Role of Traditional Agroforestry Systems in Climate Change Mitigation through Carbon Sequestration: An Investigation from the Semi-Arid Region of Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Sampling Procedure
2.2. Estimation of Biomass and Carbon
2.2.1. Tree Biomass and Carbon Estimation:
2.2.2. Crop Biomass and Carbon Estimation
2.2.3. Estimation of Soil Carbon
2.3. Statistical Analysis
3. Results
3.1. Tree Inventory and Plant Biomass
3.2. Biomass Carbon Stock
3.3. Soil Organic Carbon Content and SOC Stocks
3.4. Ecosystem Carbon Stock
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, Z.; Bork, E.W.; Carlyle, C.N.; Tieu, J.; Gross, C.D.; Chang, S.X. Carbon stocks differ among land-uses in agroforestry systems in western Canada. Agric. For. Meteorol. 2022, 313, 108756. [Google Scholar] [CrossRef]
- Smith, P.; Haberl, H.; Popp, A.; Erb, K.h.; Lauk, C.; Harper, R.; Tubiello, F.N.; de Siqueira Pinto, A.; Jafari, M.; Sohi, S. How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Glob. Chang. Biol. 2013, 19, 2285–2302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasin, G.; Ur Rahman, S.; Farrakh Nawaz, M.; Qadir, I.; Zubair, M.; Gul, S.; Safdar Hussain, M.; Zain, M.; Athar Khaliq, M. Estimating carbon stocks and biomass accumulation in three different agroforestry patterns in the semi-arid region of Pakistan. Carbon Manag. 2021, 12, 593–602. [Google Scholar] [CrossRef]
- Komal, N.; Zaman, Q.u.; Yasin, G.; Nazir, S.; Ashraf, K.; Waqas, M.; Ahmad, M.; Batool, A.; Talib, I.; Chen, Y. Carbon Storage Potential of Agroforestry System near Brick Kilns in Irrigated Agro-Ecosystem. Agriculture 2022, 12, 295. [Google Scholar] [CrossRef]
- Nair, P.R.; Nair, V.D.; Kumar, B.M.; Showalter, J.M. Carbon sequestration in agroforestry systems. Adv. Agron. 2010, 108, 237–307. [Google Scholar]
- Coulibaly, J.Y.; Chiputwa, B.; Nakelse, T.; Kundhlande, G. Adoption of agroforestry and the impact on household food security among farmers in Malawi. Agric. Syst. 2017, 155, 52–69. [Google Scholar] [CrossRef]
- Ma, Z.; Chen, H.Y.; Bork, E.W.; Carlyle, C.N.; Chang, S.X. Carbon accumulation in agroforestry systems is affected by tree species diversity, age and regional climate: A global meta-analysis. Glob. Ecol. Biogeogr. 2020, 29, 1817–1828. [Google Scholar] [CrossRef]
- Yasin, G.; Nawaz, M.F.; Yousaf, M.T.B.; Gul, S.; Qadir, I.; Niazi, N.K.; Sabir, M.A. Carbon stock and CO2 sequestration rate in linearly planted Vachellia nilotica farm trees. Pak. J. Agric. Sci. 2020, 57, 807–814. [Google Scholar]
- Jose, S.; Bardhan, S. Agroforestry for biomass production and carbon sequestration: An overview. Agrofor. Syst. 2012, 86, 105–111. [Google Scholar] [CrossRef]
- Lasco, R.D.; Delfino, R.J.P.; Catacutan, D.C.; Simelton, E.S.; Wilson, D.M. Climate risk adaptation by smallholder farmers: The roles of trees and agroforestry. Curr. Opin. Environ. Sustain. 2014, 6, 83–88. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Feng, W.; Xu, J.; Kuzyakov, Y. Agroforestry systems: Meta-analysis of soil carbon stocks, sequestration processes, and future potentials. Land Degrad. Dev. 2018, 29, 3886–3897. [Google Scholar] [CrossRef]
- Yasin, G.; Nawaz, M.F.; Martin, T.A.; Niazi, N.K.; Gul, S.; Yousaf, M.T.B. Evaluation of agroforestry carbon storage status and potential in irrigated plains of Pakistan. Forests 2019, 10, 640. [Google Scholar] [CrossRef] [Green Version]
- Yasin, G.; Farrakh Nawaz, M.; Zubair, M.; Qadir, I.; Saleem, A.R.; Ijaz, M.; Gul, S.; Amjad Bashir, M.; Rehim, A.; Rahman, S.U. Assessing the Contribution of Citrus Orchards in Climate Change Mitigation through Carbon Sequestration in Sargodha District, Pakistan. Sustainability 2021, 13, 12412. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A.; Vesterdal, L.; Leifeld, J.; Van Wesemael, B.; Schumacher, J.; Gensior, A. Temporal dynamics of soil organic carbon after land-use change in the temperate zone–carbon response functions as a model approach. Glob. Chang. Biol. 2011, 17, 2415–2427. [Google Scholar] [CrossRef]
- Don, A.; Rebmann, C.; Kolle, O.; Scherer-Lorenzen, M.; Schulze, E.D. Impact of afforestation-associated management changes on the carbon balance of grassland. Glob. Chang. Biol. 2009, 15, 1990–2002. [Google Scholar] [CrossRef]
- Brassard, B.W.; Chen, H.Y.; Cavard, X.; Laganiere, J.o.; Reich, P.B.; Bergeron, Y.; Pare, D.; Yuan, Z. Tree species diversity increases fine root productivity through increased soil volume filling. J. Ecol. 2013, 101, 210–219. [Google Scholar] [CrossRef]
- Williams, L.J.; Paquette, A.; Cavender-Bares, J.; Messier, C.; Reich, P.B. Spatial complementarity in tree crowns explains overyielding in species mixtures. Nat. Ecol. Evol. 2017, 1, 0063. [Google Scholar] [CrossRef]
- Liang, J.; Crowther, T.W.; Picard, N.; Wiser, S.; Zhou, M.; Alberti, G.; Schulze, E.-D.; McGuire, A.D.; Bozzato, F.; Pretzsch, H. Positive biodiversity-productivity relationship predominant in global forests. Science 2016, 354, aaf8957. [Google Scholar] [CrossRef] [Green Version]
- Nawaz, M.F.; Mazhar, K.; Gul, S.; Ahmad, I.; Yasin, G.; Asif, M.; Tanvir, M. Comparing the early stage carbon sequestration rates and effects on soil physico-chemical properties after two years of planting agroforestry trees. J. Basic Appl. Sci. 2017, 13, 527–533. [Google Scholar] [CrossRef]
- Montagnini, F.; Nair, P. Carbon sequestration: An underexploited environmental benefit of agroforestry systems. In New Vistas in Agroforestry; Springer: Berlin/Heidelberg, Germany, 2004; pp. 281–295. [Google Scholar]
- Jactel, H.; Brockerhoff, E.; Duelli, P. A test of the biodiversity-stability theory: Meta-analysis of tree species diversity effects on insect pest infestations, and re-examination of responsible factors. In Forest Diversity and Function; Springer: Berlin/Heidelberg, Germany, 2005; pp. 235–262. [Google Scholar]
- Fujisaki, K.; Chevallier, T.; Chapuis-Lardy, L.; Albrecht, A.; Razafimbelo, T.; Masse, D.; Ndour, Y.B.; Chotte, J.-L. Soil carbon stock changes in tropical croplands are mainly driven by carbon inputs: A synthesis. Agric. Ecosyst. Environ. 2018, 259, 147–158. [Google Scholar] [CrossRef]
- Thiel, B.; Smukler, S.; Krzic, M.; Gergel, S.; Terpsma, C. Using hedgerow biodiversity to enhance the carbon storage of farmland in the Fraser River delta of British Columbia. J. Soil Water Conserv. 2015, 70, 247–256. [Google Scholar] [CrossRef]
- Lorenz, K.; Lal, R. Soil organic carbon sequestration in agroforestry systems. A review. Agron. Sustain. Dev. 2014, 34, 443–454. [Google Scholar] [CrossRef] [Green Version]
- Arora, G.; Chaturvedi, S.; Kaushal, R.; Nain, A.; Tewari, S.; Alam, N.M.; Chaturvedi, O.P. Growth, biomass, carbon stocks, and sequestration in an age series of Populus deltoides plantations in Tarai region of central Himalaya. Turk. J. Agric. For. 2014, 38, 550–560. [Google Scholar] [CrossRef]
- Cairns, M.A.; Brown, S.; Helmer, E.H.; Baumgardner, G.A. Root biomass allocation in the world’s upland forests. Oecologia 1997, 111, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ravindranath, N.H.; Ostwald, M. Carbon Inventory Methods: Handbook for Greenhouse Gas Inventory, Carbon Mitigation and Roundwood Production Projects; Springer Science & Business Media: New York, NY, USA, 2007; Volume 29. [Google Scholar]
- Thomas, S.C.; Martin, A.R. Carbon content of tree tissues: A synthesis. Forests 2012, 3, 332–352. [Google Scholar] [CrossRef] [Green Version]
- Xie, T.; Su, P.; An, L.; Shi, R.; Zhou, Z. Carbon stocks and biomass production of three different agroforestry systems in the temperate desert region of northwestern China. Agrofor. Syst. 2017, 91, 239–247. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Kumar, S.; Bijalwan, A.; Singh, B.; Rawat, D.; Yewale, A.G.; Riyal, M.K.; Thakur, T.K. Comparison of Carbon Sequestration Potential of Quercus leucotrichophora–Based Agroforestry Systems and Natural Forest in Central Himalaya, India. Water Air Soil Pollut. 2021, 232, 350. [Google Scholar] [CrossRef]
- Askari, Y.; Soltani, A.; Akhavan, R. Assessment of root-shoot ratio biomass and carbon storage of Quercus brantii Lindl. in the central Zagros forests of Iran. J. For. Sci. 2017, 63, 282–289. [Google Scholar] [CrossRef] [Green Version]
- Manaye, A.; Tesfamariam, B.; Tesfaye, M.; Worku, A.; Gufi, Y. Tree diversity and carbon stocks in agroforestry systems in northern Ethiopia. Carbon Balance Manag. 2021, 16, 1–10. [Google Scholar] [CrossRef]
- Rajput, B.S.; Bhardwaj, D.; Pala, N.A. Factors influencing biomass and carbon storage potential of different land use systems along an elevational gradient in temperate northwestern Himalaya. Agrofor. Syst. 2017, 91, 479–486. [Google Scholar] [CrossRef] [Green Version]
- Yadav, R.; Gupta, B.; Bhutia, P.; Bisht, J.; Pattanayak, A.; Meena, V.; Choudhary, M.; Tiwari, P. Biomass and carbon budgeting of sustainable agroforestry systems as ecosystem service in Indian Himalayas. Int. J. Sustain. Dev. World Ecol. 2019, 26, 460–470. [Google Scholar] [CrossRef]
- Chittapur, B.; Mahadeva Murthy, M. Comparison of carbon footprint of traditional agroforestry systems under rainfed and irrigated ecosystems. Agrofor. Syst. 2020, 94, 465–475. [Google Scholar]
- Takimoto, A.; Nair, P.R.; Nair, V.D. Carbon stock and sequestration potential of traditional and improved agroforestry systems in the West African Sahel. Agric. Ecosyst. Environ. 2008, 125, 159–166. [Google Scholar] [CrossRef]
- Agevi, H.; Onwonga, R.; Kuyah, S.; Tsingalia, M. Carbon stocks and stock changes in agroforestry practices: A review. Trop. Subtrop. Agroecosyst. 2017, 20, 101–109. [Google Scholar]
- Jobbágy, E.G.; Jackson, R.B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 2000, 10, 423–436. [Google Scholar] [CrossRef]
- Lal, R. Potential of desertification control to sequester carbon and mitigate the greenhouse effect. Clim. Chang. 2001, 51, 35–72. [Google Scholar] [CrossRef]
- Mishra, G.; Giri, K.; Pandey, S. Role of Alnus nepalensis in restoring soil fertility: A case study in Mokokchung, Nagaland. Natl. Acad. Sci. Lett. 2018, 41, 265–268. [Google Scholar] [CrossRef]
- Besar, N.A.; Suardi, H.; Phua, M.-H.; James, D.; Mokhtar, M.B.; Ahmed, M.F. Carbon stock and sequestration potential of an agroforestry system in Sabah, Malaysia. Forests 2020, 11, 210. [Google Scholar] [CrossRef] [Green Version]
- Fang, S.; Li, H.; Sun, Q.; Chen, L. Biomass production and carbon stocks in poplar-crop intercropping systems: A case study in northwestern Jiangsu, China. Agrofor. Syst. 2010, 79, 213–222. [Google Scholar] [CrossRef]
- Hairiah, K.; van Noordwijk, M.; Sari, R.R.; Saputra, D.D.; Suprayogo, D.; Kurniawan, S.; Prayogo, C.; Gusli, S. Soil carbon stocks in Indonesian (agro) forest transitions: Compaction conceals lower carbon concentrations in standard accounting. Agric. Ecosyst. Environ. 2020, 294, 106879. [Google Scholar] [CrossRef]
- Lim, S.-S.; Baah-Acheamfour, M.; Choi, W.-J.; Arshad, M.A.; Fatemi, F.; Banerjee, S.; Carlyle, C.N.; Bork, E.W.; Park, H.-J.; Chang, S.X. Soil organic carbon stocks in three Canadian agroforestry systems: From surface organic to deeper mineral soils. For. Ecol. Manag. 2018, 417, 103–109. [Google Scholar] [CrossRef]
- Whalen, J.K.; Willms, W.D.; Dormaar, J.F. Soil carbon, nitrogen and phosphorus in modified rangeland communities. Rangel. Ecol. Manag./J. Range Manag. Arch. 2003, 56, 665–672. [Google Scholar]
- Neto, V.; Ainuddin, N.A.; Wong, M.; Ting, H. Contributions of forest biomass and organic matter to above-and belowground carbon contents at Ayer Hitam Forest Reserve, Malaysia. J. Trop. For. Sci. 2012, 24, 217–230. [Google Scholar]
- Bruun, H.H.; Moen, J.; Virtanen, R.; Grytnes, J.A.; Oksanen, L.; Angerbjörn, A. Effects of altitude and topography on species richness of vascular plants, bryophytes and lichens in alpine communities. J. Veg. Sci. 2006, 17, 37–46. [Google Scholar] [CrossRef]
- Chatterjee, N.; Nair, P.R.; Chakraborty, S.; Nair, V.D. Changes in soil carbon stocks across the Forest-Agroforest-Agriculture/Pasture continuum in various agroecological regions: A meta-analysis. Agric. Ecosyst. Environ. 2018, 266, 55–67. [Google Scholar] [CrossRef]
- Aalde, H.; Gonzalez, P.; Gytarsky, M.; Krug, T.; Kurz, W.A.; Lasco, R.D.; Martino, D.L.; McConkey, B.G.; Ogle, S.; Paustian, K. Generic methodologies applicable to multiple land-use categories. In IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies (IGES) for the IPCC: Kanagawa, Japan, 2006; Volume 4, pp. 1–59. [Google Scholar]
- Li, Q. The Research on Carbon Storage of Populous-Crop Intercropping System in the Huanghuaihai Plain. Master’s Dissertation, Henan Agricultural University, Zhengzhou, Henan, 2008. [Google Scholar]
- Ziegler, A.D.; Phelps, J.; Yuen, J.Q.; Webb, E.L.; Lawrence, D.; Fox, J.M.; Bruun, T.B.; Leisz, S.J.; Ryan, C.M.; Dressler, W. Carbon outcomes of major land-cover transitions in SE Asia: Great uncertainties and REDD+ policy implications. Glob. Chang. Biol. 2012, 18, 3087–3099. [Google Scholar] [CrossRef]
- Verma, A.; Kaushal, R.; Alam, N.; Mehta, H.; Chaturvedi, O.; Mandal, D.; Tomar, J.; Rathore, A.; Singh, C. Predictive models for biomass and carbon stocks estimation in Grewia optiva on degraded lands in western Himalaya. Agrofor. Syst. 2014, 88, 895–905. [Google Scholar] [CrossRef]
- Winjum, J.K.; Dixon, R.K.; Schroeder, P.E. Estimating the global potential of forest and agroforest management practices to sequester carbon. Water Air Soil Pollut. 1992, 64, 213–227. [Google Scholar] [CrossRef]
- Yadav, R.; Gupta, B.; Bhutia, P.; Bisht, J. Socioeconomics and sources of livelihood security in Central Himalaya, India: A case study. Int. J. Sustain. Dev. World Ecol. 2017, 24, 545–553. [Google Scholar] [CrossRef]
- Choudhary, B.; Saxena, K. An assessment of soil organic carbon, total nitrogen and tree biomass in land uses of a village landscape of central Himalaya, India. Glob. J. Environ. Res. 2015, 9, 27–42. [Google Scholar]
- Possu, W.B.; Brandle, J.R.; Domke, G.M.; Schoeneberger, M.; Blankenship, E. Estimating carbon storage in windbreak trees on US agricultural lands. Agrofor. Syst. 2016, 90, 889–904. [Google Scholar] [CrossRef] [Green Version]
Sr. # | Agroforestry Systems | Soil Particle Size Class (%) | Textural Class | EC (ds m−1) | pH | OM (%) | N (%) | p (mg kg−1) | K (mg kg−1) | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Sand | Silt | Clay | |||||||||
1 | Boundary planting | 72.44 | 16.23 | 11.33 | Sandy loam | 4.11 ± 0.14 b | 7.96 ± 0.61 b | 0.91 ± 0.08 b | 0.052 ± 0.004 ab | 7.43 ± 0.23 b | 152.06 ± 6.22 a |
2 | Bund planting | 68.32 | 19.72 | 11.96 | Sandy loam | 4.02 ± 0.22 c | 7.89 ± 0.34 bc | 0.83 ± 0.07 c | 0.045 ± 0.003 c | 7.10 ± 0.52 cd | 136.42 ± 7.65 c |
3 | Scattered planting | 65.43 | 21.45 | 13.12 | Sandy loam | 3.96 ± 0.17 c | 8.10 ± 0.59 a | 0.77 ± 0.11 d | 0.044 ± 0.002 c | 6.92 ± 0.66 d | 141.26 ± 3.54 b |
4 | Agri-horti system | 69.09 | 18.76 | 12.15 | Sandy loam | 3.80 ± 0.19 d | 7.69 ± 0.41 d | 0.99 ± 0.13 a | 0.055 ± 0.001 a | 7.62 ± 0.16 a | 150.32 ± 8.22 a |
5 | Agricultural systems (only crop) | 71.12 | 16.14 | 12.74 | Sandy loam | 4.16 ± 0.26 aa | 8.05 ± 0.48 a | 0.70 ± 0.09 de | 0.049 ± 0.002 b | 7.24 ± 0.43 c | 145 ± 6.98 b |
LSD | 0.082 | 0.073 | 0.091 | 1.09 | 0.71 | 2.09 |
Sr. # | Agroforestry Systems | DBH (cm) | Height (m) | Age (Years) | Basal Area (m2/ha−1) | Tree Density (Trees ha−1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Range | SD | Mean | Range | SD | Mean | Range | SD | Mean | Range | SD | Mean | Range | SD | ||
1 | Boundary planting | 20.82 | 0–24.87 | 2.70 | 17.18 | 0–25.14 | 3.98 | 3.41 | 0–9 | 2.52 | 2.36 | 0–3.37 | 0.61 | 34.65 | 0–91.40 | 13.65 |
2 | Bund planting | 17.15 | 0–22.56 | 3.18 | 15.49 | 0–20.36 | 2.65 | 2.90 | 0–7 | 2.37 | 1.62 | 0–2.77 | 0.56 | 25.47 | 0–87.61 | 14.98 |
3 | Scattered planting | 19.82 | 0–26.34 | 4.36 | 16.79 | 0–18.12 | 2.19 | 3.18 | 0–8 | 2.87 | 2.17 | 0–3.78 | 0.87 | 23.54 | 0–66.65 | 11.55 |
4 | Agri-horti system | 11.65 | 0–14.41 | 2.47 | 5.27 | 0–7.03 | 3.03 | 4.36 | 0–15 | 2.03 | 0.72 | 0–1.13 | 0.25 | 114.56 | 0–220 | 23.55 |
5 | Agricultural systems (only crop) | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Sr. # | Agroforestry Systems | Above-Ground Biomass (t ha−1) | Below-Ground Biomass (t ha−1) | Total Biomass (t ha−1) |
---|---|---|---|---|
1 | Boundary planting + maize | 69.68 ± 2.22 a | 17.44 ± 0.83 a | 87.12 ± 3.05 a |
2 | Bund planting + maize | 46.99 ± 2.26 b | 12.62 ± 0.61 b | 59.61 ± 2.87 b |
3 | Scattered planting + maize | 59.56 ± 2.47 ab | 14.78 ± 1.01 ab | 74.35 ± 3.48 ab |
4 | Agri-horti system + maize | 38.82 ± 1.64 c | 10.01 ± 0.70 b | 48.83 ± 2.34 c |
5 | Agricultural systems (maize) | 15.89 ± 1.21 d | 3.42 ± 0.61 c | 19.31 ± 1.82 d |
LSD | 4.42 | 1.61 | 6.03 |
Sr. # | Agroforestry Systems | Soil Organic Carbon (SOC%) | Bulk Density (BD g cm−3) | ||||
---|---|---|---|---|---|---|---|
0–15 cm | 15–30 cm | 30–45 cm | 0–15 cm | 15–30 cm | 30–45 cm | ||
1 | Boundary planting | 0.94 ± 0.05 a | 0.86 ± 0.03 a | 0.76 ± 0.08 a | 1.47 ± 0.03 a | 1.56 ± 0.02 a | 1.58 ± 0.07 a |
2 | Bund planting | 0.87 ± 0.04 ab | 0.79 ± 0.07 b | 0.68 ± 0.02 b | 1.42 ± 0.02 ab | 1.46 ± 0.03 bc | 1.52 ± 0.03 ab |
3 | Scattered planting | 0.75 ± 0.06 c | 0.69 ± 0.04 cd | 0.59 ± 0.04 c | 1.38 ± 0.04 b | 1.41 ± 0.02 c | 1.46 ± 0.05 b |
4 | Agri-horti system | 0.80 ± 0.06 b | 0.72 ± 0.06 c | 0.63 ± 0.05 c | 1.44 ± 0.02 a | 1.50 ± 0.01 b | 1.53 ± 0.05 ab |
5 | Agricultural systems (only crop) | 0.73 ± 0.03 c | 0.65 ± 0.04 d | 0.54 ± 0.02 d | 1.36 ± 0.07 b | 1.40 ± 0.05 c | 1.44 ± 0.04 b |
Sr. # | Agroforestry Systems | Soil Organic Carbon Stock (t ha−1) | ||
---|---|---|---|---|
0–15 cm | 15–30 cm | 30–45 cm | ||
1 | Boundary planting | 20.87 ± 0.98 a | 20.17 ± 0.95 a | 18.01 ± 1.05 a |
2 | Bund planting | 18.93 ± 0.83 b | 17.89 ± 0.85 b | 15.44 ± 0.52 b |
3 | Scattered planting | 15.55 ± 1.63 c | 14.80 ± 0.45 d | 13.02 ± 0.77 c |
4 | Agri-horti system | 17.09 ± 1.49 cd | 15.97 ± 0.72 c | 14.37 ± 1.09 b |
5 | Agricultural systems (only crop) | 14.95 ± 1.55 d | 13.77 ± 1.03 d | 11.68 ± 0.73 d |
Sr. # | Agroforestry Systems | Total Carbon Stock (t ha−1) | ||
---|---|---|---|---|
Total Biomass Carbon | Soil Carbon (0–30 cm) | Total Carbon | ||
1 | Boundary planting | 44.05 | 41.04 | 85.09 |
2 | Bund planting | 29.88 | 36.82 | 66.70 |
3 | Scattered planting | 35.26 | 30.35 | 65.61 |
4 | Agri-horti system | 24.71 | 33.06 | 57.77 |
5 | Agricultural systems (only crop) | 8.74 | 28.72 | 37.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yasin, G.; Nawaz, M.F.; Zubair, M.; Azhar, M.F.; Mohsin Gilani, M.; Ashraf, M.N.; Qin, A.; Ur Rahman, S. Role of Traditional Agroforestry Systems in Climate Change Mitigation through Carbon Sequestration: An Investigation from the Semi-Arid Region of Pakistan. Land 2023, 12, 513. https://doi.org/10.3390/land12020513
Yasin G, Nawaz MF, Zubair M, Azhar MF, Mohsin Gilani M, Ashraf MN, Qin A, Ur Rahman S. Role of Traditional Agroforestry Systems in Climate Change Mitigation through Carbon Sequestration: An Investigation from the Semi-Arid Region of Pakistan. Land. 2023; 12(2):513. https://doi.org/10.3390/land12020513
Chicago/Turabian StyleYasin, Ghulam, Muhammad Farrakh Nawaz, Muhammad Zubair, Muhammad Farooq Azhar, Matoor Mohsin Gilani, Muhammad Nadeem Ashraf, Anzhen Qin, and Shafeeq Ur Rahman. 2023. "Role of Traditional Agroforestry Systems in Climate Change Mitigation through Carbon Sequestration: An Investigation from the Semi-Arid Region of Pakistan" Land 12, no. 2: 513. https://doi.org/10.3390/land12020513
APA StyleYasin, G., Nawaz, M. F., Zubair, M., Azhar, M. F., Mohsin Gilani, M., Ashraf, M. N., Qin, A., & Ur Rahman, S. (2023). Role of Traditional Agroforestry Systems in Climate Change Mitigation through Carbon Sequestration: An Investigation from the Semi-Arid Region of Pakistan. Land, 12(2), 513. https://doi.org/10.3390/land12020513