Optimizing the Cropland Fallow for Water Resource Security in the Groundwater Funnel Area of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Framework
2.3. Data Sources and Processing
2.3.1. Data Sources
2.3.2. Data Processing
2.4. Methods
2.4.1. Fallow Urgency
Evaluation of Potential Ecological Resilience of Cropland
Cropland Fallow Urgency
Method for Dividing the Degree of Fallow Land Urgency
2.4.2. Fallow Area
2.4.3. Fallow Location
3. Results
3.1. Classification of Cropland Fallow Urgency
3.1.1. Irrigation Profit/Loss Index (IPLI)
3.1.2. Shallow Groundwater Depth Change Rate (SGDCR)
3.1.3. Classification of the Urgency of Fallow Cropland
3.2. Current Situation and Assessment of Fallow Cropland
3.2.1. Cropland Fallow Area
3.2.2. Space Allocation of Fallow Land
4. Discussion and Policy Implications
4.1. Discussion
4.2. Policy Suggestion and Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gleick, P.H. Global freshwater resources: Soft-path solutions for the 21st century. Science 2003, 302, 1524–1528. [Google Scholar] [CrossRef]
- Hanjra, M.A.; Qureshi, M.E. Global water crisis and future food security in an era of climate change. Food Policy 2010, 35, 365–377. [Google Scholar] [CrossRef]
- Falkenmark, M.; Molden, D. Wake up to realities of river basin closure. Water Resour. Dev. 2008, 24, 201–215. [Google Scholar] [CrossRef]
- Molden, D.; Oweis, T.Y.; Pasquale, S.; Kijne, J.W.; Hanjra, M.A.; Bindraban, P.S. Pathways for increasing agricultural water productivity. In Comprehensive Assessment of Water Management in Agriculture, Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture; Molden, D., Ed.; International Water Management Institute: London, UK; Earthscan: Colombo, Sri Lanka, 2007; pp. 145–151. [Google Scholar]
- Butler, J.J.; Whittemore, D.O.; Wilson, B.B.; Bohling, G.C. Sustainability of aquifers supporting irrigated agriculture: A case study of the high plains aquifer in kansas. Water Int. 2018, 43, 815–828. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Faunt, C.C.; Longuevergne, L.; Reedy, R.C.; Mcmahon, P.B. Groundwater depletion and sustainability of irrigation in the us high plains and central valley. Proc. Natl. Acad. Sci. USA 2012, 109, 24. [Google Scholar] [CrossRef] [PubMed]
- Meng, S.; Fei, Y.; Zhang, Z.; Qian, Y.; Li, Y. Groundwater vulnerability assessment of north China plain. Geol. China 2011, 6, 1607–1613. [Google Scholar]
- Wu, A.; Li, C.; Xu, Y.; Liu, J.; Luo, G. Key issues influencing sustainable groundwater utilization and its countermeasures in North China Plain. South-to North Water Transf. Water Sci. Technol. 2010, 8, 110–113. [Google Scholar]
- Liu, Y.; Qiao, L. Innovating system and policy of arable land conservation under the new-type urbanization in China. Econ. Geogr. 2014, 4, 1–6. (In Chinese) [Google Scholar]
- Swanson, D.A.; Scott, D.P.; Risley, D.L. Wildlife benefits of the conservation reserve program in Ohio. J. Soil Water Conserv. 1999, 54, 390–394. [Google Scholar]
- Landgraf, D.; Bohm, C.; Maskesechin, F. Dynamic of different C and N fractions in a Cambisol under five succession fallow in Saxony (Germany). J. Plant Nutr. Soil Sci. 2003, 166, 319–325. [Google Scholar] [CrossRef]
- Karlen, D.L.; Rosek, M.J.; Gardner, J.C. Conservation reserve program effects on soil quality indicators. J. Soil Water Conserv. 1999, 54, 439–444. [Google Scholar]
- Luo, B.; Li, J.B.; Huang, G.H.; Li, H.L. A simulation-based interval two-stage stochastic model for agricultural nonpoint source pollution control through land retirement. Sci. Total Environ. 2006, 361, 38–56. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y. Cultivated land protection and quality improvement under the background of rural revitalization. Rural. Econ. Technol. 2019, 3, 30–32. (In Chinese) [Google Scholar]
- Jones, A. The impact of the EC’s set-aside program: The response of farm businesses in Rendsburg-Eckernforde Germany. Land Use Policy 1991, 8, 108–124. [Google Scholar] [CrossRef]
- Siebert, R. Assessing German farmers’ attitudes regarding nature conservation set-aside in regions dominated by arable farming. J. Nat. Conserv. 2010, 18, 327–337. [Google Scholar] [CrossRef]
- Fei, Y.; Miao, J.; Zhang, Z.; Chen, Z.; Song, H.; Yang, M. Analysis on evolution of groundwater depression cones and its leading factors in North China Plain. Resour. Sci. 2009, 31, 394–399. [Google Scholar]
- Kong, X.; Zhang, X.; Lal, R.; Zhang, F.; Chen, X.; Niu, Z.; Han, L.; Song, W. Groundwater depletion by agricultural intensification in China’s HHH plains, since 1980s. Adv. Agron. 2015, 135, 59–106. [Google Scholar] [CrossRef]
- Ti, J.S.; Yang, Y.H.; Pu, L.L.; Wen, X.Y.; Yin, X.G.; Chen, F. Ecological compensation for winter wheat fallow and impact assessment of winter fallow on water sustainability and food security on the North China Plain. J. Clean. Prod. 2021, 328, 129431. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Zhang, R.; Li, J.; Zhang, M.; Zhou, S.; Wang, Z. Reduced irrigation increases the water use efficiency and productivity of winter wheat-summer maize rotation on the North China Plain. Sci. Total Environ. 2018, 618, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.J.; Wu, D.R.; Yang, J.Y.; Ma, Y.P.; Feng, R.; Huo, Z.G. Summer maize growth under different precipitation years in the Huang-Huai-Hai Plain of China. Agric. For. Meteorol. 2020, 285, 12. [Google Scholar] [CrossRef]
- Xu, Y. Impact analysis of land use on groundwater level drawdown: A case study of the Hebei Plain. Geogr. Res. 2005, 2, 222–228. [Google Scholar]
- Wang, X.; Li, X.B.; Xin, L.J.; Tan, M.H.; Li, S.F.; Wang, R.J. Ecological compensation for winter wheat abandonment in groundwater over-exploited areas in the North China Plain. J. Geogr. Sci. 2016, 26, 1463–1476. [Google Scholar] [CrossRef]
- Xie, H.L.; Cheng, L.J.; Lu, H. Farmers’ responses to the winter wheat fallow policy in the groundwater funnel area of China. Land Use Policy 2018, 73, 195–204. [Google Scholar] [CrossRef]
- Pei, H.; Scanlon, B.R.; Shen, Y.; Reedy, R.C.; Long, D.; Liu, C. Impacts of varying agricultural intensification on crop yield and groundwater resources: Comparison of the North China Plain and US High Plains. Environ. Res. Lett. 2015, 10, 044013. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, Y. Farmers’ evaluation cause analysis and improvement suggestions on groundwater over-exploited comprehensive governance. China Popul. Resour. Environ. 2018, 28, 160–168. (In Chinese) [Google Scholar]
- Quzhou Statistical Yearbook (QSY); Zhongzhou Ancient Books Publishing House: Zhengzhou, China, 2018; pp. 131–142. (In Chinese)
- Chen, H. Study on the fallow plan of cultivated land in Quzhou County for water resources security. Master’s Thesis, China Agricultural University, Beijing, China, 2019; pp. 15–18. (In Chinese). [Google Scholar]
- Yang, H.F.; Cao, W.G.; Zhi, C.S. Evolution of groundwater level in the North China Plain in the past 40 years and suggestions on its overexploitation treatment. Geol. China 2021, 48, 1142–1155. (In Chinese) [Google Scholar]
- Huang, C. The change of cultivated land use technology and its ecological resilience evaluation in Quzhou County in last 50 years. Master’s Thesis, China Agricultural University, Beijing, China, 2018; pp. 32–41. (In Chinese). [Google Scholar]
- Sun, Y.; Zhang, Y.; Wang, S.; Zhou, Y. Index prediction model of total farmland in China. Geogr. Geo-Inf. Sci. 2017, 23, 46–49. (In Chinese) [Google Scholar]
- Li, F.F.; Liu, Y.Z. Study on the potential of cultivated land fallow under the premise of China’s food security. Chin. Agric. Sci. Bull. 2014, 30, 35–41. (In Chinese) [Google Scholar]
- Luo, T.T.; Zou, X.R. Planning for abandonment, abandonment, conversion of farmland to forest and fallow conversion mechanism. West. Forum 2015, 25, 40–46. (In Chinese) [Google Scholar]
- Haeze, D.; Deckers, J.; Raes, D. Environmental and socio-economic impacts of institutional reforms on the agricultural section of Vietnam land suitability assessment for Robusta coffee in the Dak Gan region. Agric. Ecosyst. Environ. 2005, 105, 59–76. [Google Scholar] [CrossRef]
- Lu, H.; Xie, H.L. Impact of changes in labor resources and transfers of land use rights on agricultural non-point source pollution in Jiangsu Province, China. J. Environ. Manag. 2018, 207, 134–140. [Google Scholar] [CrossRef]
- Han, H.; Yu, Y. Research on the payment for environmental services of the ‘Grain for Green’ program: Cost basis, willingness to accept or environmental values (IAE). Issues Agric. Econ. 2014, 4, 64–73. [Google Scholar]
- Song, W.; Alexander, V.P.; Song, W. Mapping the spatial and temporal patterns of fallow land inmountainous regions of China. Int. J. Digit. Earth 2022, 15, 2148–2167. [Google Scholar] [CrossRef]
- Han, Z.; Song, W. Spatiotemporal variations in cropland abandonment in the Guizhou–Guangxi karst mountain area, China. J. Clean. Prod. 2019, 238, 117888. [Google Scholar] [CrossRef]
- Song, W. Mapping cropland abandonment in mountainous areas using an annual land-use trajectory approach. Sustainability 2019, 11, 5951. [Google Scholar] [CrossRef]
- Xie, H.L.; Jin, S.T. Evolutionary game analysis of fallow farmland behaviors of different types of farmers and local governments. Land Use Policy 2019, 88, 104122. [Google Scholar] [CrossRef]
- Móricz, N.; Mátyás, C.; Berki, I.; Rasztovits, E.; Vekerdy, Z.; Gribovszki, Z. Comparative water balance study of forest and fallow plots. iForest 2012, 5, 188–196. [Google Scholar] [CrossRef]
- Das, D.M.; Nayak, D.; Sahoo, B.C. Identification of potential groundwater zones in rice-fallow areas within the Mahanadi river basin, India, using GIS and the analytical hierarchy process. Environ. Earth Sci. 2022, 81, 395. [Google Scholar] [CrossRef]
- Lu, H. Impact of non-agricultural employment and environmental awareness on farmers’ willingness to govern the heavy metal pollution of farmland: A case study of China. Sustainability 2019, 11, 2068. [Google Scholar] [CrossRef] [Green Version]
Main Crop | Growing Season | Water Requirement during the Full Growth Period (mm) | Effective Precipitation during the Whole Growth Period (mm) | Water Demand for Irrigation (m3/hm2) |
---|---|---|---|---|
Winter wheat | October–June | 499.9 | 122.79 | 3771 |
Summer maize | June–September | 357.6 | 355.86 | 17 |
Cotton | April–October | 502.2 | 390.54 | 1117 |
Main Crop | Number of Irrigation Times | Volume of Water Irrigation (m3/hm2) |
---|---|---|
Winter wheat | 4.5 | 3375 |
Summer maize | 1.5 | 1125 |
Cotton | 1.5 | 1125 |
Year | Total Population | Sown Area of Food Crops (hm2) | Total Grain Output (t) | Grain Yield Per Unit Area (t/hm2) | ||||
---|---|---|---|---|---|---|---|---|
Actual Value | Predictive Value | Actual Value | Predictive Value | Actual Value | Predictive Value | Actual Value | Predictive Value | |
2013 | 482,710 | 482,710.000 | 54,784 | 54,784.000 | 428,447 | 428,447.000 | 7.821 | 7.821 |
2014 | 499,227 | 501,932.823 | 54,818 | 54,607.471 | 413,989 | 415,306.331 | 7.552 | 7.598 |
2015 | 513,610 | 511,142.897 | 56,108 | 56,033.586 | 418,883 | 418,778.204 | 7.466 | 7.472 |
2016 | 523,585 | 520,521.969 | 56,771 | 57,496.945 | 425,972 | 422,279.100 | 7.503 | 7.347 |
2017 | 527,304 | 530,073.139 | 59,453.69 | 58,998.521 | 423,338.24 | 425,809.263 | 7.120 | 7.224 |
2018 | 538,263 | 539,799.566 | 60,899 | 60,539.311 | 428,754 | 429,368.938 | 7.120 | 7.104 |
Relative average error (%) | 0.533 | 0.640 | 0.448 | 1.059 | ||||
Precision (%) | 95.407 | 93.512 | 91.250 | 93.514 | ||||
Posterior difference ratio (C) | 0.239 | 0.421 | 0.221 | 0.195 | ||||
Small error probability (P) | 1.000 | 1.000 | 1.000 | 1.000 |
Main Crop | Irrigation Profit/Loss Index (IPLI) |
---|---|
Winter wheat | 0.1173 |
Summer maize | −0.9849 |
Cotton | −0.0071 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Chen, S.; Yang, R.; Shan, L.; Hao, J.; Ye, Y. Optimizing the Cropland Fallow for Water Resource Security in the Groundwater Funnel Area of China. Land 2023, 12, 462. https://doi.org/10.3390/land12020462
Chen H, Chen S, Yang R, Shan L, Hao J, Ye Y. Optimizing the Cropland Fallow for Water Resource Security in the Groundwater Funnel Area of China. Land. 2023; 12(2):462. https://doi.org/10.3390/land12020462
Chicago/Turabian StyleChen, Hong, Sha Chen, Runjia Yang, Liping Shan, Jinmin Hao, and Yanmei Ye. 2023. "Optimizing the Cropland Fallow for Water Resource Security in the Groundwater Funnel Area of China" Land 12, no. 2: 462. https://doi.org/10.3390/land12020462
APA StyleChen, H., Chen, S., Yang, R., Shan, L., Hao, J., & Ye, Y. (2023). Optimizing the Cropland Fallow for Water Resource Security in the Groundwater Funnel Area of China. Land, 12(2), 462. https://doi.org/10.3390/land12020462