Urbanization Paradox of Environmental Policies in Korean Local Governments
Abstract
:1. Introduction
2. Literature Review
2.1. Models and Variables of the Environemntal Efficiecny
2.2. Determninats of the Environemntal Efficiecny: Tobit Approach
3. Methodology and Data
3.1. PM2.5 Efficiecny
3.2. Tobit Regression Model
3.3. Data
4. Result and Discussion
4.1. Empirical Results of PM2.5 Efficiency and Malmquist Productivity in Local Government
4.2. Empirical Results of the Tobit Analysis
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Korea Official Statistics Information System (KOSIS). Trend of PM10.0, PM2.5. Available online: https://kosis.kr/statHtml/statHtml.do?orgId=106&tblId=DT_106N_03_0200045 (accessed on 14 July 2022).
- Convergence Research Review. Converg. Res. Policy Cent. 2019, 5, 4. Available online: https://crpc.kist.re.kr/user/nd49151.do?View&boardNo=00006787# (accessed on 1 August 2022).
- KBS News Broadcast. News 9, “PM 2.5 Kills More than 23,000 People”. 18 April 2022. Available online: https://news.kbs.co.kr/news/view.do?ncd=5443096 (accessed on 6 October 2022).
- Lee, H.; Choi, Y. Greenhouse gas performance of Korean local governments based on non-radial DDF. Technol. Forecast. Soc. Change 2018, 135, 13–21. [Google Scholar] [CrossRef]
- Na, W.; Choi, Y. Comparative Analysis of the Energy and CO2 Emissions Performance and Technology Gaps in Agglomerated Cities of China and South Korea. Sustainability 2019, 11, 475. [Google Scholar]
- Chang, Y.T.; Zang, N.; Danao, D.; Zang, N. Environmental efficiency analysis of transportation system in China: A non-radial DEA approach. Energy Policy 2013, 58, 277–283. [Google Scholar] [CrossRef]
- Choi, Y.; Yang, F.; Lee, H. On the unbalanced atmospheric environmental performance of major cities in China. Sustainability 2020, 12, 5391. [Google Scholar] [CrossRef]
- Zhang, N.; Choi, Y. Environmental energy efficiency of China’s regional economies: A non-oriented slacks-based measure analysis. Soc. Sci. J. 2013, 50, 225–234. [Google Scholar] [CrossRef]
- Yang, F.; Lee, H. An innovative provincial CO2 emission quota allocation scheme for Chinese low-carbon transition. Technol. Forecast. Soc. Change 2022, 182, 121823. [Google Scholar] [CrossRef]
- Chen, J.; Song, M.; Xu, L. Evaluation of environmental efficiency in China using date envelopment analysis. Ecol. Indic. 2015, 52, 577–583. [Google Scholar] [CrossRef]
- Avilés-Sacoto, E.C.; Avilés-Sacoto, S.V.; Güemes-Castorena, D.; Cook, W.D. Environmental performance evaluation: A state-level DEA analysis. Soc. Econ. Plan. Sci. 2021, 78, 101082. [Google Scholar] [CrossRef]
- Wang, K.; Zhao, X.; Peng, B.; Zeng, Y. Can energy efficiency progress reduce PM2.5 concentration in China’s cities? Evidence from 105 key environmental protection cities in China, 2004–2015. J. Clean. Prod. 2021, 288, 125684. [Google Scholar] [CrossRef]
- Yu, A.; Zhang, P.; Rudkin, S. Simultaneous action or protection after production? Decision making based on a chance-constrained approach by measuring environmental performance considering PM2.5. Soc. Econ. Plan. Sci. 2022, 80, 101147. [Google Scholar] [CrossRef]
- Chen, N.; Xu, L.; Chen, Z. Environmental efficiency analysis of the Yangtze River Economic Zone using super efficiency data envelopment analysis (SEDEA) and tobit models. Energy 2017, 134, 659–671. [Google Scholar] [CrossRef]
- Gong, J.; Shi, L.; Wang, X.; Sun, G. The efficiency of health resource allocation and its influencing factors: Evidence from the super efficiency slack based model-Tobit model. Int. Health 2022, 0, 1–9. [Google Scholar] [CrossRef]
- Deng, F.; Xu, L.; Yuan, F.; Gong, Q.; Li, Z. PCA-DEA-tobit regression assessment with carbon emission constraints of China’s logistics industry. J. Clean. Prod. 2020, 271, 122548. [Google Scholar] [CrossRef]
- Debbarma, J.; Lee, H.; Choi, Y. Sustainable Feasibility of the Environmental-Friendly Policies on Agriculture and Its Related Sectors in India. Sustainability 2021, 13, 6680. [Google Scholar] [CrossRef]
- Ma, X.; Wang, C.; Yu, Y.; Li, Y.; Dong, B.; Zhang, X.; Niu, X.; Yang, Q.; Chen, R.; Li, Y.; et al. Ecological efficiency in China and its influencing factors—A super-efficient SBM metafrontier-Malmquist-Tobit model study. Environ. Sci. Pollut. Res. 2018, 25, 20880–20898. [Google Scholar] [CrossRef]
- Zhu, C.; Zhu, N.; Shan, W.U.H. Eco-efficiency of industrial investment and its influencing factors in China based on a new SeUo-SBM-DEA model and tobit regression. Math. Probl. Eng. 2021, 2021, 5329714. [Google Scholar] [CrossRef]
- Aldieri, L.; Gatto, A.; Vinci, C.P. Is there any room for renewable energy innovation in developing and transition economies? Data envelopment analysis of energy behaviour and resilience data. Resour. Conserv. Recycl. 2022, 186, 106587. [Google Scholar] [CrossRef]
- Tobin, J. Estimation of relationships for limited dependent variables. Econometrica 1958, 26, 24–36. [Google Scholar] [CrossRef]
- Zhang, J.F.; Fang, H.; Wang, H.X.; Jia, M.S.; Wu, J.J.; Fang, S.R. Energy efficiency of airlines and its influencing factors: A comparison between China and the United States. Resour. Conserv. Recycl. 2017, 125, 1–8. [Google Scholar] [CrossRef]
- Le, T.L.; Lee, P.P.; Peng, K.; Chung, R.H. Evaluation of total factor productivity and environmental efficiency of agriculture in nine East Asian countries. Agric. Econ. 2019, 65, 249–258. [Google Scholar] [CrossRef]
- Kuang, B.; Lu, X.; Zhou, M.; Chen, D. Provincial cultivated land use efficiency in China: Empirical analysis based on the SBM-DEA model with carbon emissions considered. Technol. Forecast. Soc. Change 2020, 151, 119874. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Gujarati, D.N. Basic Econometrics; Tata McGraw-Hill Education: New Delhi, India, 2012. [Google Scholar]
- Dhungana, B.R.; Nuthall, P.L.; Nartea, G.V. Measuring the economic inefficiency of Nepalese rice farms using data envelopment analysis. Aust. J. Agric. Resour. Econ. 2004, 48, 347–369. [Google Scholar] [CrossRef]
- Fan, S.; Pardey, P.G. Research, productivity, and output growth in Chinese agriculture. J. Dev. Econ. 1997, 53, 115–137. [Google Scholar] [CrossRef]
- Liu, W.; Lin, B. Analysis of energy efficiency and its influencing factors in China’s transport sector. J. Clean. Prod. 2018, 170, 674–682. [Google Scholar] [CrossRef]
- Ayaz, S.; Hussain, Z.; Sial, M.H. Role of credit on production efficiency of farming sector in Pakistan (A data envelopment analysis). World Acad. Sci. Eng. Technol. 2010, 60, 1028–1033. [Google Scholar]
Author(s) | Research Subject | Measurement | Methodology | Variables |
---|---|---|---|---|
Lee et al., (2018) [4] | GHG performance in Korea. | Energy efficiency | DDF | Input—energy, capital, labor Desirable output—GRDP Undesirable output—Greenhouse gas |
Na wang et al., (2019) [5] | Compare the city-level environmental efficiency. | Environmental efficiency | GMNDDF | Input—capital, labor, energy Desirable output—GRDP Undesirable output—CO2 |
Chang et al., (2013) [6] | Analyze the environmental efficiency of China’s transportation. | Environmental efficiency | SBM-DEA | Non-energy input—labor, capital Energy input—energy Desirable output—value-add Undesirable output—CO2 |
Choi et al., (2020) [7] | Atmospheric environmental efficiency in China. | Atmospheric efficiency | SBM-DEA | Input—labor, capital, energy. Desirable output—GRDP Undesirable output—SO2, NOx, PMs |
Ning Zhang et al., (2013) [8] | Environmental energy efficiency of China. | Energy efficiency | SBM-DEA | Input—capital, labor, energy Desirable output—GDP Undesirable output—SO2, CO2, COD |
Yang and Lee (2022) [9] | CO2 emission efficiency in China. | CO2 emission efficiency | pZSG-DEA | Input—population, capital, energy Desirable output—GRDP Undesirable output— CO2 |
Chen et al., (2015) [10] | Environmental efficiency in China. | Environmental efficiency | DEA | Input —energy, social fixed assets investment Desirable output—GDP Undesirable output—wastewater, solid, gas |
Aviles-Sacoto et al., (2021) [11] | Environmental performance evaluation in Mexico. | Environmental performance | DEA | Input—green investment, renewable energy Desirable output—total water, PM2.5 |
Wang et al., (2021) [12] | Total factor energy efficiency in China. | Energy efficiency | DEA | Energy input—electricity, natural gas, artificial gas, industrial fuel oil Economic input—capital, total urban employment Output—GDP, retail sales of consumer goods, budgetary revenue of local government |
Yu et al., (2022) [13] | PM2.5 performance in China. | Environmental performance | DEA | Input—capital, labor, energy. Desirable output—GDP Undesirable output—PM2.5 |
Reference(s) | Field of Research | Variables |
---|---|---|
Chen et al., (2017) [14] | Environmental energy efficiency in the Yangtze River Economic Zone in China | GDP per capita Environmental investment Population density Foreign trade degree Industrial structure |
Gong et al., (2022) [15] | Health resource allocation efficiency in Sichuan | GDP per capita The average annual income of residents Urbanization rate Population density Education |
Deng et al., (2020) [16] | Efficiency in the logistics industry in China | Economic development Logistics efficiency Energy structure Government expenditure |
Debbarma et al., (2021) [17] | Efficiency in agriculture industry in India | Land Livestock Fertilizers Agricultural cultivation Urbanization rate Average rainfall Export Credit access |
Ma et al. [18] | Ecological efficiency in China | GRDP per GDP Degree of openness Intensity of R&D expenditure Urbanization rate The proportion of energy consumption The proportion of investment in environmental pollution control |
Zhu et al. [19] | Eco efficiency of China in industrial investment | GDP Investment in treatment of industrial pollution Foreign direct investment Research and development expenditure Total education funds Total import and export trade |
Aldieri et al. [20] | Energy efficiency of 148 developing and transition countries | Renewable energy R&D Outages Generator Days Connection |
Variables | Unit | Mean | St Dev | Minimum | Maximum |
---|---|---|---|---|---|
Labor | 103 persons | 1621.05 | 1621.58 | 303.00 | 6685.00 |
Capital | 109 Won | 28,108.81 | 26,681.18 | 3827.10 | 147,245.50 |
Energy consumption | 103 t oil-eq | 13,419.36 | 11,540.89 | 1087.00 | 41,611.00 |
GRDP | 109 Won | 101,216.03 | 105,692.09 | 13,193.14 | 451,426.42 |
PM2.5 | 105 t PM2.5 | 14,519.84 | 11,281.71 | 1346.36 | 41,229.49 |
No. | Local Government | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
---|---|---|---|---|---|---|---|
1 | Seoul | 1 | 0.9423 | 1 | 0.9422 | 0.9831 | 1 |
2 | Pusan | 0.4662 | 0.4563 | 0.5344 | 0.5334 | 0.5262 | 0.5405 |
3 | Daegu | 0.5279 | 0.4998 | 0.4946 | 0.5106 | 0.5155 | 0.5456 |
4 | Incheon | 0.3735 | 0.3722 | 0.4161 | 0.3905 | 0.4209 | 0.4091 |
5 | Gwangju | 0.5959 | 0.5958 | 0.6631 | 0.6595 | 0.6601 | 0.6635 |
6 | Daejeon | 0.6091 | 0.5983 | 0.6486 | 0.6273 | 0.6457 | 0.6498 |
7 | Ulsan | 1 | 0.9366 | 0.9213 | 1 | 1 | 1 |
8 | Gyeonggi | 0.5641 | 0.5848 | 0.6177 | 0.5844 | 0.5928 | 0.6393 |
9 | Gangwon | 0.2899 | 0.3158 | 0.3237 | 0.34 | 0.3682 | 0.3801 |
10 | Chungbuk | 0.3986 | 0.4147 | 0.4171 | 0.4375 | 0.4623 | 0.4883 |
11 | Chungnam | 0.4961 | 0.443 | 0.4265 | 0.4766 | 0.5082 | 0.6935 |
12 | Jeonbuk | 0.3687 | 0.3861 | 0.4113 | 0.3769 | 0.3716 | 0.3913 |
13 | Jeonnam | 0.3235 | 0.335 | 0.3264 | 0.3382 | 0.3538 | 0.3662 |
14 | Kyungbuk | 0.3673 | 0.3816 | 0.401 | 0.396 | 0.4058 | 0.4159 |
15 | Kyungnam | 0.4608 | 0.4624 | 0.503 | 0.4897 | 0.4961 | 0.4942 |
16 | Jeju | 0.4719 | 0.4452 | 0.487 | 0.4756 | 0.4849 | 0.4967 |
Average | 0.5196 | 0.5106 | 0.5370 | 0.5362 | 0.5497 | 0.5734 |
Explanatory Variables | Unit | Coefficient | Std. Err. | t | p > |t| |
---|---|---|---|---|---|
GRDP | Million Won | 0.0148 | 0.11 | 18.26 | 0.000 |
Greenbelt width | m2 | −1.54 | 1.26 | −1.22 | 0.227 |
Renewable Energy generation | toe | −9.30 | 1.21 | −7.67 | 0.000 |
Population | 1000 people/km2 | 0.0171 | 4.92 | 3.46 | 0.001 |
Patent | EA | 3.63 | 0.026 | 2.39 | 0.019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, Y.; Lee, H.; Jeong, H.; Debbarma, J. Urbanization Paradox of Environmental Policies in Korean Local Governments. Land 2023, 12, 436. https://doi.org/10.3390/land12020436
Choi Y, Lee H, Jeong H, Debbarma J. Urbanization Paradox of Environmental Policies in Korean Local Governments. Land. 2023; 12(2):436. https://doi.org/10.3390/land12020436
Chicago/Turabian StyleChoi, Yongrok, Hyoungsuk Lee, Hojin Jeong, and Jahira Debbarma. 2023. "Urbanization Paradox of Environmental Policies in Korean Local Governments" Land 12, no. 2: 436. https://doi.org/10.3390/land12020436
APA StyleChoi, Y., Lee, H., Jeong, H., & Debbarma, J. (2023). Urbanization Paradox of Environmental Policies in Korean Local Governments. Land, 12(2), 436. https://doi.org/10.3390/land12020436