Effects of Waste Application (Carboniferous Rock and Post-Fermentation Sludge) on Soil Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area, Field Experiment and Sampling
2.2. Analysis
- -
- soil texture—particle size distributions (PSD)—with Casagrande method modified by Prószyński [32],
- -
- particle density (PD)—with the pycnometric method [33] (Mg m−3),
- -
- bulk density (BD)—with the gravimetric method, from the ratio of the mass of soil dried at 105 °C to the initial soil volume of 100 cm3 [34] (Mg m−3),
- -
- total porosity (TP) was calculated from the results of particle density (PD) and bulk density (BD), TP = 1 − BD/PD [35] (m3 m−3),
- -
- air capacity at the potential of −15.5 kPa (FAC) was derived from the results of total porosity (TP) and field water capacity (FC) (−15.5 kPa), FAC = TP − FC [35] (m3 m−3),
- -
- air permeability at the potential of −15.5 kPa (FAP) was measured using an apparatus for the measurement of permeability of molding sand, LPiR-2e. The measurements were conducted at vertical (upward) airflow through the soil sample. The pressure head in the measurement chamber was 0.981 kPa (100 mm H2O), and the ambient temperature was stabilized (20 ± 1.0 °C). The relative air humidity was 40 ± 5%. The dynamic air viscosity (10−8 m2 Pa−1s−1) was not taken into account in the measurement results. The apparatus was produced by MULTISERW-Morek (Poland),
- -
- water content at sampling (SM) was calculated from the ratio of the mass of water contained in the soil during the sampling to the dry matter of soil dried at 105 °C [36] (kg kg−1),
- -
- -
- -
- -
2.3. Statistical Analysis
3. Results and Discussion
3.1. Soil Texture (PSD), Total Organic Carbon (TOC) and Density (PD and BD)
3.2. Total Porosity (TP) and Soil Air Properties (FAC and FAP)
3.3. Soil Water Properties (SM, FC, AWC, UWC and Ks) and FC/TP Ratio
4. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lal, R. Soil quality and sustainability. In Methods for Assessment of Soil Degradation; CRC Press: Boca Raton, FL, USA; New York, NY, USA, 1998; pp. 17–30. [Google Scholar]
- Pranagal, J. Intensity of agricultural land use and soil degradation processes. Adv. Agric. Sc. Prob. Issues 2009, 535, 321–329. [Google Scholar]
- Reynolds, W.D.; Elrick, D.E.; Youngs, E.G.; Amoozegar, A.; Booltink, H.W.G. Saturated and field-saturated water flow parameters. In Methods of Soil Analysis, Part 4, Physical Methods; Dane, J., Topp, C., Eds.; Soil Science Society of America: Madison, WI, USA, 2002; pp. 797–878. [Google Scholar]
- Reynolds, W.; Drury, C.; Yang, X.; Tan, C. Optimal soil physical quality inferred through structural regression and parameter interactions. Geoderma 2008, 146, 466–474. [Google Scholar] [CrossRef]
- Pranagal, J.J.; Tomaszewska-Krojańska, D.; Smal, H.; Ligęza, S. Impact of selected waste applications on soil compaction. Agron. Sci. 2019, 74, 19–32. [Google Scholar] [CrossRef]
- Angers, D.A.; Eriksen-Hamel, N.S. Full-Inversion Tillage and Organic Carbon Distribution in Soil Profiles: A Meta-Analysis. Soil Sci. Soc. Am. J. 2008, 72, 1370–1374. [Google Scholar] [CrossRef]
- Hillel, D.; Rosenzweig, C. Conclusion: Agricultural solutions for climate change at global and regional scales. In Handbook of Climate Change and Agroecosystems: Global and Regional Aspects and Implications; Hillel, D., Rosenzweig, C., Eds.; ICP Series on Climate Change Impacts, Adaptation, and Mitigation 2; Imperial College Press: London, UK, 2012; pp. 281–292. [Google Scholar]
- Lal, R. Restoring Soil Quality to Mitigate Soil Degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef] [Green Version]
- Ojeda, G.; Mattana, S.; Bonmatí, M.; Woche, S.K.; Bachmann, J. Soil wetting-drying and water-retention properties in a mine-soil treated with composted and thermally-dried sludges. Eur. J. Soil Sci. 2011, 62, 696–708. [Google Scholar] [CrossRef]
- Ojeda, G.; Mattana, S.; Àvila, A.; Alcañiz, J.M.; Volkmann, M.; Bachmann, J. Are soil–water functions affected by biochar application? Geoderma 2015, 249–250, 1–11. [Google Scholar] [CrossRef]
- Pranagal, J.; Oleszczuk, P.; Tomaszewska-Krojańska, D.; Kraska, P.; Różyło, K. Effect of biochar application on the physical properties of Haplic Podzol. Soil Tillage Res. 2017, 174, 92–103. [Google Scholar] [CrossRef]
- Meena, R.S.; Lal, R.; Yadav, G.S. Long-term impacts of topsoil depth and amendments on soil physical and hydrological properties of an Alfisol in central Ohio, USA. Geoderma 2020, 363, 114164. [Google Scholar] [CrossRef]
- Lal, R. Soils and sustainable agriculture. A review. Agron. Sustain. Dev. 2008, 28, 57–64. [Google Scholar] [CrossRef]
- Ajayi, A.; Holthusen, D.; Horn, R. Changes in microstructural behaviour and hydraulic functions of biochar amended soils. Soil Tillage Res. 2016, 155, 166–175. [Google Scholar] [CrossRef]
- Pranagal, J.; Podstawka-Chmielewska, E. Physical properties of a Rendzic Phaeozem during a ten-year period of fallowing under the conditions of south-eastern Poland. Geoderma 2012, 189–190, 262–267. [Google Scholar] [CrossRef]
- Pranagal, J.; Podstawka-Chmielewska, E.; Słowińska-Jurkiewicz, A. Influence on selected physical properties of a Haplic Podzol during a ten-year fallow period. Pol. J. Environ. Stud. 2007, 16, 875–880. [Google Scholar]
- Reynolds, W.; Nurse, R.; Phillips, L.; Drury, C.; Yang, X.M.; Page, E.R. Characterizing mass–volume–density–porosity relationships in a sandy loam soil amended with compost. Can. J. Soil Sci. 2020, 100, 289–301. [Google Scholar] [CrossRef]
- Kowalczyk-Juśko, A.; Szymańska, M. Post-Fermentation Sludge–Fertilizer for Agriculture; FDPA: Warsaw, Poland, 2015; pp. 1–64. ISBN 978-83-937363-6-2. [Google Scholar]
- Różyło, K.; Oleszczuk, P.; Jośko, I.; Kraska, P.; Kwiecińska-Poppe, E.; Andruszczak, S. An ecotoxicological evaluation of soil fertilized with biogas residues or mining waste. Environ. Sci. Pollut. Res. 2015, 22, 7833–7842. [Google Scholar] [CrossRef] [Green Version]
- Stefaniuk, M.; Bartmiński, P.; Różyło, K.; Dębicki, R.; Oleszczuk, P. Ecotoxicological assessment of residues from different biogas production plants used as fertilizer for soil. J. Hazard. Mater. 2015, 298, 195–202. [Google Scholar] [CrossRef]
- Głowacka, A.; Szostak, B.; Klebaniuk, R. Effect of Biogas Digestate and Mineral Fertilisation on the Soil Properties and Yield and Nutritional Value of Switchgrass Forage. Agronomy 2020, 10, 490. [Google Scholar] [CrossRef] [Green Version]
- Różyło, K.; Gawlik-Dziki, U.; Świeca, M.; Różyło, R.; Pałys, E. Winter wheat fertilized with biogas residue and mining waste: Yielding and the quality of grain. J. Sci. Food Agric. 2016, 96, 3454–3461. [Google Scholar] [CrossRef] [PubMed]
- Pranagal, J.; Ligęza, S.; Smal, H. Impact of Effective Microorganisms (EM) Application on the Physical Condition of Haplic Luvisol. Agronomy 2020, 10, 1049. [Google Scholar] [CrossRef]
- Pranagal, J.; Kraska, P. 10-Years Studies of the Soil Physical Condition after One-Time Biochar Application. Agronomy 2020, 10, 1589. [Google Scholar] [CrossRef]
- Council Directive EC. 31/EC Directive on the Landfill of Waste. Official Journal, L 182, 16/07/1999, P. 0001–0019. Special Edition in Polish: Chapter 15. 1999, Volume 004, pp. 228–246. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A31999L0031 (accessed on 30 November 2022).
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Weber, J.; Karczewska, A.; Drozd, J.; Licznar, M.; Licznar, S.; Jamroz, E.; Kocowicz, A. Agricultural and ecological aspects of a sandy soil as affected by the application of municipal solid waste composts. Soil Biol. Biochem. 2007, 39, 1294–1302. [Google Scholar] [CrossRef]
- Pranagal, J. The Physical State of Selected Silty Soils of on the Lublin Region. Ph.D. Thesis, University of Life Sciences, Lublin, Poland, 2011. Volume 353. pp. 1–129. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. In World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Kondracki, J.A. Regional Geography of Poland; PWN Press: Warsaw, Poland, 2009; p. 441. ISBN 978-83-01-16022-7. [Google Scholar]
- Klute, A. Methods of Soil Analysis. 1. In Physical and Mineralogical Methods; ASA-SSSA Inc.: Madison, WI, USA, 1986. [Google Scholar]
- Blott, S.J.; Pye, K. Particle size scales and classification of sediment types based on particle size distributions: Review and recommended procedures. Sedimentology 2012, 59, 2071–2096. [Google Scholar] [CrossRef]
- Blake, G.R.; Hartge, K.H. Particle density. In Methods of Soil Analysis. Agronomy No. 9, 2nd ed.; Klute, A., Ed.; American Society of Agronomy: Madison, WI, USA, 1986; pp. 377–382. [Google Scholar]
- Blake, G.R.; Hartge, K.H. Bulk density. In Methods of Soil Analysis. Agronomy No. 9, 2nd ed.; Klute, A., Ed.; American Society of Agronomy: Madison, WI, USA, 1986; pp. 365–375. [Google Scholar]
- Danielson, R.E.; Sutherland, P.L. Porosity. In Methods of Soil Analysis. Agronomy No. 9, 2nd ed.; Klute, A., Ed.; American Society of Agronomy: Madison, WI, USA, 1986; pp. 443–461. [Google Scholar]
- Gardner, W.H. Water content. In Methods of Soil Analysis. Agronomy No. 9, 2nd ed.; Klute, A., Ed.; American Society of Agronomy: Madison, WI, USA, 1986; pp. 493–544. [Google Scholar]
- Cassel, D.K.; Nielsen, D.R. Field Capacity and Available Water Capacity. In Methods of Soil Analysis. Agronomy No. 9, 2nd ed.; Klute, A., Ed.; American Society of Agronomy: Madison, WI, USA, 1986; pp. 901–924. [Google Scholar]
- Canarache, A.; Vintila, I.; Munteanu, I. Elsevier’s dictionary of soil science. In Definitions in English with French, German, and Spanish Word Translations; Elsevier, BV: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Eijkelkamp. Laboratory Permeameter. Operating Instructions. 2008. Available online: http://www.eijkelkamp.com/Portals/2/Eijkelkamp/Files/Manals/M10902e%20Laboratory%20permeameters.pdf (accessed on 30 November 2022).
- Iwanek, M. A Method for Measuring Saturated Hydraulic Conductivity in Anisotropic Soils. Soil Sci. Soc. Am. J. 2008, 72, 1527–1531. [Google Scholar] [CrossRef]
- Olness, A.; Clapp, C.E.; Liu, R.; Palazzo, A.J. Biosoilds and their effect on soil properties. In Handbook of Soil Conditioners; Wallace, A., Terry, R.E., Eds.; Marcel Dekker: New York, NY, USA, 1998; pp. 141–165. [Google Scholar]
- Skopp, J.; Jawson, M.D.; Doran, J.W. Steady-State Aerobic Microbial Activity as a Function of Soil Water Content. Soil Sci. Soc. Am. J. 1990, 54, 1619–1625. [Google Scholar] [CrossRef] [Green Version]
- PSSS. Particle size distribution and textural classes of soils and mineral materials—Classification of Polish Society of Soil Science 2008. Soil Sc. Ann. 2009, 60, 5–16. [Google Scholar]
- Mikheeva, I.V. Changes in the probability distributions of particle size fractions in chestnut soils of the Kulunda Steppe under the effect of natural and anthropogenic factors. Eurasian Soil Sci. 2010, 43, 1351–1361. [Google Scholar] [CrossRef]
- Covaleda, S.; Pajares, S.; Gallardo, J.F.; Etchevers, J.D. Short-term changes in C and N distribution in soil particle size fractions induced by agricultural practices in a cultivated volcanic soil from Mexico. Org. Geochem. 2006, 37, 1943–1948. [Google Scholar] [CrossRef]
- Ligęza, S. Variability of the Contemporary Fluvisols of the Vistula River near Puławy. Ph.D. Thesis, University of Life Sciences, Lublin, Poland, 2016. Volume 385. pp. 1–131. [Google Scholar]
- Razafimbelo, T.M.; Chevallier, T.; Albrecht, A.; Chapuis-Lardy, L.; Rakotondrasolo, F.N.; Michellon, R.; Rabeharisoa, L.; Bernoux, M. Texture and organic carbon contents do not impact amount of carbon protected in Malagasy soils. Sci. Agricola 2013, 70, 204–208. [Google Scholar] [CrossRef] [Green Version]
- Carter, M.; Bentley, S.P. Soil Properties and Their Correlations, 2nd ed.; Wiley: Hoboken, NJ, USA, 2016. [Google Scholar]
- Drewry, J.J.; Cameron, K.C.; Buchan, G.D. Pasture yield and soil physical property responses to soil compaction from treading and grazing—A review. Soil Res. 2008, 46, 237–256. [Google Scholar] [CrossRef]
- Du, Z.; Liu, S.; Li, K.; Ren, T. Soil organic carbon and physical quality as influenced by long-term application of residue and mineral fertiliser in the North China Plain. Soil Res. 2009, 47, 585–591. [Google Scholar] [CrossRef]
- Paluszek, J. Criteria of evaluation of physical quality of Polish arable soils. Acta Agroph. 2011, 191, 1–139. [Google Scholar]
- Olness, A.; Archer, D.W. Effect of organic carbon on available water in soil. Soil Sci. 2005, 170, 90–101. [Google Scholar] [CrossRef]
- Shukla, M.K.; Lal, R. Air permeability of soil. In Encyclopedia of Soil Science; Lal, R., Ed.; Marcel Dekker: New York, NY, USA, 2006; pp. 60–63. [Google Scholar]
- Wang, W.; Li, J.; Su, L.; Wang, Q. Soil air permeability model based on soil physical basic parameters. Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach. 2015, 46, 125–130. [Google Scholar] [CrossRef]
- Mentges, M.I.; Reichert, J.M.; Rodrigues, M.F.; Awe, G.O.; Mentges, L.R. Capacity and intensity soil aeration properties affected by granulometry, moisture, and structure in no-tillage soils. Geoderma 2016, 263, 47–59. [Google Scholar] [CrossRef]
- Githinji, L. Effect of biochar application rate on soil physical and hydraulic properties of a sandy loam. Arch. Agron. Soil Sci. 2014, 60, 457–470. [Google Scholar] [CrossRef]
- Kuncoro, P.; Koga, K.; Satta, N.; Muto, Y. A study on the effect of compaction on transport properties of soil gas and water I: Relative gas diffusivity, air permeability, and saturated hydraulic conductivity. Soil Tillage Res. 2014, 143, 172–179. [Google Scholar] [CrossRef]
- Asgarzadeh, H.; Mosaddeghi, M.R.; Dexter, A.R.; Mahboubi, A.A.; Neyshabouri, M.R. Determination of soil available water for plants: Consistency between laboratory and field measurements. Geoderma 2014, 226–227, 8–20. [Google Scholar] [CrossRef]
- Le Bissonnais, Y. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. Eur. J. Soil Sci. 1996, 47, 425–437. [Google Scholar] [CrossRef]
- Darboux, F.; Le Bissonnais, Y. Changes in structural stability with soil surface crusting: Consequences for erodibility estimation. Eur. J. Soil Sci. 2007, 58, 1107–1114. [Google Scholar] [CrossRef]
- Czyż, E.A.; Dexter, A.R. Estimation of the density of the clay-organic complex in soil. Int. Agrophysics 2016, 30, 19–23. [Google Scholar] [CrossRef]
- Di Giuseppe, D.; Melchiorre, M.; Tessari, U.; Faccini, B. Relationship between particle density and soil bulk chemical composition. J. Soils Sediments 2016, 16, 909–915. [Google Scholar] [CrossRef]
- Keller, T.; Håkansson, I. Estimation of reference bulk density from soil particle size distribution and soil organic matter content. Geoderma 2010, 154, 398–406. [Google Scholar] [CrossRef]
- McBride, R.A.; Slessor, R.L.; Joosse, P.J. Estimating the Particle Density of Clay-rich Soils with Diverse Mineralogy. Soil Sci. Soc. Am. J. 2012, 76, 398–406. [Google Scholar] [CrossRef]
- Wojtasik, M. Impact of humus on soil bulk density. Soil Sci. Ann. 1989, 40, 21–27. [Google Scholar]
- Ball, B.; Campbell, D.; Hunter, E. Soil compactibility in relation to physical and organic properties at 156 sites in UK. Soil Tillage Res. 2000, 57, 83–91. [Google Scholar] [CrossRef]
- Mueller, L.; Kay, B.D.; Been, B.; Hu, C.; Zhang, Y.; Wolff, M.; Eulenstein, F.; Schindler, U. Visual assessment of soil structure: Part II. Implications of tillage, rotation and traffic on sites in Canada, China and Germany. Soil Till. Res. 2008, 103, 188–196. [Google Scholar] [CrossRef]
- Arshad, M.A.; Martin, S. Identifying critical limits for soil quality indicators in agro ecosystems. Agric. Ecosys. Environ. 2002, 88, 153–160. [Google Scholar] [CrossRef]
- Castellini, M.; Fornaro, F.; Garofalo, P.; Giglio, L.; Rinaldi, M.; Ventrella, D.; Vitti, C.; Vonella, A.V. Effects of No-Tillage and Conventional Tillage on Physical and Hydraulic Properties of Fine Textured Soils under Winter Wheat. Water 2019, 11, 484. [Google Scholar] [CrossRef] [Green Version]
- Castellini, M.; Stellacci, A.M.; Barca, E.; Iovino, M. Application of Multivariate Analysis Techniques for Selecting Soil Physical Quality Indicators: A Case Study in Long-Term Field Experiments in Apulia (Southern Italy). Soil Sci. Soc. Am. J. 2019, 83, 707–720. [Google Scholar] [CrossRef] [Green Version]
- Thompson, L.M.; Troeh, F.R. Soils and Soil Fertility; McGraw-Hill, Inc.: Irvine, CA, USA, 1978. [Google Scholar]
- Kowda, W.A. Basics of Soil Science; PWRiL: Warsaw, Poland, 1984. [Google Scholar]
- Cockroft, B.; Olsson, K.A. Case study of soil quality in south-eastern Australia: Management of structure for roots in duplex soils. In Soil Quality for Crop Production and Ecosystem Health; Gregorich, E.G., Carter, M.R., Eds.; Developments in Soil Science, 25; Elsevier: New York, NY, USA, 1997; pp. 339–350. [Google Scholar]
- Grable, A.R.; Siemer, E.G. Effects of bulk density, aggregate size, and soil water suction on oxygen diffusion, redox potentials and elongation of corn roots. Soil Sci. Soc. Am. Proc. 1968, 32, 180–186. [Google Scholar] [CrossRef]
- Mayers, W.S.; Barrs, H.D. Roots in irrigated clay soil: Measurement techniques and responses to root zone conditions. Irrigation Sci. 1991, 12, 125–134. [Google Scholar]
- Walczak, R.; Ostrowski, J.; Witkowska-Walczak, B.; Sławiński, C. Spatial characteristic of water conductivity in the surface level of Polish arable soils. Int. Agrophysics 2002, 16, 239–247. [Google Scholar]
- Drewry, J. Natural recovery of soil physical properties from treading damage of pastoral soils in New Zealand and Australia: A review. Agric. Ecosyst. Environ. 2006, 114, 159–169. [Google Scholar] [CrossRef]
- Pranagal, J.; Woźniak, A. 30 years of wheat monoculture and reduced tillage and physical condition of Rendzic Phaeozem. Agric. Water Manag. 2021, 243, 106408. [Google Scholar] [CrossRef]
- Iversen, B.V.; Schjønning, P.; Poulsen, T.G.; Moldrup, P. In-situ, on-situ and laboratory measurements of soil air permeability: Boundary conditions a measurement scale. Soil Sci. 2001, 166, 97–106. [Google Scholar] [CrossRef]
- Kutílek, M. Soil hydraulic properties as related to soil structure. Soil Tillage Res. 2004, 79, 175–184. [Google Scholar] [CrossRef]
- Petrosyants, M.A.; Kislov, A.V.; Semenov, E.K. Principal Concepts in Meteorology and Climatology; Vestnik Moskovskogo Universiteta, S 5; Geografiya: Moscow, Russia, 2005; Volume 1, pp. 83–91. [Google Scholar]
- White, R.E. Principles and Practice of Soil Science, 4th ed.; Blackwell Publishing: Oxford, UK, 2006. [Google Scholar]
- Leśny, J. Meteorology and Climatology Research. Acta Agroph. 2010, 184, 1–263. [Google Scholar]
- Usowicz, B.; Usowicz, Ł. Point measurements of soil water content and its spatial distribution in cultivated fields. Acta Agroph. 2004, 4, 573–588. [Google Scholar]
- Iqbal, J.; Thomasson, J.A.; Jenkins, J.N.; Owens, P.R.; Whisler, F.D. Spatial Variability Analysis of Soil Physical Properties of Alluvial Soils. Soil Sci. Soc. Am. J. 2005, 69, 1338–1350. [Google Scholar] [CrossRef]
- Nemes, A.; Rawls, W.J.; Pachepsky, Y.A. Influence of Organic Matter on the Estimation of Saturated Hydraulic Conductivity. Soil Sci. Soc. Am. J. 2005, 69, 1330–1337. [Google Scholar] [CrossRef]
- Walczak, R.; Ostrowski, J.; Witkowska-Walczak, B.; Sławiński, C. Hydrophysical characteristics of Polish mineral arable soils. Acta Agroph. 2002, 79, 1–64. [Google Scholar]
- Aimrun, W.; Amin, M.; Eltaib, S. Effective porosity of paddy soils as an estimation of its saturated hydraulic conductivity. Geoderma 2004, 121, 197–203. [Google Scholar] [CrossRef]
- Niedźwiecki, J.; Czyż, E.A.; Dexter, A.R. Hydraulic conductivity of the topsoil depending on the parameters of the solid phase. Puławy Diary 2006, 142, 297–307. [Google Scholar]
- Aznar-Sánchez, J.A.; García-Gómez, J.J.; Velasco-Muñoz, J.F.; Carretero-Gómez, A. Mining Waste and Its Sustainable Management: Advances in Worldwide Research. Minerals 2018, 8, 284. [Google Scholar] [CrossRef] [Green Version]
- Tayebi-Khorami, M.; Edraki, M.; Corder, G.; Golev, A. Re-Thinking Mining Waste through an Integrative Approach Led by Circular Economy Aspirations. Minerals 2019, 9, 286. [Google Scholar] [CrossRef] [Green Version]
- Eisa, M.; Ragauskaitė, D.; Adhikari, S.; Bella, F.; Baltrusaitis, J. Role and Responsibility of Sustainable Chemistry and Engineering in Providing Safe and Sufficient Nitrogen Fertilizer Supply at Turbulent Times. ACS Sustain. Chem. Eng. 2022, 10, 8997–9001. [Google Scholar] [CrossRef]
- Abubaker, J.; Risberg, K.; Pell, M. Biogas residues as fertilisers—Effects on wheat growth and soil microbial activities. Appl. Energy 2012, 99, 126–134. [Google Scholar] [CrossRef]
- Różyło, K.; Andruszczak, S.; Kwiecińska-Poppe, E.; Różyło, R.; Kraska, P. Effect of Three Years’ Application of Biogas Digestate and Mineral Waste to Soil on Phytochemical Quality of Rapeseed. Pol. J. Environ. Stud. 2019, 28, 833–843. [Google Scholar] [CrossRef]
- Dalmora, A.C.; Ramos, C.G.; Plata, L.G.; da Costa, M.L.; Kautzmann, R.M.; Oliveira, L.F.S. Understanding the mobility of potential nutrients in rock mining by-products: An opportunity for more sustainable agriculture and mining. Sci. Total. Environ. 2020, 710, 136240. [Google Scholar] [CrossRef]
- Xu, M.; Xian, Y.; Wu, J.; Gu, Y.; Yang, G.; Zhang, X.; Peng, H.; Yu, X.; Xiao, Y.; Li, L. Effect of biogas slurry addition on soil properties, yields, and bacterial composition in the rice-rape rotation ecosystem over 3 years. J. Soils Sediments 2019, 19, 2534–2542. [Google Scholar] [CrossRef]
- Różyło, K.; Bohacz, J. Microbial and enzyme analysis of soil after the agricultural utilization of biogas digestate and mineral mining waste. Int. J. Environ. Sci. Technol. 2020, 17, 1051–1062. [Google Scholar] [CrossRef] [Green Version]
Properties | Soil | Carboniferous Rock | Post-Fermentation Sludge |
---|---|---|---|
TOC, g kg−1 | 8.46 ± 1.07 | 281.2 ± 1.83 | 633.8 ± 4.32 |
Reaction-pHKCl | 4.1 ± 0.31 | 7.6 ± 0.17 | 8.7 ± 0.23 |
NTot, g kg−1 | 0.4 ± 0.12 | 3.6 ± 0.51 | 28.8 ± 1.12 |
P, mg kg−1 | 49.4 ± 4.8 | 14.8 ± 1.3 | 5580.6 ± 26.3 |
K, mg kg−1 | 45.1 ± 3.5 | 33.8 ± 2.2 | 26,609.9 ± 61.5 |
Mg, mg kg−1 | 10.7 ± 0.7 | 139.8 ± 4.7 | 4420.4 ± 18.4 |
C:N | 23.8 ± 1.2 | 78.1 ± 2.4 | 22.1 ± 0.9 |
EC, mS cm−1 | 1.2 ± 0.07 | 0.4 ± 0.03 | 3.7 ± 0.18 |
Treatments | Soil Layer cm | Soil Size Fractions, mm | Soil Texture [43] | ||
---|---|---|---|---|---|
2.0–0.05 | 0.05–0.002 | <0.002 | |||
A | 0–10 | 76 | 20 | 4 | LS |
10–20 | 75 | 22 | 3 | ||
B | 0–10 | 75 | 22 | 3 | LS |
10–20 | 76 | 20 | 4 | ||
C | 0–10 | 78 | 18 | 4 | LS |
10–20 | 77 | 18 | 5 | ||
D | 0–10 | 68 | 26 | 6 | SL |
10–20 | 69 | 26 | 5 | ||
E | 0–10 | 71 | 24 | 5 | SL |
10–20 | 70 | 24 | 6 | ||
CVs | 0.06 | 0.13 | 0.28 |
Properties | Soil Layer cm | Treatments | CVs | ||||
---|---|---|---|---|---|---|---|
A | B | C | D | E | |||
TOC, g·kg−1 | 0–10 | 8.81–9.52 | 8.93–9.71 | 7.79–8.81 | 13.62–15.69 | 14.23–15.57 | 0.27 |
10–20 | 7.39–8.08 | 7.62–7.98 | 7.23–7.78 | 11.78–12.31 | 11.19–12.14 | ||
PD, Mg·m−3 | 0–10 | 2.63–2.65 | 2.64–2.66 | 2.64–2.66 | 2.61–2.62 | 2.62–2.63 | 0.01 |
10–20 | 2.63–2.64 | 2.62–2.65 | 2.65–2.66 | 2.62–2.63 | 2.62–2.63 | ||
BD, Mg·m−3 | 0–10 | 1.57–1.72 | 1.55–1.70 | 1.62–1.72 | 1.53–1.66 | 1.51–1.60 | 0.05 |
10–20 | 1.62–1.76 | 1.62–1.72 | 1.65–1.79 | 1.55–1.71 | 1.54–1.63 | ||
TP, m3·m−3 | 0–10 | 0.351–0.403 | 0.361–0.413 | 0.353–0.386 | 0.366–0.414 | 0.392–0.424 | 0.08 |
10–20 | 0.333–0.384 | 0.351–0.382 | 0.327–0.377 | 0.350–0.408 | 0.380–0.412 | ||
FAC, m3·m−3 | 0–10 | 0.148–0.192 | 0.131–0.195 | 0.181–0.228 | 0.157–0.223 | 0.203–0.246 | 0.19 |
10–20 | 0.107–0.169 | 0.093–0.140 | 0.148–0.211 | 0.126–0.200 | 0.143–0.184 | ||
FAP, 10−8 m2·Pa−1·s−1 | 0–10 | 5.6–9.1 | 24.2–99.0 | 59.1–234.4 | 37.0–171.2 | 33.8–111.1 | 1.08 |
10–20 | 6.7–8.3 | 17.3–25.3 | 32.1–199.1 | 12.9–118.9 | 10.3–75.2 |
Properties | TOC | PD | BD | TP | FAC | FAP | SM | FC | AWC | UWC | Ks |
---|---|---|---|---|---|---|---|---|---|---|---|
PD | −0.586 * | ||||||||||
BD | −0.404 | 0.741 * | |||||||||
TP | 0.368 | −0.680 * | −0.996 * | ||||||||
FAC | 0.289 | −0.380 | −0.752 * | 0.771 * | |||||||
FAP | 0.219 | 0.391 | −0.482 * | 0.479 * | 0.641 * | ||||||
SM | 0.851 * | −0.411 | −0.062 | 0.017 | −0.056 | 0.267 | |||||
FC | −0.066 | −0.119 | 0.130 | −0.156 | −0.749 * | −0.369 | 0.105 | ||||
AWC | −0.286 | −0.071 | 0.244 | −0.216 | −0.732 * | −0.468 * | −0.063 | 0.911 * | |||
UWC | 0.510 * | −0.122 | −0.131 | 0.130 | −0.094 | 0.202 | 0.399 | 0.281 | −0.139 | ||
Ks | 0.149 | 0.147 | 0.170 | −0.169 | 0.643 * | 0.655 * | 0.041 | −0.730 * | −0.754 * | 0.001 | |
FC/TP | −0.206 | 0.218 | 0.570 * | −0.592 * | −0.968 * | −0.093 | 0.098 | 0.884 * | 0.837 * | 0.178 | −0.527 * |
Properties | Soil Layer cm | Treatments | CVs | ||||
---|---|---|---|---|---|---|---|
A | B | C | D | E | |||
SM, kg·kg−1 | 0–10 | 0.088–0.093 | 0.084–0.087 | 0.081–0.089 | 0.096–0.101 | 0.096–0.098 | 0.06 |
10–20 | 0.087–0.092 | 0.083–0.088 | 0.083–0.089 | 0.093–0.097 | 0.093–0.097 | ||
FC, m3·m−3 | 0–10 | 0.211–0.224 | 0.218–0.230 | 0.158–0.172 | 0.191–0.209 | 0.178–0.189 | 0.13 |
10–20 | 0.215–0.226 | 0.242–0.258 | 0.166–0.179 | 0.208–0.224 | 0.228–0.237 | ||
AWC, m3·m−3 | 0–10 | 0.179–0.181 | 0.160–0.166 | 0.111–0.120 | 0.140–0.155 | 0.113–0.117 | 0.17 |
10–20 | 0.175–0.181 | 0.184–0.195 | 0.123–0.130 | 0.156–0.169 | 0.160–0.165 | ||
UWC, m3·m−3 | 0–10 | 0.031–0.044 | 0.058–0.064 | 0.047–0.052 | 0.051–0.054 | 0.061–0.076 | 0.21 |
10–20 | 0.040–0.045 | 0.058–0.063 | 0.043–0.049 | 0.052–0.055 | 0.063–0.077 | ||
Ks, m·d−1 | 0–10 | 4.17–5.32 | 5.91–6.33 | 18.71–19.86 | 14.02–15.63 | 11.34–12.51 | 0.48 |
10–20 | 5.64–6.31 | 6.38–7.12 | 19.81–21.34 | 14.97–15.89 | 9.87–10.92 | ||
FC/TP | 0–10 | 0.52–0.64 | 0.53–0.64 | 0.41–0.49 | 0.46–0.57 | 0.42–0.49 | 0.15 |
10–20 | 0.56–0.68 | 0.63–0.73 | 0.44–0.55 | 0.51–0.64 | 0.56–0.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pranagal, J.; Ligęza, S.; Smal, H.; Gmitrowicz-Iwan, J. Effects of Waste Application (Carboniferous Rock and Post-Fermentation Sludge) on Soil Quality. Land 2023, 12, 488. https://doi.org/10.3390/land12020488
Pranagal J, Ligęza S, Smal H, Gmitrowicz-Iwan J. Effects of Waste Application (Carboniferous Rock and Post-Fermentation Sludge) on Soil Quality. Land. 2023; 12(2):488. https://doi.org/10.3390/land12020488
Chicago/Turabian StylePranagal, Jacek, Sławomir Ligęza, Halina Smal, and Joanna Gmitrowicz-Iwan. 2023. "Effects of Waste Application (Carboniferous Rock and Post-Fermentation Sludge) on Soil Quality" Land 12, no. 2: 488. https://doi.org/10.3390/land12020488
APA StylePranagal, J., Ligęza, S., Smal, H., & Gmitrowicz-Iwan, J. (2023). Effects of Waste Application (Carboniferous Rock and Post-Fermentation Sludge) on Soil Quality. Land, 12(2), 488. https://doi.org/10.3390/land12020488