Wetland Removal Mechanisms for Emerging Contaminants
Abstract
:1. Introduction
2. Scope of Review
3. Emerging Contaminants
4. Abiotic Removal Mechanisms of ECs in Wetlands
4.1. Sorption
4.1.1. Sorption Systematic Review Summary
4.1.2. Partitioning Coefficients and Hydrophobicity
4.1.3. Surface Charge and pH
4.1.4. Chemical Structure
4.1.5. Substrate Size and Structure
4.1.6. Influence of Organic Matter
4.1.7. Adsorption Saturation
4.1.8. Desorption
4.1.9. Sorption Summary
4.2. Photodegradation
4.2.1. Photodegradation Systematic Review Summary
4.2.2. Photodegradation Studied on Its Own
4.2.3. Photodegradation Studied with Other Mechanisms
4.2.4. Half Lives and Kinetic Constants
4.2.5. Photodegradation Light Source
4.2.6. Other Influences on Photodegradation
4.2.7. Photodegradation Summary
5. Biotic Removal Mechanisms of ECs in Wetlands
5.1. Microbial Biodegradation
5.1.1. Biodegradation Systematic Review Summary
5.1.2. Parameters Influencing Biodegradation
5.1.3. Aerobic Biodegradation
5.1.4. Anaerobic Biodegradation
5.1.5. Microbial Communities in EC Affected Wetlands
5.1.6. Methods for Assessing Biodegradation
5.1.7. Biodegradation Summary
5.2. Phytoremediation
5.2.1. Phytoremediation Systematic Review Summary
5.2.2. Phytoextraction
5.2.3. Phytodegradation
5.2.4. Phytovolatilization
5.2.5. Rhizodegradation
5.2.6. Phytoremediation Summary
5.3. Other Biotic Mechanisms
5.3.1. Phyco-Remediation
5.3.2. Filter Feeders
6. Discussion
7. Conclusions
- Utilizing innovative experimental designs and analytical techniques
- Creating more uniformity in data collection and analysis
- More frequent and long-term monitoring of CWs receiving ECs
- Adopting more standardized terminology for ECs
- Focusing research on pertinent compounds that have received less attention
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oberg, G.; Leopold, A. On the Role of Review Papers in the Face of Escalating Publication Rates—A Case Study of Research on Contaminants of Emerging Concern (CECs). Environ. Int. 2019, 131, 104960. [Google Scholar] [CrossRef]
- Dey Chowdhury, S.; Bhunia, P.; Surampalli, R.Y.; Zhang, T.C. Nature and Characteristics of Emerging Contaminants as a Triggering Factor for Selection of Different Configurations and Combinations of Constructed Wetlands: A Review. J. Environ. Eng. 2022, 148, 03122002. [Google Scholar] [CrossRef]
- Dhangar, K.; Kumar, M. Tricks and Tracks in Removal of Emerging Contaminants from the Wastewater through Hybrid Treatment Systems: A Review. Sci. Total Environ. 2020, 738, 140320. [Google Scholar] [CrossRef]
- Murray, K.E.; Thomas, S.M.; Bodour, A.A. Prioritizing Research for Trace Pollutants and Emerging Contaminants in the Freshwater Environment. Environ. Pollut. 2010, 158, 3462–3471. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Gitungo, S.; Dyksen, J.E.; Raczko, R.F.; Axe, L. Indicator Compounds Representative of Contaminants of Emerging Concern (CECs) Found in the Water Cycle in the United States. Int. J. Environ. Res. Public Health 2021, 18, 1288. [Google Scholar] [CrossRef] [PubMed]
- Gorito, A.M.; Ribeiro, A.R.; Almeida, C.M.R.; Silva, A.M.T. A Review on the Application of Constructed Wetlands for the Removal of Priority Substances and Contaminants of Emerging Concern Listed in Recently Launched EU Legislation. Environ. Pollut. 2017, 227, 428–443. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yin, T.; Kelly, B.C.; Gin, K.Y.-H. Bioaccumulation Behaviour of Pharmaceuticals and Personal Care Products in a Constructed Wetland. Chemosphere 2019, 222, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Nuel, M.; Laurent, J.; Bois, P.; Heintz, D.; Wanko, A. Seasonal and Ageing Effect on the Behaviour of 86 Drugs in a Full-Scale Surface Treatment Wetland: Removal Efficiencies and Distribution in Plants and Sediments. Sci. Total Environ. 2018, 615, 1099–1109. [Google Scholar] [CrossRef]
- Matamoros, V.; Salvadó, V. Evaluation of the Seasonal Performance of a Water Reclamation Pond-Constructed Wetland System for Removing Emerging Contaminants. Chemosphere 2012, 86, 111–117. [Google Scholar] [CrossRef]
- Paz, A.d.l.; Salinas, N.; Matamoros, V. Unravelling the Role of Vegetation in the Attenuation of Contaminants of Emerging Concern from Wetland Systems: Preliminary Results from Column Studies. Water Res. 2019, 166, 115031. [Google Scholar] [CrossRef] [PubMed]
- Yin, T.; Chen, H.; Reinhard, M.; Yi, X.; He, Y.; Gin, K.Y.-H. Perfluoroalkyl and Polyfluoroalkyl Substances Removal in a Full-Scale Tropical Constructed Wetland System Treating Landfill Leachate. Water Res. 2017, 125, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Ávila, C.; García-Galán, M.J.; Borrego, C.M.; Rodríguez-Mozaz, S.; García, J.; Barceló, D. New Insights on the Combined Removal of Antibiotics and ARGs in Urban Wastewater through the Use of Two Configurations of Vertical Subsurface Flow Constructed Wetlands. Sci. Total Environ. 2021, 755, 142554. [Google Scholar] [CrossRef] [PubMed]
- Nottingham, E.R.; Messer, T.L. A Literature Review of Wetland Treatment Systems Used to Treat Runoff Mixtures Containing Antibiotics and Pesticides from Urban and Agricultural Landscapes. Water 2021, 13, 3631. [Google Scholar] [CrossRef]
- Schmitt, N.; Wanko, A.; Laurent, J.; Bois, P.; Molle, P.; Mosé, R. Constructed Wetlands Treating Stormwater from Separate Sewer Networks in a Residential Strasbourg Urban Catchment Area: Micropollutant Removal and Fate. J. Environ. Chem. Eng. 2015, 3 Pt A, 2816–2824. [Google Scholar] [CrossRef]
- Venditti, S.; Brunhoferova, H.; Hansen, J. Behaviour of 27 Selected Emerging Contaminants in Vertical Flow Constructed Wetlands as Post-Treatment for Municipal Wastewater. Sci. Total Environ. 2022, 819, 153234. [Google Scholar] [CrossRef]
- Vymazal, J. Constructed Wetlands for Wastewater Treatment: Five Decades of Experience. Environ. Sci. Technol. 2011, 45, 61–69. [Google Scholar] [CrossRef]
- Tondera, K.; Ruppelt, J.P.; Pinnekamp, J.; Kistemann, T.; Schreiber, C. Reduction of Micropollutants and Bacteria in a Constructed Wetland for Combined Sewer Overflow Treatment after 7 and 10 years of Operation. Sci. Total Environ. 2019, 651, 917–927. [Google Scholar] [CrossRef] [PubMed]
- Ruppelt, J.P.; Pinnekamp, J.; Tondera, K. Elimination of Micropollutants in Four Test-Scale Constructed Wetlands Treating Combined Sewer Overflow: Influence of Filtration Layer Height and Feeding Regime. Water Res. 2020, 169, 115214. [Google Scholar] [CrossRef]
- Cardinal, P.; Anderson, J.C.; Carlson, J.C.; Low, J.E.; Challis, J.K.; Beattie, S.A.; Bartel, C.N.; Elliott, A.D.; Montero, O.F.; Lokesh, S.; et al. Macrophytes May Not Contribute Significantly to Removal of Nutrients, Pharmaceuticals, and Antibiotic Resistance in Model Surface Constructed Wetlands. Sci. Total Environ. 2014, 482–483, 294–304. [Google Scholar] [CrossRef]
- Matamoros, V.; Rodríguez, Y.; Bayona, J.M. Mitigation of Emerging Contaminants by Full-Scale Horizontal Flow Constructed Wetlands Fed with Secondary Treated Wastewater. Ecol. Eng. 2017, 99, 222–227. [Google Scholar] [CrossRef]
- Krzeminski, P.; Tomei, M.C.; Karaolia, P.; Langenhoff, A.; Almeida, C.M.R.; Felis, E.; Gritten, F.; Andersen, H.R.; Fernandes, T.; Manaia, C.M.; et al. Performance of Secondary Wastewater Treatment Methods for the Removal of Contaminants of Emerging Concern Implicated in Crop Uptake and Antibiotic Resistance Spread: A Review. Sci. Total Environ. 2019, 648, 1052–1081. [Google Scholar] [CrossRef] [PubMed]
- Casierra-Martinez, H.A.; Madera-Parra, C.A.; Vargas-Ramírez, X.M.; Caselles-Osorio, A.; Torres-López, W.A. Diclofenac and Carbamazepine Removal from Domestic Wastewater Using a Constructed Wetland-Solar Photo-Fenton Coupled System. Ecol. Eng. 2020, 153, 105699. [Google Scholar] [CrossRef]
- Mohapatra, D.P.; Kirpalani, D.M. Advancement in Treatment of Wastewater: Fate of Emerging Contaminants. Can. J. Chem. Eng. 2019, 97, 2621–2631. [Google Scholar] [CrossRef]
- Schröder, P.; Navarro-Aviñó, J.; Azaizeh, H.; Goldhirsh, A.G.; DiGregorio, S.; Komives, T.; Langergraber, G.; Lenz, A.; Maestri, E.; Memon, A.R.; et al. Using Phytoremediation Technologies to Upgrade Waste Water Treatment in Europe. Environ. Sci. Pollut. Res. Int. 2007, 14, 490–497. [Google Scholar] [CrossRef]
- Nguyen, P.Y.; Carvalho, G.; Reis, M.A.M.; Oehmen, A. A Review of the Biotransformations of Priority Pharmaceuticals in Biological Wastewater Treatment Processes. Water Res. 2021, 188, 116446. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, S. Review: Pharmacological Pollution in Water. Crit. Rev. Environ. Sci. Technol. 2013, 43, 1074–1116. [Google Scholar] [CrossRef]
- Galindo-Miranda, J.M.; Guízar-González, C.; Becerril-Bravo, E.J.; Moeller-Chávez, G.; León-Becerril, E.; Vallejo-Rodríguez, R. Occurrence of Emerging Contaminants in Environmental Surface Waters and Their Analytical Methodology—A Review. Water Supply 2019, 19, 1871–1884. [Google Scholar] [CrossRef]
- Tang, Z.; Wood, J.; Smith, D.; Thapa, A.; Aryal, N. A Review on Constructed Treatment Wetlands for Removal of Pollutants in the Agricultural Runoff. Sustainability 2021, 13, 13578. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, S.; Chang, C.-C. Emerging Pollutants—Part II: Treatment. Water Environ. Res. 2019, 91, 1390–1401. [Google Scholar] [CrossRef] [PubMed]
- Mathon, B.; Coquery, M.; Miège, C.; Vandycke, A.; Choubert, J.-M. Influence of Water Depth and Season on the Photodegradation of Micropollutants in a Free-Water Surface Constructed Wetland Receiving Treated Wastewater. Chemosphere 2019, 235, 260–270. [Google Scholar] [CrossRef] [PubMed]
- Nas, B.; Dolu, T.; Argun, M.E.; Yel, E.; Ateş, H.; Koyuncu, S. Comparison of Advanced Biological Treatment and Nature-Based Solutions for the Treatment of Pharmaceutically Active Compounds (PhACs): A Comprehensive Study for Wastewater and Sewage Sludge. Sci. Total Environ. 2021, 779, 146344. [Google Scholar] [CrossRef]
- Keen, O.S.; Bell, K.Y.; Cherchi, C.; Finnegan, B.J.; Mauter, M.S.; Parker, A.M.; Rosenblum, J.S.; Stretz, H.A. Emerging Pollutants–Part II: Treatment. Water Environ. Res. 2014, 86, 2036–2096. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, S.; Chang, C.-C. Emerging Pollutants—Part II: Treatment. Water Environ. Res. 2020, 92, 1603–1617. [Google Scholar] [CrossRef]
- He, Y.; Nurul, S.; Schmitt, H.; Sutton, N.B.; Murk, T.A.J.; Blokland, M.H.; Rijnaarts, H.H.M.; Langenhoff, A.A.M. Evaluation of Attenuation of Pharmaceuticals, Toxic Potency, and Antibiotic Resistance Genes in Constructed Wetlands Treating Wastewater Effluents. Sci. Total Environ. 2018, 631–632, 1572–1581. [Google Scholar] [CrossRef] [PubMed]
- Rabello, V.M.; Teixeira, L.C.R.S.; Gonçalves, A.P.V.; de Sá Salomão, A.L. The Efficiency of Constructed Wetlands and Algae Tanks for the Removal of Pharmaceuticals and Personal Care Products (PPCPs): A Systematic Review. Water Air Soil Pollut. 2019, 230, 236. [Google Scholar] [CrossRef]
- Lei, Y.; Carlucci, L.; Rijnaarts, H.; Langenhoff, A. Phytoremediation of Micropollutants by Phragmites Australis, Typha Angustifolia, and Juncus Effuses. Int. J. Phytoremediat. 2022, 25, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Gatidou, G.; Oursouzidou, M.; Stefanatou, A.; Stasinakis, A.S. Removal Mechanisms of Benzotriazoles in Duckweed Lemna Minor Wastewater Treatment Systems. Sci. Total Environ. 2017, 596–597, 12–17. [Google Scholar] [CrossRef]
- Sharif, F.; Westerhoff, P.; Herckes, P. Impact of Hydraulic and Carbon Loading Rates of Constructed Wetlands on Contaminants of Emerging Concern (CECs) Removal. Environ. Pollut. 2014, 185, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Nivala, J.; Kahl, S.; Boog, J.; van Afferden, M.; Reemtsma, T.; Müller, R.A. Dynamics of Emerging Organic Contaminant Removal in Conventional and Intensified Subsurface Flow Treatment Wetlands. Sci. Total Environ. 2019, 649, 1144–1156. [Google Scholar] [CrossRef] [PubMed]
- Verlicchi, P.; Galletti, A.; Petrovic, M.; Barceló, D.; Al Aukidy, M.; Zambello, E. Removal of Selected Pharmaceuticals from Domestic Wastewater in an Activated Sludge System Followed by a Horizontal Subsurface Flow Bed—Analysis of Their Respective Contributions. Sci. Total Environ. 2013, 454–455, 411–425. [Google Scholar] [CrossRef] [PubMed]
- Sithamparanathan, E.; Kujawa-Roeleveld, K.; Soedarso, J.A.R.; Sutton, N.B.; Grolle, K.; Bruning, H.; Rijnaarts, H.H.M. Sorption of Micropollutants to Hydroponic Substrata: Effects of Physico-Chemical Properties. Environ. Adv. 2021, 4, 100049. [Google Scholar] [CrossRef]
- Tang, S.; Liang, J.; Gong, J.; Song, B.; Yang, Z.; Fang, S.; Zhang, P.; Cao, W.; Li, J.; Luo, Y. The Effects of Biochar/Compost for Adsorption Behaviors of Sulfamethoxazole in Amended Wetland Soil. Environ. Sci. Pollut. Res. Int. 2021, 28, 49289–49301. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Zhang, M.; Wang, H.; Dai, X.; Chen, H. Removal of Personal Care Products in Greywater Using Membrane Bioreactor and Constructed Wetland Methods. Sci. Total Environ. 2021, 797, 148773. [Google Scholar] [CrossRef] [PubMed]
- Ravichandran, M.K.; Yoganathan, S.; Philip, L. Removal and Risk Assessment of Pharmaceuticals and Personal Care Products in a Decentralized Greywater Treatment System Serving an Indian Rural Community. J. Environ. Chem. Eng. 2021, 9, 106832. [Google Scholar] [CrossRef]
- Brunsch, A.F.; ter Laak, T.L.; Christoffels, E.; Rijnaarts, H.H.M.; Langenhoff, A.A.M. Retention Soil Filter as Post-Treatment Step to Remove Micropollutants from Sewage Treatment Plant Effluent. Sci. Total Environ. 2018, 637–638, 1098–1107. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.A.; Prasher, S.O.; Patel, R.M. Removal of Ionophoric Antibiotics in Free Water Surface Constructed Wetlands. Ecol. Eng. 2012, 41, 13–21. [Google Scholar] [CrossRef]
- Zhu, J.; Wallis, I.; Guan, H.; Ross, K.; Whiley, H.; Fallowfield, H. Juncus Sarophorus, a Native Australian Species, Tolerates and Accumulates PFOS, PFOA and PFHxS in a Glasshouse Experiment. Sci. Total Environ. 2022, 826, 154184. [Google Scholar] [CrossRef]
- Lei, Y.; Langenhoff, A.; Bruning, H.; Rijnaarts, H. Sorption of Micropollutants on Selected Constructed Wetland Support Matrices. Chemosphere 2021, 275, 130050. [Google Scholar] [CrossRef]
- Xu, D.; Meyer, S.; Gaultier, J.; Farenhorst, A.; Pennock, D. Land Use and Riparian Effects on Prairie Wetland Sediment Properties and Herbicide Sorption Coefficients. J. Environ. Qual. 2009, 38, 1757–1765. [Google Scholar] [CrossRef]
- Tejeda, A.; Barrera, A.; Zurita, F. Adsorption Capacity of a Volcanic Rock—Used in Constructed Wetlands—For Carbamazepine Removal, and Its Modification with Biofilm Growth. Water 2017, 9, 721. [Google Scholar] [CrossRef]
- Maurer, L.; Villette, C.; Zumsteg, J.; Wanko, A.; Heintz, D. Large Scale Micropollutants and Lipids Screening in the Sludge Layers and the Ecosystem of a Vertical Flow Constructed Wetland. Sci. Total Environ. 2020, 746, 141196. [Google Scholar] [CrossRef] [PubMed]
- Hua, Z.; Wang, Y.; Zhang, J.; Li, X.; Yu, L. Removal of Perfluoroalkyl Acids and Dynamic Succession of Biofilm Microbial Communities in the Decomposition Process of Emergent Macrophytes in Wetlands. Sci. Total Environ. 2022, 834, 155295. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Shon, H.K.; Cho, J. Role of Wetland Organic Matters as Photosensitizer for Degradation of Micropollutants and Metabolites. J. Hazard. Mater. 2014, 276, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Mathon, B.; Ferreol, M.; Coquery, M.; Choubert, J.-M.; Chovelon, J.-M.; Miège, C. Direct Photodegradation of 36 Organic Micropollutants under Simulated Solar Radiation: Comparison with Free-Water Surface Constructed Wetland and Influence of Chemical Structure. J. Hazard. Mater. 2021, 407, 124801. [Google Scholar] [CrossRef] [PubMed]
- Felis, E.; Sochacki, A.; Magiera, S. Degradation of Benzotriazole and Benzothiazole in Treatment Wetlands and by Artificial Sunlight. Water Res. 2016, 104, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Ravichandran, M.K.; Philip, L. Insight into the Uptake, Fate and Toxic Effects of Pharmaceutical Compounds in Two Wetland Plant Species through Hydroponics Studies. Chem. Eng. J. 2021, 426, 131078. [Google Scholar] [CrossRef]
- Iatrou, E.I.; Gatidou, G.; Damalas, D.; Thomaidis, N.S.; Stasinakis, A.S. Fate of Antimicrobials in Duckweed Lemna Minor Wastewater Treatment Systems. J. Hazard. Mater. 2017, 330, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Petrie, B.; Rood, S.; Smith, B.D.; Proctor, K.; Youdan, J.; Barden, R.; Kasprzyk-Hordern, B. Biotic Phase Micropollutant Distribution in Horizontal Sub-Surface Flow Constructed Wetlands. Sci. Total Environ. 2018, 630, 648–657. [Google Scholar] [CrossRef] [PubMed]
- Lyu, T.; Zhang, L.; Xu, X.; Arias, C.A.; Brix, H.; Carvalho, P.N. Removal of the Pesticide Tebuconazole in Constructed Wetlands: Design Comparison, Influencing Factors and Modelling. Environ. Pollut. 2018, 233, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Lv, T.; Zhang, Y.; Stein, O.R.; Arias, C.A.; Brix, H.; Carvalho, P.N. Effects of Constructed Wetland Design on Ibuprofen Removal—A Mesocosm Scale Study. Sci. Total Environ. 2017, 609, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Weber, K.P. Microbial Community Assessment in Wetlands for Water Pollution Control: Past, Present, and Future Outlook. Water 2016, 8, 503. [Google Scholar] [CrossRef]
- Singh, T.; Awasthi, G.; Tiwari, Y. Recruiting Endophytic Bacteria of Wetland Plants to Phytoremediate Organic Pollutants. Int. J. Environ. Sci. Technol. 2022, 19, 9177–9188. [Google Scholar] [CrossRef]
- Ruppelt, J.P.; Tondera, K.; Wallace, S.J.; Button, M.; Pinnekamp, J.; Weber, K.P. Assessing the Role of Microbial Communities in the Performance of Constructed Wetlands Used to Treat Combined Sewer Overflows. Sci. Total Environ. 2020, 736, 139519. [Google Scholar] [CrossRef]
- Reyes Contreras, C.; López, D.; Leiva, A.M.; Domínguez, C.; Bayona, J.M.; Vidal, G. Removal of Organic Micropollutants in Wastewater Treated by Activated Sludge and Constructed Wetlands: A Comparative Study. Water 2019, 11, 2515. [Google Scholar] [CrossRef]
- Ahmad, A.; Priyadarshini, M.; Raj, R.; Das, S.; Ghangrekar, M.M. Appraising Efficacy of Existing and Advanced Technologies for the Remediation of Beta-Blockers from Wastewater: A Review. Environ. Sci. Pollut. Res. 2022. [Google Scholar] [CrossRef]
- Kahl, S.; Nivala, J.; van Afferden, M.; Müller, R.A.; Reemtsma, T. Effect of Design and Operational Conditions on the Performance of Subsurface Flow Treatment Wetlands: Emerging Organic Contaminants as Indicators. Water Res. 2017, 125, 490–500. [Google Scholar] [CrossRef]
- Bradley, P.M.; Battaglin, W.A.; Clark, J.M.; Henning, F.P.; Hladik, M.L.; Iwanowicz, L.R.; Journey, C.A.; Riley, J.W.; Romanok, K.M. Widespread Occurrence and Potential for Biodegradation of Bioactive Contaminants in Congaree National Park, USA. Environ. Toxicol. Chem. 2017, 36, 3045–3056. [Google Scholar] [CrossRef] [PubMed]
- Park, N.; Vanderford, B.J.; Snyder, S.A.; Sarp, S.; Kim, S.D.; Cho, J. Effective Controls of Micropollutants Included in Wastewater Effluent Using Constructed Wetlands under Anoxic Condition. Ecol. Eng. 2009, 35, 418–423. [Google Scholar] [CrossRef]
- Li, Y.; Wu, B.; Zhu, G.; Liu, Y.; Ng, W.J.; Appan, A.; Tan, S.K. High-Throughput Pyrosequencing Analysis of Bacteria Relevant to Cometabolic and Metabolic Degradation of Ibuprofen in Horizontal Subsurface Flow Constructed Wetlands. Sci. Total Environ. 2016, 562, 604–613. [Google Scholar] [CrossRef]
- Weber, K.P.; Mitzel, M.R.; Slawson, R.M.; Legge, R.L. Effect of Ciprofloxacin on Microbiological Development in Wetland Mesocosms. Water Res. 2011, 45, 3185–3196. [Google Scholar] [CrossRef]
- Brunhoferova, H.; Venditti, S.; Laczny, C.C.; Lebrun, L.; Hansen, J. Bioremediation of 27 Micropollutants by Symbiotic Microorganisms of Wetland Macrophytes. Sustainability 2022, 14, 3944. [Google Scholar] [CrossRef]
- Jehmlich, N.; Vogt, C.; Lünsmann, V.; Richnow, H.H.; von Bergen, M. Protein-SIP in Environmental Studies. Curr. Opin. Biotechnol. 2016, 41, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Riva, V.; Mapelli, F.; Syranidou, E.; Crotti, E.; Choukrallah, R.; Kalogerakis, N.; Borin, S. Root Bacteria Recruited by Phragmites Australis in Constructed Wetlands Have the Potential to Enhance Azo-Dye Phytodepuration. Microorganisms 2019, 7, 384. [Google Scholar] [CrossRef]
- Maassen, S.; Richter, E.; Coors, A.; Guimarães, B.; Balla, D. Dissipation of Micropollutants in a Rewetted Fen Peatland: A Field Study Using Treated Wastewater. Water 2017, 9, 449. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Y.-S.; Deng, W.-J.; Ying, G.-G. Removal of Steroid Hormones and Biocides from Rural Wastewater by an Integrated Constructed Wetland. Sci. Total Environ. 2019, 660, 358–365. [Google Scholar] [CrossRef]
- Hu, B.; Hu, S.; Vymazal, J.; Chen, Z. Arbuscular Mycorrhizal Symbiosis in Constructed Wetlands with Different Substrates: Effects on the Phytoremediation of Ibuprofen and Diclofenac. J. Environ. Manag. 2021, 296, 113217. [Google Scholar] [CrossRef]
- Kurade, M.B.; Ha, Y.-H.; Xiong, J.-Q.; Govindwar, S.P.; Jang, M.; Jeon, B.-H. Phytoremediation as a Green Biotechnology Tool for Emerging Environmental Pollution: A Step Forward towards Sustainable Rehabilitation of the Environment. Chem. Eng. J. 2021, 415, 129040. [Google Scholar] [CrossRef]
- Polińska, W.; Kotowska, U.; Kiejza, D.; Karpińska, J. Insights into the Use of Phytoremediation Processes for the Removal of Organic Micropollutants from Water and Wastewater; A Review. Water 2021, 13, 2065. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Zhu, G.; Liu, Y.; Wu, B.; Ng, W.J.; Appan, A.; Tan, S.K. Phytoextraction, Phytotransformation and Rhizodegradation of Ibuprofen Associated with Typha Angustifolia in a Horizontal Subsurface Flow Constructed Wetland. Water Res. 2016, 102, 294–304. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.Q.; Gersberg, R.M.; Hua, T.; Zhu, J.; Ng, W.J.; Tan, S.K. Assessment of Plant-Driven Uptake and Translocation of Clofibric Acid by Scirpus Validus. Environ. Sci. Pollut. Res. 2013, 20, 4612–4620. [Google Scholar] [CrossRef]
- Al Falahi, O.A.; Abdullah, S.R.S.; Hasan, H.A.; Othman, A.R.; Ewadh, H.M.; Al-Baldawi, I.A.; Kurniawan, S.B.; Imron, M.F.; Ismail, N.’I. Simultaneous Removal of Ibuprofen, Organic Material, and Nutrients from Domestic Wastewater through a Pilot-Scale Vertical Sub-Surface Flow Constructed Wetland with Aeration System. J. Water Process Eng. 2021, 43, 102214. [Google Scholar] [CrossRef]
- Diepenheim, G.; Gift, S.C.; Harb, C.; Wallace, M.; Layshock, J. Survey of Phthalate Mitigation and Distribution in Water, Sediment, and Typha in a FullyOperational Constructed Wetland: A Pilot Study. Bull. Environ. Contam. Toxicol. 2020, 105, 205–210. [Google Scholar] [CrossRef]
- Gorito, A.M.; Ribeiro, A.R.; Gomes, C.R.; Almeida, C.M.R.; Silva, A.M.T. Constructed Wetland Microcosms for the Removal of Organic Micropollutants from Freshwater Aquaculture Effluents. Sci. Total Environ. 2018, 644, 1171–1180. [Google Scholar] [CrossRef] [PubMed]
- Petrie, B.; Smith, B.D.; Youdan, J.; Barden, R.; Kasprzyk-Hordern, B. Multi-Residue Determination of Micropollutants in Phragmites Australis from Constructed Wetlands Using Microwave Assisted Extraction and Ultra-High-Performance Liquid Chromatography Tandem Mass Spectrometry. Anal. Chim. Acta 2017, 959, 91–101. [Google Scholar] [CrossRef]
- Hwang, J.-I.; Li, Z.; Andreacchio, N.; Ordonez Hinz, F.; Wilson, P.C. Potential Use of Floating Treatment Wetlands Established with Canna Flaccida for Removing Organic Contaminants from Surface Water. Int. J. Phytoremediat. 2020, 22, 1304–1312. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.-I.; Hinz, F.O.; Albano, J.P.; Wilson, P.C. Enhanced Dissipation of Trace Level Organic Contaminants by Floating Treatment Wetlands Established with Two Macrophyte Species: A Mesocosm Study. Chemosphere 2021, 267, 129159. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lv, T.; Carvalho, P.N.; Arias, C.A.; Chen, Z.; Brix, H. Removal of the Pharmaceuticals Ibuprofen and Iohexol by Four Wetland Plant Species in Hydroponic Culture: Plant Uptake and Microbial Degradation. Environ. Sci. Pollut. Res. 2016, 23, 2890–2898. [Google Scholar] [CrossRef]
- Lv, T.; Carvalho, P.N.; Casas, M.E.; Bollmann, U.E.; Arias, C.A.; Brix, H.; Bester, K. Enantioselective Uptake, Translocation and Degradation of the Chiral Pesticides Tebuconazole and Imazalil by Phragmites Australis. Environ. Pollut. 2017, 229, 362–370. [Google Scholar] [CrossRef]
- He, Y.; Langenhoff, A.A.M.; Sutton, N.B.; Rijnaarts, H.H.M.; Blokland, M.H.; Chen, F.; Huber, C.; Schröder, P. Metabolism of Ibuprofen by Phragmites Australis: Uptake and Phytodegradation. Environ. Sci. Technol. 2017, 51, 4576–4584. [Google Scholar] [CrossRef]
- Fu, Q.; Liao, C.; Du, X.; Schlenk, D.; Gan, J. Back Conversion from Product to Parent: Methyl Triclosan to Triclosan in Plants. Environ. Sci. Technol. Lett. 2018, 5, 181–185. [Google Scholar] [CrossRef]
- Brunhoferova, H.; Venditti, S.; Schlienz, M.; Hansen, J. Removal of 27 Micropollutants by Selected Wetland Macrophytes in Hydroponic Conditions. Chemosphere 2021, 281, 130980. [Google Scholar] [CrossRef]
- Escolà Casas, M.; Larzabal, E.; Matamoros, V. Exploring the Usage of Artificial Root Exudates to Enhance the Removal of Contaminants of Emerging Concern in Slow Sand Filters: Synthetic vs. Real Wastewater Conditions. Sci. Total Environ. 2022, 824, 153978. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.-Q.; Kurade, M.B.; Jeon, B.-H. Can Microalgae Remove Pharmaceutical Contaminants from Water? Trends Biotechnol. 2018, 36, 30–44. [Google Scholar] [CrossRef]
- Ricky, R.; Shanthakumar, S. Phycoremediation Integrated Approach for the Removal of Pharmaceuticals and Personal Care Products from Wastewater—A Review. J. Environ. Manag. 2022, 302, 113998. [Google Scholar] [CrossRef] [PubMed]
- Bayen, S.; Estrada, E.S.; Juhel, G.; Kit, L.W.; Kelly, B.C. Pharmaceutically Active Compounds and Endocrine Disrupting Chemicals in Water, Sediments and Mollusks in Mangrove Ecosystems from Singapore. Mar. Pollut. Bull. 2016, 109, 716–722. [Google Scholar] [CrossRef]
- Matamoros, V.; García, J.; Bayona, J.M. Organic Micropollutant Removal in a Full-Scale Surface Flow Constructed Wetland Fed with Secondary Effluent. Water Res. 2008, 42, 653–660. [Google Scholar] [CrossRef]
- Ahmad, A.; Kurniawan, S.B.; Abdullah, S.R.S.; Othman, A.R.; Hasan, H.A. Contaminants of Emerging Concern (CECs) in Aquaculture Effluent: Insight into Breeding and Rearing Activities, Alarming Impacts, Regulations, Performance of Wastewater Treatment Unit and Future Approaches. Chemosphere 2022, 290, 133319. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W.; Thomaidis, N.S.; Xu, J. Progress in the Biological and Chemical Treatment Technologies for Emerging Contaminant Removal from Wastewater: A Critical Review. J. Hazard. Mater. 2017, 323, 274–298. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.F.; Mofijur, M.; Nuzhat, S.; Chowdhury, A.T.; Rafa, N.; Uddin, M.A.; Inayat, A.; Mahlia, T.M.I.; Ong, H.C.; Chia, W.Y.; et al. Recent Developments in Physical, Biological, Chemical, and Hybrid Treatment Techniques for Removing Emerging Contaminants from Wastewater. J. Hazard. Mater. 2021, 416, 125912. [Google Scholar] [CrossRef]
- Altomare, A.J.; Young, N.A.; Beazley, M.J. A Preliminary Survey of Anthropogenic Gadolinium in Water and Sediment of a Constructed Wetland. J. Environ. Manag. 2020, 255, 109897. [Google Scholar] [CrossRef]
- Anderson, J.C.; Carlson, J.C.; Low, J.E.; Challis, J.K.; Wong, C.S.; Knapp, C.W.; Hanson, M.L. Performance of a Constructed Wetland in Grand Marais, Manitoba, Canada: Removal of Nutrients, Pharmaceuticals, and Antibiotic Resistance Genes from Municipal Wastewater. Chem. Cent. J. 2013, 7, 54. [Google Scholar] [CrossRef]
- Ávila, C.; Bayona, J.M.; Martín, I.; Salas, J.J.; García, J. Emerging Organic Contaminant Removal in a Full-Scale Hybrid Constructed Wetland System for Wastewater Treatment and Reuse. Ecol. Eng. 2015, 80, 108–116. [Google Scholar] [CrossRef]
- Ávila, C.; García-Galán, M.J.; Uggetti, E.; Montemurro, N.; García-Vara, M.; Pérez, S.; García, J.; Postigo, C. Boosting Pharmaceutical Removal through Aeration in Constructed Wetlands. J. Hazard. Mater. 2021, 412, 125231. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Wang, Z.; van der Hoek, J.P. Remediation Potential of Agricultural Organic Micropollutants in In-Situ Techniques: A Review. Ecol. Inform. 2022, 68, 101517. [Google Scholar] [CrossRef]
- Bell, K.Y.; Bandy, J.; Beck, S.; Keen, O.; Kolankowsky, N.; Parker, A.M.; Linden, K. Emerging Pollutants–Part II: Treatment. Water Environ. Res. 2012, 84, 1909–1940. [Google Scholar] [CrossRef]
- Bell, K.Y.; Bandy, J.; Finnegan, B.J.; Keen, O.; Mauter, M.S.; Parker, A.M.; Sima, L.C.; Stretz, H.A. Emerging Pollutants–Part II: Treatment. Water Environ. Res. 2013, 85, 2022–2071. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, S.; Chang, C.-C.; Dong, Z.; Li, H. Emerging Pollutants-Part II: Treatment. Water Environ. Res. 2015, 87, 1873–1900. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, S.; Chang, C.-C. Emerging Pollutants–Part II: Treatment. Water Environ. Res. 2017, 89, 1829–1865. [Google Scholar] [CrossRef]
- Brunsch, A.F.; Zubieta Florez, P.; Langenhoff, A.A.M.; ter Laak, T.L.; Rijnaarts, H.H.M. Retention Soil Filters for the Treatment of Sewage Treatment Plant Effluent and Combined Sewer Overflow. Sci. Total Environ. 2020, 699, 134426. [Google Scholar] [CrossRef]
- Campos, J.M.; Queiroz, S.C.N.; Roston, D.M. Removal of the Endocrine Disruptors Ethinyl Estradiol, Bisphenol A, and Levonorgestrel by Subsurface Constructed Wetlands. Sci. Total Environ. 2019, 693, 133514. [Google Scholar] [CrossRef]
- Cardoso-Vera, J.D.; Elizalde-Velázquez, G.A.; Islas-Flores, H.; Mejía-García, A.; Ortega-Olvera, J.M.; Gómez-Oliván, L.M. A Review of Antiepileptic Drugs: Part 1 Occurrence, Fate in Aquatic Environments and Removal during Different Treatment Technologies. Sci. Total Environ. 2021, 768, 145487. [Google Scholar] [CrossRef] [PubMed]
- Carranza-Diaz, O.; Schultze-Nobre, L.; Moeder, M.; Nivala, J.; Kuschk, P.; Koeser, H. Removal of Selected Organic Micropollutants in Planted and Unplanted Pilot-Scale Horizontal Flow Constructed Wetlands under Conditions of High Organic Load. Ecol. Eng. 2014, 71, 234–245. [Google Scholar] [CrossRef]
- Chaves-Barquero, L.G.; Luong, K.H.; Rudy, M.D.; Frank, R.A.; Hanson, M.L.; Wong, C.S. Attenuation of Pharmaceuticals, Nutrients and Toxicity in a Rural Sewage Lagoon System Integrated with a Subsurface Filtration Technology. Chemosphere 2018, 209, 767–775. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Huber, C.; Schröder, P. Fate of the Sunscreen Compound Oxybenzone in Cyperus Alternifolius Based Hydroponic Culture: Uptake, Biotransformation and Phytotoxicity. Chemosphere 2017, 182, 638–646. [Google Scholar] [CrossRef]
- Chen, J.; Wei, X.-D.; Liu, Y.-S.; Ying, G.-G.; Liu, S.-S.; He, L.-Y.; Su, H.-C.; Hu, L.-X.; Chen, F.-R.; Yang, Y.-Q. Removal of Antibiotics and Antibiotic Resistance Genes from Domestic Sewage by Constructed Wetlands: Optimization of Wetland Substrates and Hydraulic Loading. Sci. Total Environ. 2016, 565, 240–248. [Google Scholar] [CrossRef]
- Cheng, C.; Zhang, J.; Xu, J.; Yang, Y.; Bai, X.; He, Q. Enhanced Removal of Nutrients and Diclofenac by Birnessite Sand Vertical Flow Constructed Wetlands. J. Water Process Eng. 2022, 46, 102656. [Google Scholar] [CrossRef]
- Chowdhury, S.D.; Surampalli, R.Y.; Bhunia, P. Potential of the Constructed Wetlands and the Earthworm-Based Treatment Technologies to Remove the Emerging Contaminants: A Review. J. Hazard. Toxic Radioact. Waste 2022, 26, 04021066. [Google Scholar] [CrossRef]
- De Oliveira, M.; Atalla, A.A.; Frihling, B.E.F.; Cavalheri, P.S.; Migliolo, L.; Filho, F.J.C.M. Ibuprofen and Caffeine Removal in Vertical Flow and Free-Floating Macrophyte Constructed Wetlands with Heliconia Rostrata and Eichornia Crassipes. Chem. Eng. J. 2019, 373, 458–467. [Google Scholar] [CrossRef]
- Du, B.; Price, A.E.; Scott, W.C.; Kristofco, L.A.; Ramirez, A.J.; Chambliss, C.K.; Yelderman, J.C.; Brooks, B.W. Comparison of Contaminants of Emerging Concern Removal, Discharge, and Water Quality Hazards among Centralized and on-Site Wastewater Treatment System Effluents Receiving Common Wastewater Influent. Sci. Total Environ. 2014, 466–467, 976–984. [Google Scholar] [CrossRef] [PubMed]
- Elsner, M.; Imfeld, G. Compound-Specific Isotope Analysis (CSIA) of Micropollutants in the Environment—Current Developments and Future Challenges. Curr. Opin. Biotechnol. 2016, 41, 60–72. [Google Scholar] [CrossRef] [Green Version]
- Escolà Casas, M.; Matamoros, V. Linking Plant-Root Exudate Changes to Micropollutant Exposure in Aquatic Plants (Lemna Minor and Salvinia Natans). A Prospective Metabolomic Study. Chemosphere 2022, 287, 132056. [Google Scholar] [CrossRef]
- Fernandes, J.P.; Almeida, C.M.R.; Basto, M.C.P.; Mucha, A.P. Response of a Salt Marsh Microbial Community to Antibiotic Contamination. Sci. Total Environ. 2015, 532, 301–308. [Google Scholar] [CrossRef]
- Gorito, A.M.; Lado Ribeiro, A.R.; Pereira, M.F.R.; Almeida, C.M.R.; Silva, A.M.T. Advanced Oxidation Technologies and Constructed Wetlands in Aquaculture Farms: What Do We Know so Far about Micropollutant Removal? Environ. Res. 2022, 204, 111955. [Google Scholar] [CrossRef]
- Hamadeh, A.F.; Sharma, S.K.; Amy, G. Comparative Assessment of Managed Aquifer Recharge versus Constructed Wetlands in Managing Chemical and Microbial Risks during Wastewater Reuse: A Review. J. Water Reuse Desalination 2013, 4, 1–8. [Google Scholar] [CrossRef]
- Helcoski, R.; Yonkos, L.T.; Sanchez, A.; Baldwin, A.H. Wetland Soil Microplastics Are Negatively Related to Vegetation Cover and Stem Density. Environ. Pollut. 2020, 256, 113391. [Google Scholar] [CrossRef]
- Hernández-Crespo, C.; Oliver, N.; Peña, M.; Añó, M.; Martín, M. Valorisation of Drinking Water Treatment Sludge as Substrate in Subsurface Flow Constructed Wetlands for Upgrading Treated Wastewater. Process Saf. Environ. Prot. 2022, 158, 486–494. [Google Scholar] [CrossRef]
- Herrera-Cárdenas, J.; Navarro, A.E.; Torres, E. Effects of Porous Media, Macrophyte Type and Hydraulic Retention Time on the Removal of Organic Load and Micropollutants in Constructed Wetlands. J. Environ. Sci. Health Part A 2016, 51, 380–388. [Google Scholar] [CrossRef]
- Huang, X.; Ye, G.; Yi, N.; Lu, L.; Zhang, L.; Yang, L.; Xiao, L.; Liu, J. Effect of Plant Physiological Characteristics on the Removal of Conventional and Emerging Pollutants from Aquaculture Wastewater by Constructed Wetlands. Ecol. Eng. 2019, 135, 45–53. [Google Scholar] [CrossRef]
- Khurana, P.; Pulicharla, R.; Kaur Brar, S. Antibiotic-Metal Complexes in Wastewaters: Fate and Treatment Trajectory. Environ. Int. 2021, 157, 106863. [Google Scholar] [CrossRef] [PubMed]
- Kochi, L.Y.; Freitas, P.L.; Maranho, L.T.; Juneau, P.; Gomes, M.P. Aquatic Macrophytes in Constructed Wetlands: A Fight against Water Pollution. Sustainability 2020, 12, 9202. [Google Scholar] [CrossRef]
- Kurniawan, S.B.; Ahmad, A.; Rahim, N.F.M.; Said, N.S.M.; Alnawajha, M.M.; Imron, M.F.; Abdullah, S.R.S.; Othman, A.R.; Ismail, N.’I.; Hasan, H.A. Aquaculture in Malaysia: Water-Related Environmental Challenges and Opportunities for Cleaner Production. Environ. Technol. Innov. 2021, 24, 101913. [Google Scholar] [CrossRef]
- Lancheros, J.C.; Madera-Parra, C.A.; Caselles-Osorio, A.; Torres-López, W.A.; Vargas-Ramírez, X.M. Ibuprofen and Naproxen Removal from Domestic Wastewater Using a Horizontal Subsurface Flow Constructed Wetland Coupled to Ozonation. Ecol. Eng. 2019, 135, 89–97. [Google Scholar] [CrossRef]
- Leiva, A.M.; Gutierrez, E.; Arias, C.A.; Vidal, G. Influence of Water Quality Parameters on the Removal of Triclosan and Ibuprofen in Vertical Subsurface Flow Constructed Wetlands Using Multivariate Analysis. Environ. Technol. Innov. 2021, 24, 101846. [Google Scholar] [CrossRef]
- Li, Y.; Qin, H.; Li, Y.; Lu, J.; Zhou, L.; Chovelon, J.-M.; Ji, Y. Trace Level Nitrite Sensitized Photolysis of the Antimicrobial Agents Parachlormetaxylenol and Chlorophene in Water. Water Res. 2021, 200, 117275. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, S.; Chang, C.-C. Emerging Pollutants-Part II: Treatment. Water Environ. Res. 2018, 90, 1792–1820. [Google Scholar] [CrossRef]
- Macci, C.; Peruzzi, E.; Doni, S.; Iannelli, R.; Masciandaro, G. Ornamental Plants for Micropollutant Removal in Wetland Systems. Environ. Sci. Pollut. Res. 2015, 22, 2406–2415. [Google Scholar] [CrossRef]
- Matamoros, V.; Caiola, N.; Rosales, V.; Hernández, O.; Ibáñez, C. The Role of Rice Fields and Constructed Wetlands as a Source and a Sink of Pesticides and Contaminants of Emerging Concern: Full-Scale Evaluation. Ecol. Eng. 2020, 156, 105971. [Google Scholar] [CrossRef]
- Matamoros, V.; Rodríguez, Y.; Albaigés, J. A Comparative Assessment of Intensive and Extensive Wastewater Treatment Technologies for Removing Emerging Contaminants in Small Communities. Water Res. 2016, 88, 777–785. [Google Scholar] [CrossRef]
- Maurer, L.; Villette, C.; Reiminger, N.; Jurado, X.; Laurent, J.; Nuel, M.; Mosé, R.; Wanko, A.; Heintz, D. Distribution and Degradation Trend of Micropollutants in a Surface Flow Treatment Wetland Revealed by 3D Numerical Modelling Combined with LC-MS/MS. Water Res. 2021, 190, 116672. [Google Scholar] [CrossRef]
- Moogouei, R. Use of Terrestrial Plants for Phytoremediation of Pollutants from Solutions. Iran J. Sci. Technol. Trans. Sci. 2018, 42, 1753–1759. [Google Scholar] [CrossRef]
- Morales-Paredes, C.A.; Rodríguez-Díaz, J.M.; Boluda-Botella, N. Pharmaceutical Compounds Used in the COVID-19 Pandemic: A Review of Their Presence in Water and Treatment Techniques for Their Elimination. Sci. Total Environ. 2022, 814, 152691. [Google Scholar] [CrossRef] [PubMed]
- Nas, B.; Argun, M.E.; Dolu, T.; Ateş, H.; Yel, E.; Koyuncu, S.; Dinç, S.; Kara, M. Occurrence, Loadings and Removal of EU-Priority Polycyclic Aromatic Hydrocarbons (PAHs) in Wastewater and Sludge by Advanced Biological Treatment, Stabilization Pond and Constructed Wetland. J. Environ. Manag. 2020, 268, 110580. [Google Scholar] [CrossRef]
- Nas, B.; Ateş, H.; Dolu, T.; Yel, E.; Argun, M.E.; Koyuncu, S.; Kara, M.; Dinç, S. Evaluation of Occurrence, Fate and Removal of Priority Phthalate Esters (PAEs) in Wastewater and Sewage Sludge by Advanced Biological Treatment, Waste Stabilization Pond and Constructed Wetland. Chemosphere 2022, 295, 133864. [Google Scholar] [CrossRef] [PubMed]
- Nivala, J.; Neale, P.A.; Haasis, T.; Kahl, S.; König, M.; Müller, R.A.; Reemtsma, T.; Schlichting, R.; Escher, B.I. Application of Cell-Based Bioassays to Evaluate Treatment Efficacy of Conventional and Intensified Treatment Wetlands. Environ. Sci. Water Res. Technol. 2018, 4, 206–217. [Google Scholar] [CrossRef]
- Nowrotek, M.; Sochacki, A.; Felis, E.; Miksch, K. Removal of Diclofenac and Sulfamethoxazole from Synthetic Municipal Waste Water in Microcosm Downflow Constructed Wetlands: Start-up Results. Int. J. Phytoremediat. 2016, 18, 157–163. [Google Scholar] [CrossRef]
- Oliveira, J.F.d.; Fia, R.; Rodrigues, F.N.; Fia, F.R.L.; Matos, M.P.d.; Siniscalchi, L.A.B.; Sanson, A.L. Quantification, Removal and Potential Ecological Risk of Emerging Contaminants in Different Organic Loads of Swine Wastewater Treated by Integrated Biological Reactors. Chemosphere 2020, 260, 127516. [Google Scholar] [CrossRef] [PubMed]
- Palacios, O.A.; Adame-Gallegos, J.R.; Rivera-Chavira, B.E.; Nevarez-Moorillon, G.V. Antibiotics, Multidrug-Resistant Bacteria, and Antibiotic Resistance Genes: Indicators of Contamination in Mangroves? Antibiotics 2021, 10, 1103. [Google Scholar] [CrossRef] [PubMed]
- Pálfy, T.G.; Gerodolle, M.; Gourdon, R.; Meyer, D.; Troesch, S.; Molle, P. Performance Assessment of a Vertical Flow Constructed Wetland Treating Unsettled Combined Sewer Overflow. Water Sci. Technol. 2017, 75, 2586–2597. [Google Scholar] [CrossRef]
- Papadopoulos, N.G.; Takavakoglou, V.; Gikas, E.; Tsarbopoulos, A.; Zalidis, G. Transport and Dissipation Study of the Herbicide Terbuthylazine and Its Major Metabolites in Wetland Sediment Substrates Planted with Typha latifolia L. Desalination Water Treat. 2012, 39, 209–214. [Google Scholar] [CrossRef]
- Parida, V.K.; Sikarwar, D.; Majumder, A.; Gupta, A.K. An Assessment of Hospital Wastewater and Biomedical Waste Generation, Existing Legislations, Risk Assessment, Treatment Processes, and Scenario during COVID-19. J. Environ. Manag. 2022, 308, 114609. [Google Scholar] [CrossRef]
- Pei, M.; Zhang, B.; He, Y.; Su, J.; Gin, K.; Lev, O.; Shen, G.; Hu, S. State of the Art of Tertiary Treatment Technologies for Controlling Antibiotic Resistance in Wastewater Treatment Plants. Environ. Int. 2019, 131, 105026. [Google Scholar] [CrossRef]
- Qin, L.-T.; Pang, X.-R.; Zeng, H.-H.; Liang, Y.-P.; Mo, L.-Y.; Wang, D.-Q.; Dai, J.-F. Ecological and Human Health Risk of Sulfonamides in Surface Water and Groundwater of Huixian Karst Wetland in Guilin, China. Sci. Total Environ. 2020, 708, 134552. [Google Scholar] [CrossRef] [PubMed]
- Ramprasad, C.; Philip, L. Surfactants and Personal Care Products Removal in Pilot Scale Horizontal and Vertical Flow Constructed Wetlands While Treating Greywater. Chem. Eng. J. 2016, 284, 458–468. [Google Scholar] [CrossRef]
- Recsetar, M.S.; Fitzsimmons, K.M.; Cuello, J.L.; Hoppe-Jones, C.; Snyder, S.A. Evaluation of a Recirculating Hydroponic Bed Bioreactor for Removal of Contaminants of Emerging Concern from Tertiary-Treated Wastewater Effluent. Chemosphere 2021, 262, 128121. [Google Scholar] [CrossRef] [PubMed]
- Reif, R.; Besancon, A.; Le Corre, K.; Jefferson, B.; Lema, J.M.; Omil, F. Comparison of PPCPs Removal on a Parallel-Operated MBR and AS System and Evaluation of Effluent Post-Treatment on Vertical Flow Reed Beds. Water Sci. Technol. 2011, 63, 2411–2417. [Google Scholar] [CrossRef] [PubMed]
- Rossi, L.; Queloz, P.; Brovelli, A.; Margot, J.; Barry, D.A. Enhancement of Micropollutant Degradation at the Outlet of Small Wastewater Treatment Plants. PLoS ONE 2013, 8, e58864. [Google Scholar] [CrossRef] [PubMed]
- Sabri, N.A.; Schmitt, H.; van der Zaan, B.M.; Gerritsen, H.W.; Rijnaarts, H.H.M.; Langenhoff, A.A.M. Performance of Full Scale Constructed Wetlands in Removing Antibiotics and Antibiotic Resistance Genes. Sci. Total Environ. 2021, 786, 147368. [Google Scholar] [CrossRef]
- Sarp, S.; Lee, S.; Park, N.; Hanh, N.T.; Cho, J. Controlling Various Contaminants in Wastewater Effluent through Membranes and Engineered Wetland. Front. Environ. Sci. Eng. China 2009, 3, 98–105. [Google Scholar] [CrossRef]
- Scrimshaw, M.D.; Lester, J.N. The Occurrence and Effects of Organic Micropollutants in Salt Marsh Sediments with Reference to the UK Essex Coast: A Review. Environ. Technol. 1996, 17, 951–964. [Google Scholar] [CrossRef]
- Sengar, A.; Vijayanandan, A. Comprehensive Review on Iodinated X-Ray Contrast Media: Complete Fate, Occurrence, and Formation of Disinfection Byproducts. Sci. Total Environ. 2021, 769, 144846. [Google Scholar] [CrossRef]
- Sgroi, M.; Pelissari, C.; Roccaro, P.; Sezerino, P.H.; García, J.; Vagliasindi, F.G.A.; Ávila, C. Removal of Organic Carbon, Nitrogen, Emerging Contaminants and Fluorescing Organic Matter in Different Constructed Wetland Configurations. Chem. Eng. J. 2018, 332, 619–627. [Google Scholar] [CrossRef]
- Sharma, V.K.; Johnson, N.; Cizmas, L.; McDonald, T.J.; Kim, H. A Review of the Influence of Treatment Strategies on Antibiotic Resistant Bacteria and Antibiotic Resistance Genes. Chemosphere 2016, 150, 702–714. [Google Scholar] [CrossRef] [PubMed]
- Sossalla, N.A.; Nivala, J.; Escher, B.I.; Reemtsma, T.; Schlichting, R.; van Afferden, M.; Müller, R.A. Resilience of Micropollutant and Biological Effect Removal in an Aerated Horizontal Flow Treatment Wetland. Water 2020, 12, 3050. [Google Scholar] [CrossRef]
- Sossalla, N.A.; Nivala, J.; Escher, B.I.; Schlichting, R.; van Afferden, M.; Müller, R.A.; Reemtsma, T. Impact of Various Aeration Strategies on the Removal of Micropollutants and Biological Effects in Aerated Horizontal Flow Treatment Wetlands. Sci. Total Environ. 2022, 828, 154423. [Google Scholar] [CrossRef] [PubMed]
- Sossalla, N.A.; Nivala, J.; Reemtsma, T.; Schlichting, R.; König, M.; Forquet, N.; van Afferden, M.; Müller, R.A.; Escher, B.I. Removal of Micropollutants and Biological Effects by Conventional and Intensified Constructed Wetlands Treating Municipal Wastewater. Water Res. 2021, 201, 117349. [Google Scholar] [CrossRef] [PubMed]
- Sudhakaran, S.; Lattemann, S.; Amy, G.L. Appropriate Drinking Water Treatment Processes for Organic Micropollutants Removal Based on Experimental and Model Studies—A Multi-Criteria Analysis Study. Sci. Total Environ. 2013, 442, 478–488. [Google Scholar] [CrossRef] [PubMed]
- Surana, D.; Gupta, J.; Sharma, S.; Kumar, S.; Ghosh, P. A Review on Advances in Removal of Endocrine Disrupting Compounds from Aquatic Matrices: Future Perspectives on Utilization of Agri-Waste Based Adsorbents. Sci. Total Environ. 2022, 826, 154129. [Google Scholar] [CrossRef]
- Talib, A.; Randhir, T.O. Managing Emerging Contaminants: Status, Impacts, and Watershed-Wide Strategies. Expo. Health 2016, 8, 143–158. [Google Scholar] [CrossRef]
- Talib, A.; Randhir, T.O. Managing Emerging Contaminants in Watersheds: Need for Comprehensive, Systems-Based Strategies. Sustain. Water Qual. Ecol. 2017, 9–10, 1–8. [Google Scholar] [CrossRef]
- Tasca, A.L.; Puccini, M.; Fletcher, A. Terbuthylazine and Desethylterbuthylazine: Recent Occurrence, Mobility and Removal Techniques. Chemosphere 2018, 202, 94–104. [Google Scholar] [CrossRef] [Green Version]
- Tondera, K.; Koenen, S.; Pinnekamp, J. Survey Monitoring Results on the Reduction of Micropollutants, Bacteria, Bacteriophages and TSS in Retention Soil Filters. Water Sci. Technol. 2013, 68, 1004–1012. [Google Scholar] [CrossRef] [PubMed]
- Tromp, K.; Lima, A.T.; Barendregt, A.; Verhoeven, J.T.A. Retention of Heavy Metals and Poly-Aromatic Hydrocarbons from Road Water in a Constructed Wetland and the Effect of de-Icing. J. Hazard. Mater. 2012, 203–204, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Villette, C.; Maurer, L.; Delecolle, J.; Zumsteg, J.; Erhardt, M.; Heintz, D. In Situ Localization of Micropollutants and Associated Stress Response in Populus Nigra Leaves. Environ. Int. 2019, 126, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Villette, C.; Maurer, L.; Wanko, A.; Heintz, D. Xenobiotics Metabolization in Salix Alba Leaves Uncovered by Mass Spectrometry Imaging. Metabolomics 2019, 15, 122. [Google Scholar] [CrossRef]
- Vystavna, Y.; Frkova, Z.; Marchand, L.; Vergeles, Y.; Stolberg, F. Removal Efficiency of Pharmaceuticals in a Full Scale Constructed Wetland in East Ukraine. Ecol. Eng. 2017, 108, 50–58. [Google Scholar] [CrossRef]
- Walaszek, M.; Bois, P.; Laurent, J.; Lenormand, E.; Wanko, A. Micropollutants Removal and Storage Efficiencies in Urban Stormwater Constructed Wetland. Sci. Total Environ. 2018, 645, 854–864. [Google Scholar] [CrossRef]
- Wang, J.; Chen, X. Removal of Antibiotic Resistance Genes (ARGs) in Various Wastewater Treatment Processes: An Overview. Crit. Rev. Environ. Sci. Technol. 2022, 52, 571–630. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, H.; Bekele, T.G.; Qu, B.; Chen, J. Organophosphate Esters (OPEs) in Wetland Soil and Suaeda Salsa from Intertidal Laizhou Bay, North China: Levels, Distribution, and Soil-Plant Transfer Model. Sci. Total Environ. 2021, 764, 142891. [Google Scholar] [CrossRef]
- Witter, B.; Francke, W.; Franke, S.; Knauth, H.-D.; Miehlich, G. Distribution and Mobility of Organic Micropollutants in River Elbe Floodplains. Chemosphere 1998, 37, 63–78. [Google Scholar] [CrossRef]
- Xu, S.; Zhou, S.; Xing, L.; Shi, P.; Shi, W.; Zhou, Q.; Pan, Y.; Song, M.-Y.; Li, A. Fate of Organic Micropollutants and Their Biological Effects in a Drinking Water Source Treated by a Field-Scale Constructed Wetland. Sci. Total Environ. 2019, 682, 756–764. [Google Scholar] [CrossRef]
- Yi, X.; Tran, N.H.; Yin, T.; He, Y.; Gin, K.Y.-H. Removal of Selected PPCPs, EDCs, and Antibiotic Resistance Genes in Landfill Leachate by a Full-Scale Constructed Wetlands System. Water Res. 2017, 121, 46–60. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Gersberg, R.M.; Ng, W.J.; Tan, S.K. Removal of Pharmaceuticals and Personal Care Products in Aquatic Plant-Based Systems: A Review. Environ. Pollut. 2014, 184, 620–639. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Sun, Z.; Liu, Y.; Cao, T.; Zhang, H.; Hao, M.; Chen, R.; Dzakpasu, M.; Wang, X.C. Phytoremediation Mechanisms and Plant Eco-Physiological Response to Microorganic Contaminants in Integrated Vertical-Flow Constructed Wetlands. J. Hazard. Mater. 2022, 424, 127611. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Li, W.; Kumar, V.; Necibi, M.C.; Mu, Y.-J.; Shi, C.; Chaurasia, D.; Chauhan, S.; Chaturvedi, P.; Sillanpää, M.; et al. Synthetic Organic Antibiotics Residues as Emerging Contaminants Waste-to-Resources Processing for a Circular Economy in China: Challenges and Perspective. Environ. Res. 2022, 211, 113075. [Google Scholar] [CrossRef] [PubMed]
- Zraunig, A.; Estelrich, M.; Gattringer, H.; Kisser, J.; Langergraber, G.; Radtke, M.; Rodriguez-Roda, I.; Buttiglieri, G. Long Term Decentralized Greywater Treatment for Water Reuse Purposes in a Tourist Facility by Vertical Ecosystem. Ecol. Eng. 2019, 138, 138–147. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, X.; Jiang, J.; Han, J.; Li, W.; Li, X.; Yee Leung, K.M.; Snyder, S.A.; Alvarez, P.J.J. Which Micropollutants in Water Environments Deserve More Attention Globally? Environ. Sci. Technol. 2022, 56, 13–29. [Google Scholar] [CrossRef]
- Peltzer, P.M.; Lajmanovich, R.C.; Martinuzzi, C.; Attademo, A.M.; Curi, L.M.; Sandoval, M.T. Biotoxicity of Diclofenac on Two Larval Amphibians: Assessment of Development, Growth, Cardiac Function and Rhythm, Behavior and Antioxidant System. Sci. Total Environ. 2019, 683, 624–637. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, J.L.; Boxall, A.B.A.; Kolpin, D.W.; Leung, K.M.Y.; Lai, R.W.S.; Galbán-Malagón, C.; Adell, A.D.; Mondon, J.; Metian, M.; Marchant, R.A.; et al. Pharmaceutical Pollution of the World’s Rivers. Proc. Natl. Acad. Sci. USA 2022, 119, e2113947119. [Google Scholar] [CrossRef] [PubMed]
- Kolpin, D.W.; Furlong, E.T.; Meyer, M.T.; Thurman, E.M.; Zaugg, S.D.; Barber, L.B.; Buxton, H.T. Pharmaceuticals, Hormones, and Other Organic Wastewater Contaminants in U.S. Streams, 1999−2000: A National Reconnaissance. Environ. Sci. Technol. 2002, 36, 1202–1211. [Google Scholar] [CrossRef]
- Wilkinson, J.L.; Boxall, A.B.A.; Kolpin, D.W. A Novel Method to Characterise Levels of Pharmaceutical Pollution in Large-Scale Aquatic Monitoring Campaigns. Appl. Sci. 2019, 9, 1368. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, J.; Hooda, P.S.; Barker, J.; Barton, S.; Swinden, J. Occurrence, Fate and Transformation of Emerging Contaminants in Water: An Overarching Review of the Field. Environ. Pollut. 2017, 231, 954–970. [Google Scholar] [CrossRef] [PubMed]
- Sanganyado, E. Chapter 19-Policies and Regulations for the Emerging Pollutants in Freshwater Ecosystems: Challenges and Opportunities. In Emerging Freshwater Pollutants; Dalu, T., Tavengwa, N.T., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 361–372. [Google Scholar] [CrossRef]
- Vymazal, J.; Březinová, T. The Use of Constructed Wetlands for Removal of Pesticides from Agricultural Runoff and Drainage: A Review. Environ. Int. 2015, 75, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Coggan, T.L.; Anumol, T.; Pyke, J.; Shimeta, J.; Clarke, B.O. A Single Analytical Method for the Determination of 53 Legacy and Emerging Per- and Polyfluoroalkyl Substances (PFAS) in Aqueous Matrices. Anal. Bioanal. Chem. 2019, 411, 3507–3520. [Google Scholar] [CrossRef] [PubMed]
- Dvořáková Březinova, T.; Vymazal, J.; Koželuh, M.; Kule, L. Occurrence and Removal of Ibuprofen and Its Metabolites in Full-Scale Constructed Wetlands Treating Municipal Wastewater. Ecol. Eng. 2018, 120, 1–5. [Google Scholar] [CrossRef]
- Snyder, S.A. Occurrence, Treatment, and Toxicological Relevance of EDCs and Pharmaceuticals in Water. Ozone Sci. Eng. 2008, 30, 65–69. [Google Scholar] [CrossRef]
- Roche, H.; Buet, A.; Ramade, F. Accumulation of Lipophilic Microcontaminants and Biochemical Responsesin Eels from the Camargue Biosphere Reserve. Ecotoxicology 2002, 11, 155–164. [Google Scholar] [CrossRef]
- Vymazal, J.; Dvořáková Březinová, T.; Koželuh, M.; Kule, L. Occurrence and Removal of Pharmaceuticals in Four Full-Scale Constructed Wetlands in the Czech Republic–the First Year of Monitoring. Ecol. Eng. 2017, 98, 354–364. [Google Scholar] [CrossRef]
- Crittenden, J.C.; Trussell, R.; Hand, D.W.; Howe, K.J.; Tchobanoglous, G. Principles of Mass Transfer. In MWH’s Water Treatment: Principles and Design, 3rd ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2012; pp. 391–455. [Google Scholar] [CrossRef]
- Bedos, C.; Cellier, P.; Calvet, R.; Barriuso, E.; Gabrielle, B. Mass Transfer of Pesticides into the Atmosphere by Volatilization from Soils and Plants: Overview. Agronomie 2002, 22, 21–33. [Google Scholar] [CrossRef]
- Speight, J.G. Chapter 3-Industrial Organic Chemistry. In Environmental Organic Chemistry for Engineers; Speight, J.G., Ed.; Butterworth-Heinemann: Oxford, UK, 2017; pp. 87–151. [Google Scholar] [CrossRef]
- Sousa, H.; Sousa, C.A.; Simões, L.C.; Simões, M. Microalgal-Based Removal of Contaminants of Emerging Concern. J. Hazard. Mater. 2022, 423, 127153. [Google Scholar] [CrossRef]
- Biel-Maeso, M.; González-González, C.; Lara-Martín, P.A.; Corada-Fernández, C. Sorption and Degradation of Contaminants of Emerging Concern in Soils under Aerobic and Anaerobic Conditions. Sci. Total Environ. 2019, 666, 662–671. [Google Scholar] [CrossRef]
- Martínez-Hernández, V.; Meffe, R.; Herrera, S.; Arranz, E.; de Bustamante, I. Sorption/Desorption of Non-Hydrophobic and Ionisable Pharmaceutical and Personal Care Products from Reclaimed Water onto/from a Natural Sediment. Sci. Total Environ. 2014, 472, 273–281. [Google Scholar] [CrossRef]
- Chen, H.; Reinhard, M.; Nguyen, V.T.; Gin, K.Y.-H. Reversible and Irreversible Sorption of Perfluorinated Compounds (PFCs) by Sediments of an Urban Reservoir. Chemosphere 2016, 144, 1747–1753. [Google Scholar] [CrossRef]
- Park, J.; Cho, K.H.; Lee, E.; Lee, S.; Cho, J. Sorption of Pharmaceuticals to Soil Organic Matter in a Constructed Wetland by Electrostatic Interaction. Sci. Total Environ. 2018, 635, 1345–1350. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Pedersen, J.A. Adsorption of Sulfonamide Antimicrobial Agents to Clay Minerals. Environ. Sci. Technol. 2005, 39, 9509–9516. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Jiang, L.; Cao, X.; Zheng, H.; Feng, L.; Mao, Y.; Zhang, Q.; Shen, Q.; Ji, F. Efficient Removal Mechanism and Microbial Characteristics of Tidal Flow Constructed Wetland Based on In-Situ Biochar Regeneration (BR-TFCW) for Rural Gray Water. Chem. Eng. J. 2022, 431, 134185. [Google Scholar] [CrossRef]
- Wang, Y.; Cai, Z.; Sheng, S.; Pan, F.; Chen, F.; Fu, J. Comprehensive Evaluation of Substrate Materials for Contaminants Removal in Constructed Wetlands. Sci. Total Environ. 2020, 701, 134736. [Google Scholar] [CrossRef]
- Mlih, R.; Bydalek, F.; Klumpp, E.; Yaghi, N.; Bol, R.; Wenk, J. Light-Expanded Clay Aggregate (LECA) as a Substrate in Constructed Wetlands—A Review. Ecol. Eng. 2020, 148, 105783. [Google Scholar] [CrossRef]
- Cui, X.; Wang, J.; Wang, X.; Khan, M.B.; Lu, M.; Khan, K.Y.; Song, Y.; He, Z.; Yang, X.; Yan, B.; et al. Biochar from Constructed Wetland Biomass Waste: A Review of Its Potential and Challenges. Chemosphere 2022, 287, 132259. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, Y.; Liu, R.; Morgan, D. Global Development of Various Emerged Substrates Utilized in Constructed Wetlands. Bioresour. Technol. 2018, 261, 441–452. [Google Scholar] [CrossRef]
- Kalhori, E.M.; Al-Musawi, T.J.; Ghahramani, E.; Kazemian, H.; Zarrabi, M. Enhancement of the Adsorption Capacity of the Light-Weight Expanded Clay Aggregate Surface for the Metronidazole Antibiotic by Coating with MgO Nanoparticles: Studies on the Kinetic, Isotherm, and Effects of Environmental Parameters. Chemosphere 2017, 175, 8–20. [Google Scholar] [CrossRef]
- Crittenden, J.C.; Trussell, R.; Hand, D.W.; Howe, K.J.; Tchobanoglous, G. Adsorption. In MWH’s Water Treatment: Principles and Design, 3rd ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2012; pp. 1117–1262. [Google Scholar] [CrossRef]
- Ávila, C.; Matamoros, V.; Reyes-Contreras, C.; Piña, B.; Casado, M.; Mita, L.; Rivetti, C.; Barata, C.; García, J.; Bayona, J.M. Attenuation of Emerging Organic Contaminants in a Hybrid Constructed Wetland System under Different Hydraulic Loading Rates and Their Associated Toxicological Effects in Wastewater. Sci. Total Environ. 2014, 470–471, 1272–1280. [Google Scholar] [CrossRef]
- Yarwood, S.A. The Role of Wetland Microorganisms in Plant-Litter Decomposition and Soil Organic Matter Formation: A Critical Review. FEMS Microbiol. Ecol. 2018, 94, fiy175. [Google Scholar] [CrossRef] [PubMed]
- Tran, N.H.; Urase, T.; Ngo, H.H.; Hu, J.; Ong, S.L. Insight into Metabolic and Cometabolic Activities of Autotrophic and Heterotrophic Microorganisms in the Biodegradation of Emerging Trace Organic Contaminants. Bioresour. Technol. 2013, 146, 721–731. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Jing, R.; Feng, X.; Dai, Y.; Tao, R.; Vymazal, J.; Cai, N.; Yang, Y. Removal of Acidic Pharmaceuticals by Small-Scale Constructed Wetlands Using Different Design Configurations. Sci. Total Environ. 2018, 639, 640–647. [Google Scholar] [CrossRef] [PubMed]
- Stottmeister, U.; Wießner, A.; Kuschk, P.; Kappelmeyer, U.; Kästner, M.; Bederski, O.; Müller, R.A.; Moormann, H. Effects of Plants and Microorganisms in Constructed Wetlands for Wastewater Treatment. Biotechnol. Adv. 2003, 22, 93–117. [Google Scholar] [CrossRef] [PubMed]
- Ilyas, H.; van Hullebusch, E.D. A Review on the Occurrence, Fate and Removal of Steroidal Hormones during Treatment with Different Types of Constructed Wetlands. J. Environ. Chem. Eng. 2020, 8, 103793. [Google Scholar] [CrossRef]
- Bradley, P.M.; Barber, L.B.; Kolpin, D.W.; McMahon, P.B.; Chapelle, F.H. Biotransformation of Caffeine, Cotinine, and Nicotine in Stream Sediments: Implications for Use as Wastewater Indicators. Environ. Toxicol. Chem. 2007, 26, 1116–1121. [Google Scholar] [CrossRef]
- Bradley, P.M.; Barber, L.B.; Kolpin, D.W.; McMahon, P.B.; Chapelle, F.H. Potential for 4-n-Nonylphenol Biodegradation in Stream Sediments. Environ. Toxicol. Chem. 2008, 27, 260–265. [Google Scholar] [CrossRef]
- Bradley, P.M.; Battaglin, W.A.; Iwanowicz, L.R.; Clark, J.M.; Journey, C.A. Aerobic Biodegradation Potential of Endocrine-Disrupting Chemicals in Surface-Water Sediment at Rocky Mountain National Park, USA. Environ. Toxicol. Chem. 2016, 35, 1087–1096. [Google Scholar] [CrossRef]
- Guedes-Alonso, R.; Montesdeoca-Esponda, S.; Herrera-Melián, J.A.; Rodríguez-Rodríguez, R.; Ojeda-González, Z.; Landívar-Andrade, V.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J. Pharmaceutical and Personal Care Product Residues in a Macrophyte Pond-Constructed Wetland Treating Wastewater from a University Campus: Presence, Removal and Ecological Risk Assessment. Sci. Total Environ. 2020, 703, 135596. [Google Scholar] [CrossRef]
- Pazda, M.; Kumirska, J.; Stepnowski, P.; Mulkiewicz, E. Antibiotic Resistance Genes Identified in Wastewater Treatment Plant Systems—A Review. Sci. Total Environ. 2019, 697, 134023. [Google Scholar] [CrossRef]
- Zhang, D.; Luo, J.; Lee, Z.M.P.; Maspolim, Y.; Gersberg, R.M.; Liu, Y.; Tan, S.K.; Ng, W.J. Characterization of Bacterial Communities in Wetland Mesocosms Receiving Pharmaceutical-Enriched Wastewater. Ecol. Eng. 2016, 90, 215–224. [Google Scholar] [CrossRef]
- Lünsmann, V.; Kappelmeyer, U.; Benndorf, R.; Martinez-Lavanchy, P.M.; Taubert, A.; Adrian, L.; Duarte, M.; Pieper, D.H.; von Bergen, M.; Müller, J.A.; et al. In Situ Protein-SIP Highlights Burkholderiaceae as Key Players Degrading Toluene by Para Ring Hydroxylation in a Constructed Wetland Model. Environ. Microbiol. 2016, 18, 1176–1186. [Google Scholar] [CrossRef] [PubMed]
- Delgado, N.; Bermeo, L.; Hoyos, D.A.; Peñuela, G.A.; Capparelli, A.; Marino, D.; Navarro, A.; Casas-Zapata, J.C. Occurrence and Removal of Pharmaceutical and Personal Care Products Using Subsurface Horizontal Flow Constructed Wetlands. Water Res. 2020, 187, 116448. [Google Scholar] [CrossRef]
- Joner, E.J.; Leyval, C. Rhizosphere Gradients of Polycyclic Aromatic Hydrocarbon (PAH) Dissipation in Two Industrial Soils and the Impact of Arbuscular Mycorrhiza. Environ. Sci. Technol. 2003, 37, 2371–2375. [Google Scholar] [CrossRef] [PubMed]
- Hijosa-Valsero, M.; Matamoros, V.; Sidrach-Cardona, R.; Martín-Villacorta, J.; Bécares, E.; Bayona, J.M. Comprehensive Assessment of the Design Configuration of Constructed Wetlands for the Removal of Pharmaceuticals and Personal Care Products from Urban Wastewaters. Water Res. 2010, 44, 3669–3678. [Google Scholar] [CrossRef]
- Alkorta, I.; Garbisu, C. Phytoremediation of Organic Contaminants in Soils. Bioresour. Technol. 2001, 79, 273–276. [Google Scholar] [CrossRef] [PubMed]
- Pilons-Smits, E. Phytoremediation. Annu. Rev. Plant Biol. 2005, 56, 15–39. [Google Scholar] [CrossRef]
- Carvalho, P.N.; Basto, M.C.P.; Almeida, C.M.R.; Brix, H. A Review of Plant–Pharmaceutical Interactions: From Uptake and Effects in Crop Plants to Phytoremediation in Constructed Wetlands. Environ. Sci. Pollut. Res. 2014, 21, 11729–11763. [Google Scholar] [CrossRef]
- Wang, Q.; Hu, Y.; Xie, H.; Yang, Z. Constructed Wetlands: A Review on the Role of Radial Oxygen Loss in the Rhizosphere by Macrophytes. Water 2018, 10, 678. [Google Scholar] [CrossRef]
- Syranidou, E.; Christofilopoulos, S.; Gkavrou, G.; Thijs, S.; Weyens, N.; Vangronsveld, J.; Kalogerakis, N. Exploitation of Endophytic Bacteria to Enhance the Phytoremediation Potential of the Wetland Helophyte Juncus Acutus. Front. Microbiol. 2016, 7, 1016. [Google Scholar] [CrossRef] [PubMed]
- Bauer, C.R.; Kellogg, C.H.; Bridgham, S.D.; Lamberti, G.A. Mycorrhizal Colonization across Hydrologic Gradients in Restored and Reference Freshwater Wetlands. Wetlands 2003, 23, 961–968. [Google Scholar] [CrossRef]
- Hu, B.; Hu, S.; Vymazal, J.; Chen, Z. Application of Arbuscular Mycorrhizal Fungi for Pharmaceuticals and Personal Care Productions Removal in Constructed Wetlands with Different Substrate. J. Clean. Prod. 2022, 339, 130760. [Google Scholar] [CrossRef]
- Giraud, F.; Guiraud, P.; Kadri, M.; Blake, G.; Steiman, R. Biodegradation of Anthracene and Fluoranthene by Fungi Isolated from an Experimental Constructed Wetland for Wastewater Treatment. Water Res. 2001, 35, 4126–4136. [Google Scholar] [CrossRef]
- Kirk, G.J.D. Biological Processes in the Soil and Floodwater. In The Biogeochemistry of Submerged Soils; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2004; pp. 135–164. [Google Scholar] [CrossRef]
- Hoang, T.K.; Probst, A.; Orange, D.; Gilbert, F.; Elger, A.; Kallerhoff, J.; Laurent, F.; Bassil, S.; Duong, T.T.; Gerino, M. Bioturbation Effects on Bioaccumulation of Cadmium in the Wetland Plant Typha Latifolia: A Nature-Based Experiment. Sci. Total Environ. 2018, 618, 1284–1297. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Lyu, T.; Zhang, L.; Button, M.; Arias, C.A.; Weber, K.P.; Shi, J.; Chen, Z.; Brix, H.; Carvalho, P.N. Microbial Community Metabolic Profiles in Saturated Constructed Wetlands Treating Iohexol and Ibuprofen. Sci. Total Environ. 2019, 651, 1926–1934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Term | # of Studies |
---|---|
Micropollutant (MP) | 70 |
Emerging Contaminant (EC) | 68 |
Contaminants of Emerging Concern (CEC) | 26 |
Organic Micropollutant | 21 |
Emerging Pollutant | 15 |
Emerging Organic Contaminant | 9 |
Compound | CAS | Class | Subclass | # Studies | WARQ Rank from Yang et al. [186] |
---|---|---|---|---|---|
Carbamazepine | 298-46-4 | PPCP | Anticonvulsant | 58 | 10 |
Diclofenac | 15307-86-5 | PPCP | Anti-inflammatory | 57 | 2 |
Sulfamethoxazole | 144930-01-8 | PPCP | Antibiotic | 42 | 1 |
Ibuprofen | 15687-27-1 | PPCP | Anti-inflammatory | 36 | 7 |
Caffeine | 58-08-2 | PPCP | Stimulant | 31 | 4 |
Naproxen | 22204-53-1 | PPCP | Anti-inflammatory | 31 | 26 |
Benzotriazole | 273-02-9 | Industrial | Corrosion Inhibitor | 27 | 46 |
Bisphenol A | 80-05-7 | Industrial | Plasticizer | 23 | 25 |
Metoprolol | 37350-58-6 | PPCP | Beta-blocker | 22 | - |
Trimethoprim | 738-70-5 | PPCP | Antibiotic | 19 | 18 |
Atenolol | 29122-68-7 | PPCP | Beta-blocker | 18 | 52 |
Ketoprofen | 22071-15-4 | PPCP | Anti-inflammatory | 18 | 40 |
Triclosan | 3380-34-5 | PPCP | Disinfectant | 16 | 6 |
Propranolol | 525-66-6 | PPCP | Beta-blocker | 15 | 27 |
Acetaminophen | 103-90-2 | PPCP | Anti-inflammatory | 12 | 3 |
Atrazine | 1912-24-9 | Pesticide | Herbicide | 12 | 31 |
Clarithromycin | 81103-11-9 | PPCP | Antibiotic | 12 | 9 |
Erythromycin | 114-07-8 | PPCP | Antibiotic | 12 | 8 |
Gemfibrozil | 25812-30-0 | PPCP | Antihyperlipidemic | 11 | 23 |
Ethynylestradiol | 57-63-6 | PPCP | Contraceptive | 10 | 20 |
Clofibric acid | 882-0907 | PPCP | Blood lipid regulator | 10 | - |
Galaxolide | 1222-05-5 | PPCP | Synthetic Musk | 10 | 32 |
Abiotic Mechanism | Mechanism Description | Reference |
---|---|---|
Sorption | Binding or transfer of compounds from the bulk liquid phase to a physical surface; includes both adsorption and absorption | [199] |
Photodegradation | Degradation of compounds via reactions caused directly by light or mediated by light | [2] |
Volatilization | Transfer of compounds to the external atmosphere in a gaseous form | [200] |
Hydrolysis | Breakdown of an organic compound into two or more new compounds through interaction with water molecules | [201] |
Wetland Substrate | Parameters Impacting Sorption Capacity | Advantages | Disadvantages |
---|---|---|---|
Gravel/Sand | Particle size [208] | Low cost [209] Widely available [209,210] Non-polluting [209] | Relatively small surface area [48] Issues with clogging [48] |
Natural sediments | Charge of mineral surface (related to system pH and PZC) [49,204] Organic carbon content [41,49] Clay content [203,207] Cation exchange capacity [49,203,204] | Low cost [209] Widely available [209] | Less control of internal structure Location/source dependent |
Volcanic rock | Particle size [50] | Relatively large porosity as compared to gravel [50] High hydraulic conductivity [209] | Availability depends on region Poor sorption capacity compared to other substrate classes [48] |
Biochar | Thermal treatment conditions [211] Feedstock characteristics [211] | Well-developed pore structure [42,208] Large specific surface area [42] | Requires regeneration or replacement to restore sorption capacity once saturated [208] Energy intensive pyrolysis process [212] |
Light Expanded Clay Aggregates (LECA) | Particle size [210] Use of coating or additive to enhance sorption capacity [210] Thermal treatment conditions [210] | High porosity and large specific surface area [210] Large cation exchange capacity [210] Ability to modify LECA using additives to meet needs of the system [210] | Requires surface enhancement as naturally chemically inert [210,213] Energy intensive manufacturing [210] |
Activated Carbon | Contact time [214] Particle size [199] Manufacturing conditions like type of activating agent and temperature and duration of activation [214] | Large specific surface area [48,209] Large micropore structure [48] | Must be removed and replaced when sorption capacity exhausted [214] Limited ability to regenerate or reactivate [214] |
Biotic Mechanism | Mechanism Description | Reference |
---|---|---|
Biodegradation | Degradation of compounds by microorganisms through direct metabolism or co-metabolism | [2] |
Phytoremediation | Removal of compounds either directly by plants or due to a plant’s physical presence or associated organisms | [78] |
Phycoremediation | Removal of compounds by micro or macro algaes by sorption or degradation | [94] |
Filter Feeding | Sorption or digestion of compounds by filter feeding animals like clams and mussels | [95] |
Taxonomic Rank | Name | Associated ECs | Reference |
---|---|---|---|
Phylum | Proteobacteria | 1-H-benzotriazole, diclenofac, ibuprofen | [63,69] |
Actinobacteria | 1-H-benzotriazole, diclofenac, BPA | [63] | |
Firmicutes | 1-H-benzotriazole, ibuprofen | [63,69,226] | |
Family | Burkholderiaceae | Toluene | [227] |
Flavobacteriaceae | Ibuprofen | [69] | |
Mehylcoccaceae | Ibuprofen | [69] | |
Genus | Tetrasphaera | 1-H-benzotriazole, diclenofac | [63] |
Acinetobacter | 1-H-benzotriazole | [63] | |
Oceanicella | 1-H-benzotriazole | [63] | |
Flavobacterium | Diclofenac | [63,71] | |
Burkholderia | Toluene | [227] | |
Ralstonia | Toluene | [227] | |
Pseudomonas | Carbamazepine | [71] | |
Ignavibacterium | Ibuprofen | [69] | |
Propionibacterium | Ibuprofen | [226] |
Organism | Role |
---|---|
Plants | Radial oxygen loss and carbon exudates from roots, root uptake of compounds, root surface adsorption and plaques |
Aerobic Bacteria | Aerobic biodegradation in oxygenated zones |
Anaerobic Bacteria | Anaerobic biodegradation in non-oxygenated zones |
Endophytic Bacteria | Assist in compound degradation and reducing phytotoxicity |
Mycorrhizal Fungi | Improve plant growth and rhizosphere adsorption, reduce phytotoxicity |
Saprotophic Fungi | Biodegradation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Overton, O.C.; Olson, L.H.; Majumder, S.D.; Shwiyyat, H.; Foltz, M.E.; Nairn, R.W. Wetland Removal Mechanisms for Emerging Contaminants. Land 2023, 12, 472. https://doi.org/10.3390/land12020472
Overton OC, Olson LH, Majumder SD, Shwiyyat H, Foltz ME, Nairn RW. Wetland Removal Mechanisms for Emerging Contaminants. Land. 2023; 12(2):472. https://doi.org/10.3390/land12020472
Chicago/Turabian StyleOverton, Olivia Celeste, Leif Hans Olson, Sreemala Das Majumder, Hani Shwiyyat, Mary Elizabeth Foltz, and Robert William Nairn. 2023. "Wetland Removal Mechanisms for Emerging Contaminants" Land 12, no. 2: 472. https://doi.org/10.3390/land12020472
APA StyleOverton, O. C., Olson, L. H., Majumder, S. D., Shwiyyat, H., Foltz, M. E., & Nairn, R. W. (2023). Wetland Removal Mechanisms for Emerging Contaminants. Land, 12(2), 472. https://doi.org/10.3390/land12020472