The Effects of Urbanisation on Green Growth within Sustainable Development Goals
Abstract
:1. Introduction
2. Literature Review
2.1. An Approach to Defining Green Economic Growth
2.2. An Approach to Defining the Impact of Urbanisation on the Green Economic Growth
3. Materials and Methods
3.1. Assessing the Green Economic Growth
3.2. Assessing the Impact of Urbanisation on the Green Economic Growth
- industrial structures: as the countries’ industrial development results in an increase of environmental pollution [88], industrial structures directly influence green economic growth;
- research and development (R&D): energy- and resource-saving technologies allow for intensification of industry and concurrently minimise its negative impact on the environment [8,9,10,11,12,13,14,15,16,17,18,19,20,21], which justifies such a variable such as R&D being measured by the number of patent applications in the country [22,23,24,25,26];
- economic openness: a variable that allows pursuing an efficacy policy on attracting highly qualified labour resources, innovations and knowledge to achieve sustainable development goals [8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26], which could concurrently raise new macroeconomic issues, primarily related to boosting economic growth.
4. Results
5. Discussion & Conclusions
- Neglecting the impact of urbanisation on the green economic growth could complicate the achievement of the goals of a carbon-free economy. The government should frame relevant policies to compensate for the environmental degradation caused by urbanisation.
- Developing a green educational network that allows for dissemination of the green knowledge and technologies among all members due to sharing the best practices, as it is necessary to increase green consciousness and awareness among the urban population. Thus, the yellow group countries should analyse and implement the experience of the green group countries. Green knowledge and technologies should be shared among all sectors and levels (from local to national). This contributes to modernising the industrial and energy sectors, which are the core forces in reorientating towards carbon-free economy.
- Urbanisation could result in deep structural disbalances and gaps (in energy intensity, inefficient investment structure, declining new buildings, etc.). In this case, it is necessary to launch a green project to eliminate the abovementioned issues. Furthermore, this requires providing information on assessable financial resources and investment options for green projects that boost renewable energy and green technologies in the country. In addition, it is necessary to pursue policies that enhance the transparency and accountability of green project implementation and its impact throughout life.
- The government should reinforce the incentive instruments (green taxes, feed-in tariffs, green penalties, etc.) to implement the concept of smart and green cities, which allows for the green economic growth of a country concurrently eliminating the issues caused by accelerated urbanisation.
- Additionally, achievement of green growth could produce the synergy effect of balancing economic and ecological targets underlying the SDGs. However, it requires relevant transparency and accountability of effects within SDGs achievement.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- A European Green Deal. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en (accessed on 10 September 2022).
- Feldman, M.; Hadjimichael, T.; Lanahan, L.; Kemeny, T. The logic of economic development: A definition and model for investment. Environ. Plan. C Gov. Policy 2016, 34, 5–21. [Google Scholar] [CrossRef]
- Kharazishvili, Y.; Kwilinski, A.; Sukhodolia, O.; Dzwigol, H.; Bobro, D.; Kotowicz, J. The systemic approach for estimating and strategising energy security: The case of Ukraine. Energies 2021, 14, 2126. [Google Scholar] [CrossRef]
- Letunovska, N.; Saher, L.; Vasylieva, T.; Lieonov, S. Dependence of Public Health on Energy Consumption: A Cross-Regional Analysis. In Proceedings of the 1st Conference on Traditional and Renewable Energy Sources: Perspectives and Paradigms for the 21st Century (TRESP 2021), Prague, Czech Republic, 22–23 January 2021; 250, p. 04014. [Google Scholar] [CrossRef]
- Sedmíková, E.; Vasylieva, T.; Tiutiunyk, I.; Navickas, M. Energy consumption in assessment of shadow economy. Eur. J. Interdiscip. Stud. 2021, 13, 47–64. [Google Scholar] [CrossRef]
- Dźwigol, H.; Dźwigoł-Barosz, M.; Zhyvko, Z.; Miśkiewicz, R.; Pushak, H. Evaluation of the energy security as a component of national security of the country. J. Secur. Sustain. Issues 2019, 8, 307–317. [Google Scholar] [CrossRef]
- Miśkiewicz, R.; Rzepka, A.; Borowiecki, R.; Olesińki, Z. Energy Efficiency in the Industry 4.0 Era: Attributes of Teal Organisations. Energies 2021, 14, 6776. [Google Scholar] [CrossRef]
- Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sdgs.un.org/2030agenda (accessed on 10 September 2022).
- Dzwigol, H. Research Methodology in Management Science: Triangulation. Virtual Econ. 2022, 5, 78–93. [Google Scholar] [CrossRef] [PubMed]
- Dzwigol, H. Methodological and Empirical Platform of Triangulation in Strategic Management. Acad. Strateg. Manag. J. 2020, 19, 1–8. [Google Scholar]
- Kučera, J.; Fiľa, M. R&D expenditure, innovation performance and economic development of the EU countries. Entrep. Sustain. Issues 2022, 9, 227–241. [Google Scholar] [CrossRef]
- Miśkiewicz, R. The importance of knowledge transfer on the energy market. Polityka Energetyczna 2018, 21, 49–62. [Google Scholar] [CrossRef]
- Dzwigol, H.; Aleinikova, O.; Umanska, Y.; Shmygol, N.; Pushak, Y. An Entrepreneurship Model for Assessing the Investment Attractiveness of Regions. J. Entrep. Educ. 2019, 22, 1–7. [Google Scholar]
- Yang, C.; Kwilinski, A.; Chygryn, O.; Lyulyov, O.; Pimonenko, T. The green competitiveness of enterprises: Justifying the quality criteria of digital marketing communication channels. Sustainability 2021, 13, 13679. [Google Scholar] [CrossRef]
- Kharazishvili, Y.; Kwilinski, A.; Grishnova, O.; Dzwigol, H. Social safety of society for developing countries to meet sustainable development standards: Indicators, level, strategic benchmarks (with calculations based on the case study of Ukraine). Sustainability 2020, 12, 8953. [Google Scholar] [CrossRef]
- Kwilinski, A.; Tkachenko, V.; Kuzior, A. Transparent Cognitive Technologies to Ensure Sustainable Society Development. J. Secur. Sustain. Issues 2019, 9, 561–570. [Google Scholar] [CrossRef]
- Taliento, M.; Netti, A. Corporate Social/Environmental Responsibility and Value Creation: Reflections on a Modern Business Management Paradigm. Bus. Ethics Leadersh. 2020, 4, 123–131. [Google Scholar] [CrossRef]
- Fadel, S.; Rouaski, K.; Zakane, A.; Djerboua, A. Estimating Climate Influence of The Potential COVID-19 Pandemic Spreading in Algeria. SocioEconomic Chall. 2021, 6, 24–40. [Google Scholar] [CrossRef]
- Beyi, W.A. Managing Resilience Against Climate Effects and Risks: The need For Insidious Socio-Economic Dynamics. SocioEconomic Chall. 2021, 5, 106–115. [Google Scholar] [CrossRef]
- Lahouirich, M.W.; El Amri, A.; Oulfarsi, S.; Sahib Eddine, A.; El Bayed Sakalli, H.; Boutti, R. From financial performance to sustainable development: A great evolution and an endless debate. Financ. Mark. Inst. Risks 2022, 6, 68–79. [Google Scholar] [CrossRef]
- Habib, A.M. Does the efficiency of working capital management and environmental, social, and governance performance affect a firm’s value? Evidence from the United States. Financ. Mark. Inst. Risks 2022, 6, 18–25. [Google Scholar] [CrossRef]
- Pan, W.; Pan, W.; Hu, C.; Tu, H.; Zhao, C.; Yu, D.; Xiong, J.; Zheng, G. Assessing the green economy in China: An improved framework. J. Clean. Prod. 2019, 209, 680–691. [Google Scholar] [CrossRef]
- Wu, D.; Wang, Y.; Qian, W. Efficiency evaluation and dynamic evolution of China’s regional green economy: A method based on the Super-PEBM model and DEA window analysis. J. Clean. Prod. 2020, 264, 121630. [Google Scholar] [CrossRef]
- Yi, H.; Liu, Y. Green economy in China: Regional variations and policy drivers. Glob. Environ. Change 2015, 31, 11–19. [Google Scholar] [CrossRef]
- Lu, X.; Chen, D.; Kuang, B.; Zhang, C.; Cheng, C. Is high-tech zone a policy trap or a growth drive? Insights from the perspective of urban land use efficiency. Land Use Policy 2020, 95, 104583. [Google Scholar] [CrossRef]
- Lu, X.; Jiang, X.; Gong, M. How land transfer marketisation influence on green total factor productivity from the approach of industrial structure? Evidence from China. Land Use Policy 2020, 95, 104610. [Google Scholar] [CrossRef]
- Adamowicz, M. Green Deal, Green Growth and Green Economy as a Means of Support for Attaining the Sustainable Development Goals. Sustainability 2022, 14, 5901. [Google Scholar] [CrossRef]
- Rybalkin, O.; Lavrinenko, O.; Ignatjeva, S.; Danilevica, A. Introduction of EEPSE green economy index for the analysis of regional trends. Entrep. Sustain. Issues 2021, 9, 415–435. [Google Scholar] [CrossRef]
- Guo, M.; Nowakowska-Grunt, J.; Gorbanyov, V.; Egorova, M. Green Technology and Sustainable Development: Assessment and Green Growth Frameworks. Sustainability 2020, 12, 6571. [Google Scholar] [CrossRef]
- UNEP. Annual Report 2011: United Nations Environmental Programme, RIO+ 2012; UNEP Division of Communications and Public Information: Nairobi, Kenya, 2011. [Google Scholar]
- Barbier, E.B. The green economy post Rio 20. Science 2013, 33, 887–888. [Google Scholar] [CrossRef] [PubMed]
- OECD. Green Growth Indicators 2017; OECD Publishing: Paris, France, 2017. [Google Scholar] [CrossRef]
- Kotowicz, J.; Węcel, D.; Kwilinski, A.; Brzęczek, M. Efficiency of the power-to-gas-to-liquid-to-power system based on green methanol. Appl. Energy 2022, 314, 118933. [Google Scholar] [CrossRef]
- Kwilinski, A.; Dalevska, N.; Dementyev, V.V. Metatheoretical Issues of the Evolution of the International Political Economy. J. Risk Financ. Manag. 2022, 15, 124. [Google Scholar] [CrossRef]
- Kwilinski, A.; Lyulyov, O.; Dzwigol, H.; Vakulenko, I.; Pimonenko, T. Integrative Smart Grids’ Assessment System. Energies 2022, 15, 545. [Google Scholar] [CrossRef]
- Gavkalova, N.; Lola, Y.; Prokopovych, S.; Akimov, O.; Smalskys, V.; Akimova, L. Innovative Development of Renewable Energy during the Crisis Period and Its Impact on the Environment. Virtual Econ. 2022, 5, 65–77. [Google Scholar] [CrossRef]
- Miskiewicz, R. Efficiency of electricity production technology from postprocess gas heat: Ecological, economic and social benefits. Energies 2020, 13, 6106. [Google Scholar] [CrossRef]
- Shkarlet, S.; Kholiavko, N.; Dubyna, M.; Zhuk, O. Innovation, educational, research components of the evaluation of information economy development (as exemplified by Eastern Partnership countries). Mark. Manag. Innov. 2019, 1, 70–83. [Google Scholar] [CrossRef]
- Miśkiewicz, R.; Matan, K.; Karnowski, J. The Role of Crypto Trading in the Economy, Renewable Energy Consumption and Ecological Degradation. Energies 2022, 15, 3805. [Google Scholar] [CrossRef]
- Fila, M.; Levicky, M.; Mura, L.; Maros, M.; Korenkova, M. Innovations for business management: Motivation and barriers. Mark. Manag. Innov. 2020, 4, 266–278. [Google Scholar] [CrossRef]
- Miśkiewicz, R. The Impact of Innovation and Information Technology on Greenhouse Gas Emissions: A Case of the Visegrád Countries. J. Risk Financ. Manag. 2021, 14, 59. [Google Scholar] [CrossRef]
- Szczepańska-Woszczyna, K.; Gatnar, S. Key Competences of Research and Development Project Managers in High Technology Sector. Forum Sci. Oeconomia 2022, 10, 107–130. [Google Scholar] [CrossRef]
- Kostyrko, R.; Kosova, T.; Kostyrko, L.; Zaitseva, L.; Melnychenko, O. Ukrainian Market of Electrical Energy: Reforming, Financing, Innovative Investment, Efficiency Analysis, and Audit. Energies 2021, 14, 5080. [Google Scholar] [CrossRef]
- Kuzior, A. Technological Unemployment in the Perspective of Industry 4.0. Virtual Econ. 2022, 5, 7–23. [Google Scholar] [CrossRef] [PubMed]
- Tkachenko, V.; Kwilinski, A.; Klymchuk, M.; Tkachenko, I. The Economic-Mathematical Development of Buildings Construction Model Optimisation on the Basis of Digital Economy. Manag. Syst. Prod. Eng. 2019, 27, 119–123. [Google Scholar] [CrossRef] [Green Version]
- Andros, S.; Akimov, O.; Akimova, L.; Chang, S.; Gupta, S.K. Scenario analysis of the expected integral economic effect from an innovative project. Mark. Manag. Innov. 2021, 3, 237–251. [Google Scholar] [CrossRef]
- Zeng, J.J.; Tong, W.S. How do energy policies affect the development of industrial green economy. China Popul. Environ. 2018, 28, 19–28. [Google Scholar]
- Wang, Z.; Wang, X.; Liang, L. Green economic efficiency in the Yangtze River Delta: Spatiotemporal evolution and influencing factors. Ecosyst. Health Sustain. 2019, 5, 20–35. [Google Scholar] [CrossRef] [Green Version]
- Kalantaripor, M.; Najafi Alamdarlo, H. Spatial Effects of Energy Consumption and Green GDP in Regional Agreements. Sustainability 2021, 13, 10078. [Google Scholar] [CrossRef]
- Hamilton, K.; Lutz, E. Green National Accounts: Policy Uses and Empirical Experience; Environmentally Sustainable Development, World Bank: Bretton Woods, NH, USA, 1996; pp. 1–53. [Google Scholar]
- Figueroa, B.; Calfucura, T. Growth and Green Income: Evidence from Mining in Chile; Department of Economics and National Center for the Environment (CENMA), University of Chile: Santiago, Chile, 2002. [Google Scholar]
- Xu, L.; Yu, B.; Yue, W. A method of green GDP accounting based on eco-service and a case study of Wuyishan (China). Procedia Environ. Sci. 2010, 2, 1865–1872. [Google Scholar] [CrossRef] [Green Version]
- Talberth, J.; Bohara, A. Economic openness and green GDP. Ecol. Econ. 2006, 58, 743–758. [Google Scholar] [CrossRef]
- Kwilinski, A.; Ruzhytskyi, I.; Patlachuk, V.; Patlachuk, O.; Kaminska, B. Environmental Taxes as a Condition of Business Responsibility in the Conditions of Sustainable Development. J. Leg. Ethical Regul. Issues 2019, 22, 1–6. [Google Scholar]
- Bilan, Y.; Srovnalã-KovÃi, P.; Streimikis, J.; Lyeonov, S.; Tiutiunyk, I.; Humenna, Y. From shadow economy to lower carbon intensity: Theory and evidence. Int. J. Glob. Environ. Issues 2020, 19, 196–216. [Google Scholar] [CrossRef]
- Saługa, P.W.; Szczepańska-Woszczyna, K.; Miśkiewicz, R.; Chład, M. Cost of equity of coal-fired power generation projects in Poland: Its importance for the management of decision-making process. Energies 2020, 13, 4833. [Google Scholar] [CrossRef]
- Chygryn, O.; Krasniak, V. Theoretical and applied aspects of the development of environmental investment in Ukraine. Mark. Manag. Innov. 2015, 3, 226–234. [Google Scholar]
- Prokopenko, O.; Miśkiewicz, R. Perception of “green shipping” in the contemporary conditions. Entrep. Sustain. Issues 2020, 8, 269–284. [Google Scholar] [CrossRef] [PubMed]
- Saługa, P.W.; Zamasz, K.; Dacko-Pikiewicz, Z.; Szczepańska-Woszczyna, K.; Malec, M. Risk-adjusted discount rate and its components for onshore wind farms at the feasibility stage. Energies 2021, 14, 6840. [Google Scholar] [CrossRef]
- Zhong, X. Achievements of green economic development in China from the perspective of environmental governance modernisation. IOP Conf. Ser. Earth Environ. Sci. 2021, 647, 012211. [Google Scholar] [CrossRef]
- Wang, Q.; Yi, H. New energy demonstration program and China’s urban green economic growth: Do regional characteristics make a difference? Energy Policy 2021, 151, 112161. [Google Scholar] [CrossRef]
- Zhang, D.; Mohsin, M.; Rasheed, A.K.; Chang, Y.; Taghizadeh-Hesary, F. Public spending and green economic growth in BRI region: Mediating role of green finance. Energy Policy 2021, 153, 112256. [Google Scholar] [CrossRef]
- Turok, I.; McGranahan, G. Urbanisation and Economic Growth: The Arguments and Evidence for Africa and Asia. Urbanisation 2019, 4, 109–125. [Google Scholar] [CrossRef]
- Mohanty, P.K. Planning for Urbanisation and Economic Growth: Addressing Urban and Regional Governance Issues in India. In Future of Cities; Routledge India: Delhi, India, 2022; pp. 31–50. [Google Scholar]
- Hong, T.; Yu, N.; Mao, Z.; Zhang, S. Government-driven urbanisation and its impact on regional economic growth in China. Cities 2021, 117, 103299. [Google Scholar] [CrossRef]
- Castells-Quintana, D.; Wenban-Smith, H. Population dynamics, urbanisation without growth, and the rise of mega-cities. J. Dev. Stud. 2020, 56, 1663–1682. [Google Scholar] [CrossRef]
- da Mata, D.; Deichmann, U.; Henderson, J.; Lall, S.; Wang, H. Determinants of city growth in Brazil. J. Urban Econ. 2007, 62, 252–272. [Google Scholar] [CrossRef] [Green Version]
- Henderson, V. Cities and development. J. Reg. Sci. 2010, 50, 515–540. [Google Scholar] [CrossRef]
- Henderson, V. The urbanisation process and economic growth: The so-what question. J. Econ. Growth 2003, 8, 47–71. [Google Scholar] [CrossRef]
- Deichmann, U.; Somik, V.; Stephen, J.; Anthony, J. Industrial Location in Developing Countries. World Bank Res. Obs. 2008, 23, 219–246. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.M.; Nguyen, L.D. The relationship between urbanisation and economic growth: An empirical study on ASEAN countries. Int. J. Soc. Econ. 2018, 45, 316–339. [Google Scholar] [CrossRef]
- Frick, S.A.; Rodríguez-Pose, A. Change in urban concentration and economic growth. World Dev. 2018, 105, 156–170. [Google Scholar] [CrossRef]
- Yeh, A.G.-O.; Chen, Z. From cities to super mega city regions in China in a new wave of urbanisation and economic transition: Issues and challenges. Urban Stud. 2020, 57, 636–654. [Google Scholar] [CrossRef]
- de Bruin, S.; Dengerink, J.; van Vliet, J. Urbanisation as driver of food system transformation and opportunities for rural livelihoods. Food Sec. 2021, 13, 781–798. [Google Scholar] [CrossRef] [PubMed]
- Hussain, H.I.; Haseeb, M.; Kamarudin, F.; Dacko-Pikiewicz, Z.; Szczepańska-Woszczyna, K. The role of globalisation, economic growth and natural resources on the ecological footprint in Thailand: Evidence from nonlinear causal estimations. Processes 2021, 9, 1103. [Google Scholar] [CrossRef]
- Drożdż, W.; Kinelski, G.; Czarnecka, M.; Wójcik-Jurkiewicz, M.; Maroušková, A.; Zych, G. Determinants of Decarbonization—How to Realise Sustainable and Low Carbon Cities? Energies 2021, 14, 2640. [Google Scholar] [CrossRef]
- Dźwigoł, H.; Wolniak, R. Controlling in the Management Process of a Chemical Industry Production Company. Przem. Chem. 2018, 97, 1114–1116. [Google Scholar] [CrossRef]
- Trzeciak, M.; Jonek-Kowalska, I. Monitoring and Control in Program Management as Effectiveness Drivers in Polish Energy Sector. Diagnosis and Directions of Improvement. Energies 2021, 14, 4661. [Google Scholar] [CrossRef]
- Zachár, J. Food Waste Loss Trend Index (FWLTI), A New Tool to Enable Management Decisions. Bus. Ethics Leadersh. 2021, 5, 47–60. [Google Scholar] [CrossRef]
- Chen, S. The Urbanisation Impacts on the Policy Effects of the Carbon Tax in China. Sustainability 2021, 13, 6749. [Google Scholar] [CrossRef]
- Khoshnevis, Y.S.; Golestani, D.A. CO 2 emissions, urbanisation and economic growth: Evidence from Asian countries. Econ. Res.-Ekon. Istraživanja 2019, 32, 510–530. [Google Scholar] [CrossRef] [Green Version]
- Klimas, E. Sustainable development and urban planning regulations in the context of climate change management measures. Entrep. Sustain. Issues 2020, 8, 24–37. [Google Scholar] [CrossRef]
- Chehabeddine, M.R.; Grabowska, S.; Adekola, A.F. Building a model for securing regional development from ecological threats. Insights Reg. Dev. 2022, 4, 22–40. [Google Scholar] [CrossRef]
- Ai, X.Q.; Chen, L.L.; Zhu, L.N. Research on the relationship between air pollution and economic growth—Based on the spatial econometric model of China’s provincial panel data. East China Econ. Manag. 2017, 31, 69–76. [Google Scholar] [CrossRef]
- Li, B.; Li, T. An empirical study of the environmental Kuznets curve for China’s air pollution: By GMN model and threshold effect with dynamic panel data. Econ. Probl. 2014, 04, 17–22. [Google Scholar] [CrossRef]
- Shao, Q. Nonlinear effects of marine economic growth and technological innovation on marine pollution: Panel threshold analysis for China’s 11 coastal regions. Mar. Policy 2020, 121, 104110. [Google Scholar] [CrossRef]
- Wang, M.; Huang, Y. China’s environmental pollution and economic growth. China Econ. Q. 2015, 14, 557–578. [Google Scholar] [CrossRef]
- Ye, M.; Chen, W.; Guo, L.; Li, Y. “Green” economic development in China: Quantile regression evidence from the Yangtze River Economic Belt. Environ. Sci. Pollut. Res. 2022, 29, 60572–60583. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhang, X.; He, F.; Yuan, R. Regional green development level and its spatial relationship under the constraints of haze in China. J. Clean. Prod. 2019, 210, 376–387. [Google Scholar] [CrossRef]
- Li, J.; Dong, X.; Dong, K. Is China’s green growth possible? The roles of green trade and green energy. Econ. Res.-Ekon. Istraživanja 2022, 35, 7084–7108. [Google Scholar] [CrossRef]
- Izakovičová, Z.; Petrovič, F.; Pauditšová, E. The Impacts of Urbanisation on Landscape and Environment: The Case of Slovakia. Sustainability 2022, 14, 60. [Google Scholar] [CrossRef]
- Moskalenko, B.; Lyulyov, O.; Pimonenko, T. The Investment Attractiveness of Countries: Coupling Between Core Dimensions. Forum Sci. Oeconomia 2022, 10, 153–172. [Google Scholar] [CrossRef]
- Czyżewski, B.; Polcyn, J.; Brelik, A. Political orientations, economic policies, and environmental quality: Multivalued treatment effects analysis with spatial spillovers in country districts of Poland. Environ. Sci. Policy 2021, 128, 1–13. [Google Scholar] [CrossRef]
- Lin, S.; Sun, J.; Wang, S. Dynamic evaluation of the technological innovation efficiency of China’s industrial enterprises. Sci. Public Policy 2018, 46, 232–243. [Google Scholar] [CrossRef]
- World Data Bank. Available online: https://data.worldbank.org (accessed on 10 September 2022).
- Eurostat. Available online: https://ec.europa.eu/eurostat/web/main/data/database (accessed on 10 September 2022).
- Baltagi, B.H.; Bresson, G.; Pirotte, A. Fixed effects, random effects or Hausman–Taylor?: A pretest estimator. Econ. Lett. 2003, 79, 361–369. [Google Scholar] [CrossRef]
- Baltagi, B.H.; Liu, L. Random effects, fixed effects and Hausman’s test for the generalized mixed regressive spatial autoregressive panel data model. Econom. Rev. 2016, 35, 638–658. [Google Scholar] [CrossRef]
- Yang, Y. A correlated random effects approach to the estimation of models with multiple fixed effects. Econ. Lett. 2022, 213, 110408. [Google Scholar] [CrossRef]
- Zhou, H.; Xu, G. Research on the impact of green finance on China’s regional ecological development based on system GMM model. Resour. Policy 2022, 75, 102454. [Google Scholar] [CrossRef]
- Sun, H.; Chen, F. The impact of green finance on China’s regional energy consumption structure based on system GMM. Resour. Policy 2022, 76, 102588. [Google Scholar] [CrossRef]
- Brulhart, M.; Sbergami, F. Agglomeration and growth: Cross-country evidence. J. Urban Econ. 2009, 65, 48–63. [Google Scholar] [CrossRef] [Green Version]
- Kılkış, Ş. Urban emissions and land use efficiency scenarios towards effective climate mitigation in urban systems. Renew. Sustain. Energy Rev. 2022, 167, 112733. [Google Scholar] [CrossRef]
- Fu, S.; Zhang, X.; Kuang, W.; Guo, C. Characteristics of Changes in Urban Land Use and Efficiency Evaluation in the Qinghai–Tibet Plateau from 1990 to 2020. Land 2022, 11, 757. [Google Scholar] [CrossRef]
- Löbmann, M.T.; Maring, L.; Prokop, G.; Brils, J.; Bender, J.; Bispo, A.; Helming, K. Systems knowledge for sustainable soil and land management. Sci. Total Environ. 2022, 822, 153389. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Matsui, T.; Machimura, T.; Haga, C.; Hu, A.; Gan, X. Impact of urbanization on the food–water–land–ecosystem nexus: A study of Shenzhen, China. Sci. Total Environ. 2022, 808, 152138. [Google Scholar] [CrossRef]
- Tirumala, R.D.; Tiwari, P. Importance of Land in SDG Policy Instruments: A Study of ASEAN Developing Countries. Land 2022, 11, 218. [Google Scholar] [CrossRef]
- He, Q.; Du, J. The impact of urban land misallocation on inclusive green growth efficiency: Evidence from China. Environ. Sci. Pollut. Res. 2022, 29, 3575–3586. [Google Scholar] [CrossRef] [PubMed]
Symbol | Meaning | Sources | Mean | Std. Dev. |
---|---|---|---|---|
L | Labour force, total | World Data Bank [95] | 8,772,342 | 1.12 × 107 |
K | Gross capital formation (current USD) | 1.29 × 1011 | 1.89 × 1011 | |
RE | Use of renewables for electricity (Gigawatt-hour) | Eurostat [96] | 28,503.65 | 40,536.91 |
GDP | Gross Domestic Product | World Data Bank [95] | 33,099.04 | 22,036.23 |
Integrated index of natural capital pollution: | – | – | ||
Ratio of carbon dioxide (CO2) emissions to population, excluding AFOLU | Eurostat [96] | 7.617 | 3.418 | |
The ratio of non-CO2 emissions (CH4, N2O) to population, excluding AFOLU | Eurostat [96] | 1.005 | 0.512 | |
The ratio of agriculture non-CO2 emissions (CH4, N2O) to population | Eurostat [96] | 2.22/105 | 2.31/105 |
Symbol | Meaning | Sources | Mean | Std. Dev. |
---|---|---|---|---|
Explanatory Variable | ||||
Urban population (% of the total population) | World Data Bank [95] | 72.285 | 12.505 | |
Control variables | ||||
InS | Industry (including construction), value added (% of GDP) | World Data Bank [95] | 14.464 | 5.103 |
R&D | Patent applications | World Data Bank [95] | 3503.1 | 9115.732 |
TO | Trade (% of GDP) | World Data Bank [95] | 123.664 | 64.069 |
Indicator | Weight | |||||
---|---|---|---|---|---|---|
The ratio of carbon dioxide (CO2) emissions to population, excluding AFOLU | 31.77% | |||||
The ratio of non-CO2 emissions (CH4, N2O) to population, excluding AFOLU | 32.80% | |||||
The ratio of non-CO2 emissions (CH4, N2O) in agriculture to the population | 35.43% | |||||
Country | Mean | CV | Skewness | Kurtosis | Min | Max |
Austria | 0.834 | 0.043 | 0.239 | 5.229 | 0.750 | 0.926 |
Belgium | 0.826 | 0.044 | 0.804 | 4.225 | 0.771 | 0.922 |
Bulgaria | 0.871 | 0.019 | 1.221 | 5.152 | 0.847 | 0.919 |
Croatia | 0.905 | 0.014 | 1.001 | 4.704 | 0.886 | 0.940 |
Cyprus | 0.927 | 0.020 | −0.255 | 1.800 | 0.899 | 0.954 |
Czech Republic | 0.794 | 0.036 | 0.627 | 3.592 | 0.755 | 0.865 |
Denmark | 0.734 | 0.079 | 1.155 | 4.862 | 0.657 | 0.896 |
Estonia | 0.772 | 0.052 | 2.112 | 7.121 | 0.734 | 0.899 |
Finland | 0.813 | 0.045 | −0.178 | 1.818 | 0.751 | 0.868 |
France | 0.844 | 0.024 | −0.109 | 1.836 | 0.812 | 0.877 |
Germany | 0.846 | 0.022 | 0.771 | 2.871 | 0.822 | 0.887 |
Greece | 0.846 | 0.039 | 0.928 | 3.627 | 0.807 | 0.931 |
Hungary | 0.917 | 0.014 | 0.476 | 3.532 | 0.897 | 0.948 |
Ireland | 0.342 | 0.306 | 2.047 | 8.187 | 0.202 | 0.681 |
Italy | 0.887 | 0.029 | 0.493 | 3.103 | 0.851 | 0.949 |
Latvia | 0.889 | 0.016 | 2.218 | 8.193 | 0.876 | 0.934 |
Lithuania | 0.842 | 0.023 | 2.739 | 10.554 | 0.820 | 0.908 |
Luxembourg | 0.644 | 0.125 | 0.347 | 2.648 | 0.521 | 0.823 |
Malta | 0.963 | 0.022 | 0.081 | 1.805 | 0.931 | 0.995 |
Netherlands | 0.786 | 0.039 | 2.390 | 8.649 | 0.758 | 0.886 |
Poland | 0.855 | 0.017 | 2.686 | 10.111 | 0.842 | 0.904 |
Portugal | 0.867 | 0.023 | 1.539 | 6.775 | 0.836 | 0.927 |
Romania | 0.905 | 0.018 | 1.296 | 5.811 | 0.885 | 0.953 |
Slovak Republic | 0.894 | 0.019 | 0.451 | 3.421 | 0.867 | 0.936 |
Slovenia | 0.847 | 0.034 | 1.034 | 4.524 | 0.812 | 0.927 |
Spain | 0.873 | 0.031 | 0.733 | 4.772 | 0.829 | 0.946 |
Sweden | 0.927 | 0.027 | 0.628 | 3.378 | 0.890 | 0.990 |
Ukraine | 0.900 | 0.027 | 0.140 | 2.183 | 0.866 | 0.950 |
Country | Min | Max | Mean | Country Group | Country | Min | Max | Mean | Country Group | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Austria | 0.972 | 1.023 | 1.000 | 1.012 | Green | Italy | 0.980 | 1.017 | 0.999 | 0.995 | Yellow |
Belgium | 0.975 | 1.022 | 1.000 | 1.013 | Green | Latvia | 0.981 | 1.021 | 1.003 | 0.986 | Yellow |
Bulgaria | 0.996 | 1.007 | 1.002 | 0.980 | Yellow | Lithuania | 0.985 | 1.016 | 1.004 | 0.992 | Yellow |
Croatia | 0.992 | 1.011 | 1.001 | 0.991 | Yellow | Luxembourg | 0.957 | 1.046 | 0.994 | 1.002 | Green |
Cyprus | 0.781 | 1.078 | 0.968 | 0.981 | Yellow | Malta | 0.742 | 1.069 | 0.994 | 0.999 | Yellow |
Czech Republic | 0.985 | 1.020 | 1.002 | 1.004 | Green | Netherlands | 0.971 | 1.029 | 1.001 | 1.012 | Green |
Denmark | 0.959 | 1.024 | 0.999 | 1.010 | Green | Poland | 0.989 | 1.012 | 1.002 | 0.995 | Yellow |
Estonia | 0.977 | 1.028 | 1.004 | 1.006 | Green | Portugal | 0.988 | 1.012 | 1.001 | 0.990 | Yellow |
Finland | 0.968 | 1.028 | 1.002 | 1.011 | Green | Romania | 0.991 | 1.011 | 1.002 | 1.005 | Green |
France | 0.975 | 1.021 | 1.000 | 1.010 | Green | Slovak Republic | 0.989 | 1.013 | 1.002 | 0.987 | Yellow |
Germany | 0.973 | 1.021 | 1.002 | 1.013 | Green | Slovenia | 0.984 | 1.021 | 1.002 | 0.988 | Yellow |
Greece | 0.983 | 1.019 | 0.998 | 0.968 | Yellow | Spain | 0.983 | 1.018 | 0.999 | 0.990 | Yellow |
Hungary | 0.989 | 1.010 | 1.001 | 1.009 | Green | Sweden | 0.966 | 1.026 | 1.001 | 1.019 | Green |
Ireland | 0.820 | 1.053 | 0.985 | 0.979 | Yellow | Ukraine | 0.964 | 1.023 | 0.999 | 1.005 | Green |
Variables | Model (1) | Model (2) | Model (3) | Model (4) | ||||
---|---|---|---|---|---|---|---|---|
FE | RE | FE | RE | FE | RE | FE | RE | |
Coef. (p Value) | Coef. (p Value) | Coef. (p Value) | Coef. (p Value) | Coef. (p Value) | Coef. (p Value) | Coef. (p Value) | Coef. (p Value) | |
Green Group (the number of observations—224) | ||||||||
−0.0035141 (0.000) * | −0.0000958 (0.262) | −0.002384 (0.019) ** | 0.0000453 (0.654) | −0.0034834 (0.000) * | −0.0000959 (0.263) | −0.0045959 (0.000) * | −0.0000797 (0.375) | |
InS | – | – | 0.0025295 (0.001) * | 0.0006744 (0.011) ** | – | – | – | – |
R&D | – | – | – | – | −0.0058001 (0.163) | 0.001557 (0.796) | – | – |
TO | – | – | – | – | – | – | 0.039867 (0.006) * | −0.001515 (0.556) |
const | 1.27214 (0.000) * | 1.007923 (0.000) * | 1.147275 (0.000) * | 0.9870137 (0.000) * | 1.311395 (0.000) * | 1.006815 (0.000) * | 1.167167 (0.000) * | 1.013847 (0.000) * |
Hausman test | chi2(1) = 12.46 Prob > chi2 = 0.000 | chi2(2) = 18.80 Prob > chi2 = 0.000 | chi2(2) = 14.65 Prob > chi2 = 0.000 | chi2(2) = 21.08 Prob > chi2 = 0.000 | ||||
Yellow Group (the number of observations—224) | ||||||||
−0.0021181 (0.377) | −0.0001307 (0.099) *** | −0.0028261 (0.294) | −0.0000118 (0.069) *** | −0.0026965 (0.262) | −0.0001031 (0.073) *** | −0.0036062 (0.173) | −0.0001169 (0.045) ** | |
InS | – | – | 0.0015681 (0.238) | 0.0006673 (0.060) *** | – | – | – | – |
R&D | – | – | – | – | −0.0058859 (0.494) | 0.0020176 (0.015) ** | – | – |
TO | – | – | – | – | – | – | 0.0346183 (0.188) | −0.0033887 (0.552) |
const | 1.139955 (0.000) * | 1.005919 (0.000) * | 1.164256 (0.000) * | .9866632 (0.000) * | 1.21323 (0.000) * | 0.9937163 (0.000) * | 1.077469 (0.000) * | 1.020929 (0.000) * |
Hausman test | chi2 = 0.70 Prob > chi2 = 0.4033 | chi2 = 1.45 Prob > chi2 = 0.4837 | chi2 = 1.91 Prob > chi2 = 0.3839 | chi2 = 2.78 Prob > chi2 = 0.2491 |
Variables | Green Group | Yellow Group | ||
---|---|---|---|---|
Coef. | p Value | Coef. | p Value | |
−0.102 | 0.137 | −0.022 | 0.780 | |
−0.006 | 0.003 | −0.006 | 0.040 | |
InS | 0.004 | 0.006 | 0.007 | 0.060 |
R&D | 0.0017 | 0.019 | 0.0026 | 0.025 |
TO | 0.0076 | 0.000 | −0.0054 | 0.196 |
Arellano–Bond test for AR(1) | z = −1.81 Pr > z = 0.071 | z = −5.46 Pr > z = 0.000 | ||
Arellano–Bond test for AR(2) | z = −1.42 Pr > z = 0.154 | z = −2.21 Pr > z = 0.027 | ||
Sargon test | chi2 = 334.39 Prob > chi2 = 0.000 | chi2 = 177.04 Prob > chi2 = 0.000 | ||
Hansen test | chi2 = 26.93 Prob > chi2 = 1.000 | chi2 = 8.41 Prob > chi2 = 0.178 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwilinski, A.; Lyulyov, O.; Pimonenko, T. The Effects of Urbanisation on Green Growth within Sustainable Development Goals. Land 2023, 12, 511. https://doi.org/10.3390/land12020511
Kwilinski A, Lyulyov O, Pimonenko T. The Effects of Urbanisation on Green Growth within Sustainable Development Goals. Land. 2023; 12(2):511. https://doi.org/10.3390/land12020511
Chicago/Turabian StyleKwilinski, Aleksy, Oleksii Lyulyov, and Tetyana Pimonenko. 2023. "The Effects of Urbanisation on Green Growth within Sustainable Development Goals" Land 12, no. 2: 511. https://doi.org/10.3390/land12020511
APA StyleKwilinski, A., Lyulyov, O., & Pimonenko, T. (2023). The Effects of Urbanisation on Green Growth within Sustainable Development Goals. Land, 12(2), 511. https://doi.org/10.3390/land12020511