01% | 0.70% | |
Traditional CA-Markov-Simulated Area | 11,833 | 33,743 | 1576 | 4466 | 3114 | |
Error | 16.30% | 10.86% | 60.00% | 14.45% | 40.92% | |
2020 | Actual Area | 12,629 | 29,335 | 1069 | 3655 | 8045 |
PHLUS-Simulated Area | 12,240 | 29,728 | 1026 | 3740 | 7999 | |
Error | 3.08% | 1.34% | 4.02% | 2.33% | 0.57% | |
Traditional CA-Markov-Simulated Area | 14,340 | 31,395 | 1100 | 3508 | 4390 | |
Error | 13.55% | 7.02% | 2.90% | 4.02% | 45.43% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Liu, D.; Gao, F.; Zheng, X.; Shang, Y. A Partitioned and Heterogeneous Land-Use Simulation Model by Integrating CA and Markov Model. Land 2023, 12, 409. https://doi.org/10.3390/land12020409
Wang Q, Liu D, Gao F, Zheng X, Shang Y. A Partitioned and Heterogeneous Land-Use Simulation Model by Integrating CA and Markov Model. Land. 2023; 12(2):409. https://doi.org/10.3390/land12020409
Chicago/Turabian StyleWang, Qihao, Dongya Liu, Feiyao Gao, Xinqi Zheng, and Yiqun Shang. 2023. "A Partitioned and Heterogeneous Land-Use Simulation Model by Integrating CA and Markov Model" Land 12, no. 2: 409. https://doi.org/10.3390/land12020409
APA StyleWang, Q., Liu, D., Gao, F., Zheng, X., & Shang, Y. (2023). A Partitioned and Heterogeneous Land-Use Simulation Model by Integrating CA and Markov Model. Land, 12(2), 409. https://doi.org/10.3390/land12020409