Agricultural Economic Transformations and Their Impacting Factors around 4000 BP in the Hexi Corridor, Northwest China
Abstract
:1. Introduction
2. Study Area and Site Description
3. Materials and Methods
4. Results
4.1. Radiocarbon Dating
4.2. Flotation
5. Discussion
5.1. Agricultural Economic Transformations in the Hexi Corridor around 4000 BP
5.2. Influencing Factors on the Agricultural Economic Transformations in the Hexi Corridor around 4000 BP
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diamond, J.; Bellwood, P. Farmers and their languages: The first expansions. Science 2003, 300, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Hunt, H.V.; Linden, M.V.; Liu, X.; Motuzaite-Matuzeviciute, G.; Colledge, S.; Jones, M.K. Millets across Eurasia: Chronology and context of early records of the genera Panicum and Setaria from archaeological sites in the Old World. Veg. Hist. Archaeobotany 2008, 17, S5–S18. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.K.; Liu, X.Y. Origins of agriculture in East Asia. Science 2009, 324, 730–731. [Google Scholar] [CrossRef] [PubMed]
- Spengler, R.; Frachetti, M.; Doumani, P.; Rouse, L.; Cerasetti, B.; Bullion, E.; Mar’Yashev, A. Early agriculture and crop transmission among Bronze Age mobile pastoralists of Central Eurasia. Proc. Biol. Sci. 2014, 281, 20133382. [Google Scholar] [CrossRef]
- Liu, X.; Lister, D.L.; Zhao, Z.; Staff, R.A.; Jones, P.J.; Zhou, L.; Pokharia, A.K.; Petrie, C.A.; Pathak, A.; Lu, H.; et al. The virtues of small grain size: Potential pathways to a distinguishing feature of Asian wheats. Quat. Int. 2016, 426, 107–119. [Google Scholar] [CrossRef]
- Liu, X.; Lister, D.L.; Zhao, Z.J.; Petrie, C.A.; Zeng, X.; Jones, P.J.; Staff, R.A.; Pokharia, A.K.; Bates, J.; Singh, R.N.; et al. Journey to the east: Diverse routes and variable flowering times for wheat and barley en route to prehistoric China. PLoS ONE 2017, 12, e0187405. [Google Scholar] [CrossRef]
- Liu, X.; Jones, P.J.; Matuzeviciute, G.M.; Hunt, H.V.; Lister, D.L.; An, T.; Przelomska, N.; Kneale, C.J.; Zhao, Z.; Jones, M.K. From ecological opportunism to multi-cropping: Mapping food globalisation in prehistory. Quat. Sci. Rev. 2019, 206, 21–28. [Google Scholar] [CrossRef]
- Stevens, C.J.; Murphy, C.; Roberts, R.; Lucas, L.; Silva, F.; Fuller, D.Q. Between China and South Asia: A middle Asian corridor of crop dispersal and agricultural innovation in the Bronze Age. Holocene 2016, 26, 1541–1555. [Google Scholar] [CrossRef]
- Dong, G.H.; Yang, Y.S.; Liu, X.Y.; Li, H.M.; Cui, Y.F.; Wang, H.; Chen, G.K.; Dodson, J.; Chen, F.H. Prehistoric trans-continental cultural exchange in the Hexi Corridor, northwest China. Holocene 2017, 28, 621–628. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Yu, J.J.; Spengler, R.N.; Shen, H.; Zhao, K.L.; Ge, J.Y.; Bao, Y.G.; Liu, J.C.; Yang, Q.J.; Chen, G.H.; et al. 5200-year-old cereal grains from the eastern Altai Mountains redate the trans-Eurasian crop exchange. Nat. Plants 2020, 6, 78–87. [Google Scholar] [CrossRef]
- Li, H.; Sun, Y.; Yang, Y.; Cui, F.; Ren, L.; Li, H.; Chen, G.K.; Petrs, V.; Dong, G.; Liu, X. Water and soil management strategies and the introduction of wheat and barley to northern China: An isotopic analysis of cultivation on the Loess Plateau. Antiquity 2022, 96, 1478–1494. [Google Scholar] [CrossRef]
- Liu, X.Y.; Jones, M.K. Food globalisation in prehistory: Top down or bottom up? Antiquity 2014, 88, 956–963. [Google Scholar] [CrossRef]
- Jones, M.K.; Hunt, H.; Lightfoot, E.; Lister, D.; Liu, X.; Motuzaite-Matuzeviciute, G. Food globalization in prehistory. World Archaeol. 2011, 43, 665–675. [Google Scholar] [CrossRef]
- Jones, M.; Hunt, H.; Kneale, C.; Lightfoot, E.; Lister, D.; Liu, X.; Motuzaite-Matuzeviciute, G. Food globalization in prehistory: The agrarian foundation of an interconnected continent. J. Br. Acad. 2016, 4, 73–87. [Google Scholar] [CrossRef]
- Frachetti, M.D.; Spengler, R.N.; Fritz, G.J.; Mar’Yashev, A.N. Earliest direct evidence for broomcorn millet and wheat in the central Eurasian steppe region. Antiquity 2010, 84, 993–1010. [Google Scholar] [CrossRef]
- Doumani, P.N.; Frachetti, M.D.; Beardmore, R.; Tekla, M.S.; Robert, N.S.; Alexei, N.M. Burial ritual, agriculture, and craft production among Bronze Age pastoralists at Tasbas (Kazakhstan). Archaeol. Res. Asia 2015, 1–2, 17–32. [Google Scholar] [CrossRef]
- Flad, R.; Li, S.C.; Wu, X.H.; Zhao, Z.J. Early wheat in China: Results from new studies at Donghuishan in the Hexi Corridor. Holocene 2010, 20, 955–965. [Google Scholar] [CrossRef]
- Dodson, J.R.; Li, X.Q.; Zhou, X.Y.; Zhao, K.L.; Sun, N.; Atahan, P. Origin and spread of wheat in China. Quat. Sci. Rev. 2013, 72, 108–111. [Google Scholar] [CrossRef]
- Jia, X.; Dong, G.H.; Li, H.; Brunson, K.; Chen, F.H.; Ma, M.M.; Wang, H.; An, C.B.; Zhang, K.R. The development of agriculture and its impact on cultural expansion during the late Neolithic in the Western Loess Plateau, China. Holocene 2013, 23, 85–92. [Google Scholar] [CrossRef]
- Chen, F.H.; Dong, G.H.; Zhang, D.J.; Liu, X.Y.; Jia, X.; An, C.B.; Ma, M.M.; Xie, Y.W.; Barton, L.; Ren, X.Y.; et al. Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 B.P. Science 2015, 347, 248–250. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Li, X.Q.; Dodson, J.; Zhao, K.L. Rapid agricultural transformation in the prehistoric Hexi corridor, China. Quat. Int. 2016, 426, 33–41. [Google Scholar] [CrossRef]
- Li, H.M.; Dong, G.H. The adoption of wheat and barley as major staples in northwest China during the early Bronze Age. In: Far from the Hearth Eassays in Honour of Martin Jones. Camb. Univ. Camb. 2018, 16, 189–198. [Google Scholar] [CrossRef]
- Liu, X.Y.; Lightfoot, E.; O’Connell, T.C.; Wang, H.; Li, S.C.; Zhou, L.P.; Hu, Y.W.; Motuzaite-Matuzeviciute, G.; Jones, M.K. From necessity to choice: Dietary revolutions in west China in the second millennium BC. World Archaeol. 2014, 46, 661–680. [Google Scholar] [CrossRef]
- Ma, M.M.; Dong, G.H.; Jia, X.; Wang, H.; Cui, Y.F.; Chen, F.H. Dietary shift after 3600 cal yr BP and its influencing factors in northwestern China: Evidence from stable isotopes. Quat. Sci. Rev. 2016, 145, 57–70. [Google Scholar] [CrossRef]
- Frankopan, P. The Silk Roads: A New History of the World; Bloomsbury Publishing: London, UK, 2015. [Google Scholar]
- Long, T.; Wagner, M.; Demske, D.; Leipe, C.; Tarasov, P.E. Cannabis in Eurasia: Origin of human use and Bronze Age trans-continental connections. Veg. Hist. Archaeobotany 2016, 26, 245–258. [Google Scholar] [CrossRef]
- Barisitz, S. Central Asia and the Silk Road: Economic Rise and Decline over Several Millennia; Springer International Publishing: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Yang, Y.; Ren, L.; Dong, G.H.; Cui, Y.; Liu, R.; Chen, G.; Wang, H.; Wilkin, S.; Chen, F. Economic change in the prehistoric Hexi corridor (4800–2200 bp), north-west China. Archaeometry 2019, 61, 957–976. [Google Scholar] [CrossRef]
- Wick, L.; Lemcke, G.; Sturm, M. Evidence of Lateglacial and Holocene climatic change and human impact in eastern Anatolia: High-resolution pollen, charcoal, isotopic and geochemical records from the laminated sediments of Lake Van, Turkey. Holocene 2003, 13, 665–675. [Google Scholar] [CrossRef]
- An, C.B.; Feng, Z.; Tang, L. Environmental change and cultural response between 8000 and 4000 cal. yr BP in the western Loess Plateau, northwest China. J. Quat. Sci. 2004, 19, 529–535. [Google Scholar] [CrossRef]
- An, C.B.; Tang, L.; Barton, L.; Chen, F.H. Climate change and cultural response around 4000 cal yr BP in the western part of Chinese Loess Plateau. Quat. Res. 2005, 63, 347–352. [Google Scholar] [CrossRef]
- Marchant, R.; Hooghiemstra, H. Rapid environmental change in African and South American tropics around 4000 years before present: A review. Earth-Sci. Rev. 2004, 66, 217–260. [Google Scholar] [CrossRef]
- Neff, H.; Pearsall, D.M.; Jones, J.G.; Bárbara, A.P.; Dorothy, E.F. Climate change and population history in the Pacific lowlands of southern Mesoamerica. Quat. Res. 2006, 65, 390–400. [Google Scholar] [CrossRef]
- Sun, Q.; Liu, Y.; Wünnemann, B.; Peng, Y.; Jiang, X.; Deng, L.; Chen, J.; Li, M.; Chen, Z. Climate as a factor for Neolithic cultural collapses approximately 4000 years BP in China. Earth-Sci. Rev. 2019, 197, 102915. [Google Scholar] [CrossRef]
- Weiss, H.; Courty, M.A.; Wetterstrom, W.; Guichard, F.; Senior, L.; Meadow, R.; Curnow, A. The genesis and collapse of third millennium north Mesopotamian civilization. Science 1993, 261, 995–1004. [Google Scholar] [CrossRef]
- Kerr, R.A. Archaeology: Sea-floor dust shows drought felled Akkadian Empire. Science 1998, 279, 325–326. [Google Scholar] [CrossRef]
- Cullen, H.M.; Hemming, S.; Hemming, G.; Brown, F.H.; Guilderson, T.; Sirocko, F. Climate change and the collapse of the Akkadian empire: Evidence from the deep sea. Geology 2000, 28, 379–382. [Google Scholar] [CrossRef]
- Staubwasser, M.; Sirocko, F.; Grootes, P.M.; Segl, M. Climate change at the 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability. Geophys. Res. Lett. 2003, 30, 1425. [Google Scholar] [CrossRef]
- Wu, W.X.; Liu, D.X. 4000aB.P. event and its implication for the origin of Ancient Chinese civilization. Quat. Sci. 2001, 21, 443–451. (In Chinese) [Google Scholar]
- Jia, X.; Yi, S.; Sun, Y.; Wu, S.; Harry, H.L.; Wang, L.; Lu, H. Spatial and temporal variations in prehistoric human settlement and their influencing factors on the south bank of the Xar Moron River, Northeastern China. Front. Earth Sci. 2017, 11, 137–147. [Google Scholar] [CrossRef]
- Li, H.; Liu, Z.; James, N.; Li, X.; Hu, Z.; Shi, H.; Sun, L.; Lu, Y.; Jia, X. Agricultural Transformations and Their Influential FactorsRevealed by Archaeobotanical Evidence in Holocene Jiangsu Province, Eastern China. Front. Earth Sci. 2021, 9, 661684. [Google Scholar] [CrossRef]
- He, K.; Lu, H.; Jin, G.; Wang, C.; Zhang, H.; Zhang, J.; Xu, D.; Shen, C.; Wu, N.; Guo, Z. Antipodal pattern of millet and rice demography in response to 4.2 ka climate event in China. Quat. Sci. Rev. 2022, 295, 107786. [Google Scholar] [CrossRef]
- Yao, T.D.; Thompson, L.G. Dundee ice core records with temperature changes over the past 5 ka. Sci. Sin. Terrae 1992, 10, 1089–1093. (In Chinese) [Google Scholar]
- Shen, J.; Liu, X.Q.; Matsumoto, R.; Wang, S.; Yang, X. A high-resolution climatic change since the Late Glacial Age inferred from multi-proxy of sediments in Qinghai Lake. Sci. China Earth Sci. 2005, 48, 742–751. [Google Scholar] [CrossRef]
- Zou, S.B.; Cheng, G.D.; Xiao, H.L.; Xu, B.R.; Feng, Z.D. Holocene natural rhythms of vegetation and present potential ecology in the Western Chinese Loess Plateau. Quat. Int. 2009, 194, 55–67. [Google Scholar] [CrossRef]
- Liu, F.; Feng, Z.D. A dramatic climatic transition at ~4000 cal. yr BP and its cultural responses in Chinese cultural domains. Holocene 2012, 22, 1181–1197. [Google Scholar] [CrossRef]
- Chan, D.; Wu, Q.; Jiang, G.; Dai, X. Projected shifts in Köppen climate zones over China and their temporal evolution in CMIP5 multi-model simulations. Adv. Atmos. Sci. 2016, 33, 283–293. [Google Scholar] [CrossRef]
- Bureau of National Cultural Relics. Atlas of Chinese Cultural Relics-Gansu Province Volume; Surveying and Mapping Press: Jacksonville, FL, USA, 2011. (In Chinese) [Google Scholar]
- Li, S.C. Prehistoric Culture Evolution in Northwest China; Cultural Relics Press: Beijing, China, 2009; pp. 200–293. (In Chinese) [Google Scholar]
- Li, S.C.; Shui, T.; Wang, H. Report on Prehistoric Archaeological Survey in Hexi Corridor. Acta Archaeol. Sin. 2010, 2, 229–262. (In Chinese) [Google Scholar]
- Wang, H. The Genealogy and Pattern of Neolithic-Bronze Age Archaeological Cultures in the Ganqing Region; Archaeological Studies(nine); Cultural Relics Press: Beijing, China, 2012. (In Chinese) [Google Scholar]
- Chen, G.K. Metallurgical community of Xichengyi-Qijia culture: Early metal-masking specialists in the Hexi Corridor and related issues. Archaeol. Cult. Relics 2017, 5, 37–44. (In Chinese) [Google Scholar]
- Yang, Y.S. Study on the Transformation of Prehistoric Livelihood Patterns and the Factors Influence in the Hexi Corridor. Doctoral Dissertation, Fudan University, Lanzhou, China, 2017. (In Chinese). [Google Scholar]
- Zhao, Z.J. Poleoethnobotany: Theories, Methods and Practice; Science Press: Beijing, China, 2010. (In Chinese) [Google Scholar]
- Reimer, P.J.; Austin, W.E.N.; Bard, E.; Bayliss, A.; Blackwell, P.; Ramsey, C.; Butzin, M.; Cheng, H.; Edwards, R.; Friedrich, M.; et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 2022, 62, 725–757. [Google Scholar] [CrossRef]
- Zhao, H.C.; Wang, H. Early The Silk Road and Early Qin Culture International Symposium Proceedings; Cultural Relics Press: Beijing, China, 2014. (In Chinese) [Google Scholar]
- Fan, X.J. Analysis of Carbonized Botanic Remains in Xichengyi Site. Master’s Dissertation, Shandong University, Jinan, China, 2016. (In Chinese). [Google Scholar]
- Atahan, P.; Dodson, J.; Li, X.; Zhou, X.; Hu, S.; Fiona, B.; Sun, N. Subsistence and the isotopic signature of herding in the Bronze Age Hexi Corridor, NW Gansu, China. J. Archaeol. Sci. 2011, 38, 1747–1753. [Google Scholar] [CrossRef]
- Li, S.C. East by West: The Process of Prehistoric Culture in Northwest China; Cultural Relics Press: Beijing, China, 2009. (In Chinese) [Google Scholar]
- Han, J.Y. Early China: The Marking Of The Chinese Cultural Sphere; Shanghai Classics Publishing House: ShangHai, China, 2015. (In Chinese) [Google Scholar]
- Han, J.Y. The Evolution of QiJia Culture: Cultural Interaction and Eurasian Context. Cult. Relics 2019, 7, 60–65. (In Chinese) [Google Scholar]
- Dalfes, H.N.; Kukla, G.; Weiss, H. Third millennium BC Climate Change and Old World Collapse. Springer Sci. Bus. Media 1997, 49, 1–14. [Google Scholar] [CrossRef]
- Bawden, G.; Reycraft, R.M. Environmental disaster and the archaeology of human response. Am. J. Archaeol. 2002, 106, 475–476. [Google Scholar] [CrossRef]
- Xu, D.; Lu, H.; Chu, G.; Liu, L.; Shen, C.; Li, F.; Wang, C.; Wu, N. Synchronous 500-year oscillations of monsoon climate and human activity in Northeast Asia. Nat. Commun. 2019, 10, 4105. [Google Scholar] [CrossRef]
- Yamaura, Y.; Narita, A.; Kusumoto, Y.; Nagano, A.J.; Tezuka, A.; Okamoto, T.; Takahara, H.; Nakamura, F.; Isagi, Y.; Lindenmayer, D. Genomic reconstruction of 100 000-year grassland history in a forested country: Population dynamics of specialist forbs. Biol. Lett. 2019, 15, 20180577. [Google Scholar] [CrossRef]
- Polyak, V.J.; Asmerom, Y. Late Holocene climate and cultural changes in the southwestern United States. Science 2001, 294, 148–151. [Google Scholar] [CrossRef] [Green Version]
- Haug, G.H.; Gunther, D.; Peterson, L.C.; Sigman, D.M.; Hughen, K.A.; Aeschlimann, B. Climate and the collapse of Maya civilization. Science 2003, 299, 1731–1735. [Google Scholar] [CrossRef]
- Jia, X.; Sun, Y.G.; Wang, L.; Sun, W.F.; Zhao, Z.J.; Lee, H.F.; Huang, W.B.; Wu, S.Y.; Lu, H.Y. The transition of human subsistence strategies in relation to climate change during the Bronze Age in the West Liao River Basin, Northeast China. Holocene 2016, 26, 781–789. [Google Scholar] [CrossRef]
- Herzschuh, U.; Tarasov, P.; Wünnemann, B.; Heatmann, K. Holocene vegetation and climate of the Alashan Plateau, NW China, reconstructed from pollen data. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 211, 1–17. [Google Scholar] [CrossRef]
- Marcott, S.A.; Shakun, J.D.; Clark, P.U.; Mix, A.C. A reconstruction of regional and global temperature for the past 11,300 years. Science 2013, 339, 1198–1201. [Google Scholar] [CrossRef]
- Wang, D.; Gouhier, T.C.; Menge, B.A.; Ganguly, A.R. Intensification and spatial homogenization of coastal upwelling under climate change. Nature 2015, 518, 390–394. [Google Scholar] [CrossRef]
- Thompson, L.G. Tropical Climate Instability: The Last Glacial Cycle from a Qinghai-Tibetan Ice Core. Science 1997, 276, 1821–1825. [Google Scholar] [CrossRef]
- Ji, S.; Xingqi, L.; Sumin, W.; Matsumoto, R. Palaeoclimatic changes in the Qinghai Lake area during the last 18,000 years. Quat. Int. 2005, 136, 131–140. [Google Scholar] [CrossRef]
- Klepper, B.; Rickman, R.W.; Waldman, S.; Chevalier, P. The physiological life cycle of wheat: Its use in breeding and crop management. Euphytica 1998, 100, 341–347. [Google Scholar] [CrossRef]
- Saseendran, S.A.; Nielsen, D.C.; Lyon, D.J.; Ma, L.; Felter, D.G.; Baltensperger, D.D.; Hoogenboom, G.; Ahuja, L.R. Modeling responses of dryland spring triticale, proso millet and foxtail millet to initial soil water in the High Plains. Field Crops Res. 2009, 113, 48–63. [Google Scholar] [CrossRef]
- Guedes, J.D.; Butler, E.E. Modeling constraints on the spread of agriculture to Southwest China with thermal niche models. Quat. Int. 2014, 349, 29–41. [Google Scholar] [CrossRef]
- D’Alpoim Guedes, J. Rethinking the spread of agriculture to the Tibetan Plateau. Holocene 2015, 25, 1498–1510. [Google Scholar] [CrossRef] [Green Version]
- Han, J.Y. Natural Environment and Cultural Development in the Pre-Qin Period of Northwest China; Cultural Relics Press: Beijing, China, 2008. (In Chinese) [Google Scholar]
Laboratory no. | Methods | Material | 14C Date (BP) | Calibrated Age (cal yr BP) | |
---|---|---|---|---|---|
1σ Range | 2σ Range | ||||
LZU19372 | AMS | Wheat | 3390 ± 20 | 3692–3580 | 3601–3663 |
LZU19369 | AMS | Wheat | 3410 ± 20 | 3703–3591 | 3630–3692 |
LZU19371 | AMS | Wheat | 3430 ± 20 | 3818–3614 | 3632–3714 |
LZU19375 | AMS | Wheat | 3440 ± 20 | 3823–3636 | 3639–3739 |
LZU19374 | AMS | Wheat | 3450 ± 20 | 3825–3640 | 3651–3759 |
LZU19377A | AMS | Wheat | 3430 ± 20 | 3818–3614 | 3632–3714 |
LZU19370 | AMS | Wheat | 3480 ± 20 | 3831–3694 | 3716–3804 |
LZU19368 | AMS | Foxtail millet | 3420 ± 20 | 3810–3608 | 3632–3700 |
LZU19373 | AMS | Foxtail millet | 3570 ± 20 | 3959–3830 | 3839–3899 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; James, N.; Chen, J.; Zhang, S.; Du, L.; Yang, Y.; Chen, G.; Ma, M.; Jia, X. Agricultural Economic Transformations and Their Impacting Factors around 4000 BP in the Hexi Corridor, Northwest China. Land 2023, 12, 425. https://doi.org/10.3390/land12020425
Li H, James N, Chen J, Zhang S, Du L, Yang Y, Chen G, Ma M, Jia X. Agricultural Economic Transformations and Their Impacting Factors around 4000 BP in the Hexi Corridor, Northwest China. Land. 2023; 12(2):425. https://doi.org/10.3390/land12020425
Chicago/Turabian StyleLi, Haiming, Nathaniel James, Junwei Chen, Shanjia Zhang, Linyao Du, Yishi Yang, Guoke Chen, Minmin Ma, and Xin Jia. 2023. "Agricultural Economic Transformations and Their Impacting Factors around 4000 BP in the Hexi Corridor, Northwest China" Land 12, no. 2: 425. https://doi.org/10.3390/land12020425
APA StyleLi, H., James, N., Chen, J., Zhang, S., Du, L., Yang, Y., Chen, G., Ma, M., & Jia, X. (2023). Agricultural Economic Transformations and Their Impacting Factors around 4000 BP in the Hexi Corridor, Northwest China. Land, 12(2), 425. https://doi.org/10.3390/land12020425