Spatio-Temporal Analysis of Cultivated Land from 2010 to 2020 in Long’an County, Karst Region, China
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Analysis of Changes in the Amount of Cultivated Land
- (1)
- Land use Dynamicity Model
- (2)
- Land use Conversion Matrix
- (3)
- Standard Deviation Ellipse (SDE)
2.3.2. Analysis of Changes in Cultivated Land Quality
- (1)
- Evaluation index system
- (2)
- Determination of evaluation index weights and establishment of evaluation model
2.3.3. Analysis of the Changes in Cultivated Land Capacity
3. Results
3.1. Changes in the Amount of Cultivated Land
3.2. Changes in Cultivated Land Quality
3.3. Change in Production Capacity of Cultivated Land
4. Discussion
4.1. Changes in the Amount of Cultivated Land
4.2. Changes in Cultivated Land Quality
4.3. Changes in Cultivated Land Production Capacity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, M.; Zhu, Y.; Lü, G.; Chen, M.; Qiao, W. Spatial Distribution of Global Cultivated Land and Its Variation between 2000 and 2010, from Both Agro-Ecological and Geopolitical Perspectives. Sustainability 2019, 11, 1242. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Song, W. Spatial transformation of changes in global cultivated land. Sci. Total Environ. 2023, 859. [Google Scholar] [CrossRef]
- FAO; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2021; FAO: Rome, Italy, 2021; pp. 1–6. [Google Scholar]
- Long, H.; Kong, X.; Hu, S.; Li, Y. Land Use Transitions under Rapid Urbanization: A Perspective from Developing China. Land 2021, 10, 935. [Google Scholar] [CrossRef]
- Long, H.; Zhang, Y.; Ma, L.; Tu, S. Land Use Transitions: Progress, Challenges and Prospects. Land 2021, 10, 903. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, Z.; He, C.; Gou, S.; Bai, Y.; Wang, Y.; Shen, M. The occupation of cropland by global urban expansion from 1992 to 2016 and its implications. Environ. Res. Lett. 2020, 15, 084037. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Liu, Z.; Gou, S.; Zhang, Q.; Zhang, J.; Xu, L. Detecting global urban expansion over the last three decades using a fully convolutional network. Environ. Res. Lett. 2019, 14, 034008. [Google Scholar] [CrossRef]
- Egidi, G.; Halbac-Cotoara-Zamfir, R.; Cividino, S.; Quaranta, G.; Salvati, L.; Colantoni, A. Rural in Town: Traditional Agriculture, Population Trends, and Long-Term Urban Expansion in Metropolitan Rome. Land 2020, 9, 53. [Google Scholar] [CrossRef] [Green Version]
- Meng, B.; Wang, X.; Zhang, Z.; Huang, P. Spatio-Temporal Pattern and Driving Force Evolution of Cultivated Land Occupied by Urban Expansion in the Chengdu Metropolitan Area. Land 2022, 11, 1458. [Google Scholar] [CrossRef]
- Rahman, S.; Anik, A.R.; Sarker, J.R. Climate, Environment and Socio-Economic Drivers of Global Agricultural Productivity Growth. Land 2022, 11, 512. [Google Scholar] [CrossRef]
- Montanarella, L.; Pennock, D.J.; McKenzie, N.; Badraoui, M.; Chude, V.; Baptista, I.; Mamo, T.; Yemefack, M.; Singh Aulakh, M.; Yagi, K.; et al. World’s soils are under threat. Soil 2016, 2, 79–82. [Google Scholar] [CrossRef] [Green Version]
- Prăvălie, R.; Patriche, C.; Borrelli, P.; Panagos, P.; Roșca, B.; Dumitraşcu, M.; Nita, I.-A.; Săvulescu, I.; Birsan, M.-V.; Bandoc, G. Arable lands under the pressure of multiple land degradation processes. A global perspective. Environ. Res. 2021, 194, 110697. [Google Scholar] [CrossRef]
- Wu, W.; Verburg, P.H.; Tang, H. Climate change and the food production system: Impacts and adaptation in China. Reg. Environ. Chang. 2013, 14, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Nelson, G.C.; van der Mensbrugghe, D.; Ahammad, H.; Blanc, E.; Calvin, K.; Hasegawa, T.; Havlik, P.; Heyhoe, E.; Kyle, P.; Lotze-Campen, H.; et al. Agriculture and climate change in global scenarios: Why don’t the models agree. Agric. Econ. 2014, 45, 85–101. [Google Scholar] [CrossRef]
- Tang, H.; Sang, L.; Yun, W. China’s Cultivated Land Balance Policy Implementation Dilemma and Direction of Scientific and Technological Innovation. Bull. Chin. Acad. Sci. 2020, 35, 637–644. [Google Scholar]
- Ministry of Natural Resources; Office for National Statistics. The Main Data Results of the Third National Land Survey; Ministry of Natural Resources: Beijing, China, 2021.
- Song, X.; Li, X. Theoretical explanation and case study of regional cultivated land use function transition. Acta Geogr. Sin. 2019, 74, 992–1010. [Google Scholar]
- Manzoor, S.A.; Griffiths, G.H.; Robinson, E.; Shoyama, K.; Lukac, M. Linking Pattern to Process: Intensity Analysis of Land-Change Dynamics in Ghana as Correlated to Past Socioeconomic and Policy Contexts. Land 2022, 11, 1070. [Google Scholar] [CrossRef]
- Yuan, Z.; Zhou, L.; Sun, D.; Hu, F. Impacts of Urban Expansion on the Loss and Fragmentation of Cropland in the Major Grain Production Areas of China. Land 2022, 11, 130. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, Y. Spatio-Temporal Variation and Driving Forces of Land-Use Change from 1980 to 2020 in Loess Plateau of Northern Shaanxi, China. Land 2021, 10, 982. [Google Scholar] [CrossRef]
- Ouyang, L.; Wang, Z.; Jia, M.; Mao, D.; Liu, M.; Ren, C.; Man, W. Spatial pattern analysis on quantity and quality of cultivated land in mid-west Jilin province based on remote sensing. Trans. Chin. Soc. Agric. Eng. 2016. [Google Scholar] [CrossRef]
- Ramankutty, N.; Foley, J.A.; Norman, J.; McSweeney, K. The global distribution of cultivable lands: Current patterns and sensitivity to possible climate change. Glob. Ecol. Biogeogr. 2002, 11, 377–392. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Campbell, J.B.; Shao, Y. Spatial and temporal dimensions of agricultural land use changes, 2001–2012, East-Central Iowa. Agric. Syst. 2016, 148, 149–158. [Google Scholar] [CrossRef]
- Zhao, W. Arable land change dynamics and their driving forces for the major countries of the world. Acta Ecol. Sin. 2012, 32, 6452–6462. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.; Wu, W.; Xiang, M.C.; Di Long, Y.; Song, Q.; Liu, Y.; Lu, M.; Yu, Q. Spatio-Temporal Changes in Global Cultivated Land over 2000–2010. Sci. Agric. Sin. 2018, 51, 1091–1105. [Google Scholar]
- Ramankutty, N.; Foley, J.A. Characterizing patterns of global land use: An analysis of global croplands data. Glob. Biogeochem. Cycles 1998, 12, 667–685. [Google Scholar] [CrossRef]
- Yao, Z.; Zhang, L.; Tang, S.; Li, X.; Hao, T. The basic characteristics and spatial patterns of global cultivated land change since the 1980s. J. Geogr. Sci. 2017, 27, 771–785. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Yu, Q.; Hu, Q.; Xiang, M.; Zhou, Q.; Wu, W. Cultivated land change in the Belt and Road Initiative region. J. Geogr. Sci. 2018, 28, 1580–1594. [Google Scholar] [CrossRef] [Green Version]
- Ye, S.; Song, C.; Shen, S.; Gao, P.; Cheng, C.; Cheng, F.; Wan, C.; Zhu, D. Spatial pattern of arable land-use intensity in China. Land Use Policy 2020, 99, 104845. [Google Scholar] [CrossRef]
- Arowolo, A.O.; Deng, X. Land use/land cover change and statistical modelling of cultivated land change drivers in Nigeria. Reg. Environ. Change 2017, 18, 247–259. [Google Scholar] [CrossRef]
- Wei, X.; Wang, S.; Yuan, X.; Wang, X.; Zhang, B. Spatial and temporal changes and its variation of cultivated land quality in Shaanxi Province. Trans. Chin. Soc. Agric. Eng. 2018, 34, 240–248. [Google Scholar]
- Wang, Y.; Wang, J. Spatio-temporal Differentiation and Influencing Mechanism of Cultivated Land Use in Beijing Tianjin Hebei Region. Trans. Chin. Soc. Agric. Mach. 2022, 53, 192–197+214. [Google Scholar]
- Yu, D.; Hu, S.; Tong, L.; Xia, C. Spatiotemporal Dynamics of Cultivated Land and Its Influences on Grain Production Potential in Hunan Province, China. Land 2020, 9, 510. [Google Scholar] [CrossRef]
- Ye, S.; Ren, S.; Song, C.; Cheng, C.; Shen, S.; Yang, J.; Zhu, D. Spatial patterns of county-level arable land productive-capacity and its coordination with land-use intensity in mainland China. Agric. Ecosyst. Environ. 2021, 326, 107757. [Google Scholar] [CrossRef]
- Sun, Y.; Li, Y.; Gao, J.; Yan, Y. Spatial and Temporal Patterns of Urban Land Use Structure in Small Towns in China. Land 2022, 11, 1262. [Google Scholar] [CrossRef]
- Xiang, H.; Ma, Y.; Zhang, R.; Chen, H.; Yang, Q. Spatio-Temporal Evolution and Future Simulation of Agricultural Land Use in Xiangxi, Central China. Land 2022, 11, 587. [Google Scholar] [CrossRef]
- Kühling, I.; Broll, G.; Trautz, D. Spatio-temporal analysis of agricultural land-use intensity across the Western Siberian grain belt. Sci. Total. Environ. 2016, 544, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Zhang, H.; Zhao, R.; Wu, K.; Li, X.; Niu, B.; Li, J. Study on cultivated land quality evaluation from the perspective of farmland ecosystems. Ecol. Indic. 2022, 139. [Google Scholar] [CrossRef]
- Zhou, K.; Wang, X.; Wang, Z.; Hu, Y. Systematicity and Stability Analysis of Land Use Change—Taking Jinan, China, as an Example. Land 2022, 11, 1045. [Google Scholar] [CrossRef]
- Zhao, R.; Wu, K.; Li, X.; Gao, N.; Yu, M. Discussion on the Unified Survey and Evaluation of Cultivated Land Quality at County Scale for China’s 3rd National Land Survey: A Case Study of Wen County, Henan Province. Sustainability 2021, 13, 2513. [Google Scholar] [CrossRef]
- Liang, J.; Zheng, H.; Cai, Z.; Zhou, Y.; Xu, Y. Evaluation of Cultivated Land Quality in Semiarid Sandy Areas: A Case Study of the Horqin Zuoyihou Banner. Land 2022, 11, 1457. [Google Scholar] [CrossRef]
- Chen, X.; Tang, H.; Wu, Y.Z.; Cui, J. Analysis on Process and Difference of Cropland Dynamics in Anji County of Zhejiang Province. Sci. Agric. Sin. 2015, 48, 4302–4313. [Google Scholar]
- Zhang, Y.; Zhou, Z.; Huang, D.; Zhu, M.; Wu, Y.; Sun, J. Spatio-temporal evolution of cultivated land and analysis of influence factors in karst mountainous areas. Trans. Chin. Soc. Agric. Eng. 2020, 36, 266–275. [Google Scholar]
- Luo, G.; Wang, S.; Li, Y.; Bai, X. Spatio-temporal dynamics and ecological service function assessment of slope farmland in Karst areas of Guizhou Province, China. Trans. Chin. Soc. Agric. Eng. 2014, 30, 233–243. [Google Scholar]
- Chen, X.; Fan, J.; Mo, X.; Hong, H.; Zhang, P. Agriculture Development in Agriculture Oriented County Based on Territorial Function—A Case Study of Long’an County in Guangxi Zhuang Autonomous Region. Agric. Econ. 2013, 14, 790–796. [Google Scholar]
- Yu, Y.; Xu, T.; Wang, T. Outmigration Drives Cropland Decline and Woodland Increase in Rural Regions of Southwest China. Land 2020, 9, 443. [Google Scholar] [CrossRef]
- Dubovyk, O.; Menz, G.; Conrad, C.; Kan, E.; Machwitz, M.; Khamzina, A. Spatio-temporal analyses of cropland degradation in the irrigated lowlands of Uzbekistan using remote-sensing and logistic regression modeling. Environ. Monit. Assess. 2012, 185, 4775–4790. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; Peng, S.; Han, G.; Zhang, H.; He, C.; et al. Concepts and Key Techniques for 30 m Global Land Cover Mapping. Acta Geod. Et Cartogr. Sin. 2014, 43, 551–557. [Google Scholar]
- Cao, X.; Chen, X.; Zhang, W.; Liao, A.; Chen, L.; Chen, Z.; Chen, J. Global cultivated land mapping at 30 m spatial resolution. Sci. China Earth Sci. 2016, 59, 2275–2284. [Google Scholar] [CrossRef]
- Zhang, P.; Guan, W.; Liu, H.; Zhang, H.; Li, Z.; Feng, Y. Characteristics Analysis on Spatial-temporal Changes of Farmland in Luntai Artificial Oasis in Dina River Watershed of Xinjiang. Trans. Chin. Soc. Agric. Mach. 2019, 50, 291–299. [Google Scholar]
- Lou, Y.; Yin, G.; Xin, Y.; Xie, S.; Li, G.; Liu, S.; Wang, X. Recessive Transition Mechanism of Arable Land Use Based on the Perspective of Coupling Coordination of Input–Output: A Case Study of 31 Provinces in China. Land 2021, 10, 41. [Google Scholar] [CrossRef]
- Xia, L.; Liu, J.; Wei, F.; Xu, Z.; Long, X.; Zhang, Y. Spatiotemporal pattern change of cultivated land in Weibei Dryland of Shaanxi Province. Trans. Chin. Soc. Agric. Eng. 2021, 37, 256–264. [Google Scholar]
- Li, X.; Wu, K.; Zhao, R.; Liu, Y.; Li, X.; Yang, Q. Spatial Analysis of Cultivated Land Productivity and Health Condition: A Case Study of Gaoping City, China. Land 2021, 10, 1296. [Google Scholar] [CrossRef]
- Ye, S.; Song, C.; Cheng, F.; Zhang, L.; Cheng, C.; Zhang, C.; Wang, S. Cultivated land health-productivity comprehensive evaluation and its pilot evaluation in China. Trans. Chin. Soc. Agric. Eng. 2019, 35, 66–78. [Google Scholar]
- Zhang, X.; Wu, K.; Zhao, R.; Yang, Q. Evaluation of Healthy Productivity of Cultivated Land at County Scale. Res. Soil Water Conserv. 2020, 27, 294–300. [Google Scholar]
- Ma, R.; Ma, R.; Han, D.; Yun, W. Construction of cultivated land quality evaluation system in provincial level based on multilevel indicators. Trans. Chin. Soc. Agric. Eng. 2018, 34, 249–257. [Google Scholar]
- Shi, Y.; Ai, D.; Sun, Y.; Hao, J. Cultivated land quality evaluation and management zoning considering the attribute of “resource-asset-capital” in mountainous areas of Yunnan Province of China. Trans. Chin. Soc. Agric. Eng. 2021, 37, 277–286. [Google Scholar]
- Tang, F.; Xu, L.; Zhang, P.; Zhang, G.; Fu, M.; Zhang, J. Suitability evaluation and priority area delineation of high standard basic farmland construction at county level. Trans. Chin. Soc. Agric. Eng. 2019, 35, 242–251. [Google Scholar]
- Li, C.; Zhang, C.; Yu, T.; Liu, X.; Yang, Y.; Hou, Q.; Yang, Z.; Ma, X.; Wang, L. Use of artificial neural network to evaluate cadmium contamination in farmland soils in a karst area with naturally high background values. Environ. Pollut. 2022, 304. [Google Scholar] [CrossRef]
- Sheng, Y.; Liu, W.; Xu, H.; Gao, X. The Spatial Distribution Characteristics of the Cultivated Land Quality in the Diluvial Fan Terrain of the Arid Region: A Case Study of Jimsar County, Xinjiang, China. Land 2021, 10, 896. [Google Scholar] [CrossRef]
- Ye, S.; Song, C.; Kuzyakov, Y.; Cheng, F.; Kong, X.; Feng, Z.; Gao, P. Preface: Arable Land Quality: Observation, Estimation, Optimization, and Application. Land 2022, 11, 947. [Google Scholar] [CrossRef]
- Zhao, R.; Li, J.; Wu, K.; Kang, L. Cultivated Land Use Zoning Based on Soil Function Evaluation from the Perspective of Black Soil Protection. Land 2021, 10, 605. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, Y.; Huang, W.; Yin, J.; Niu, J. Spatio-Temporal Evolution and Driving Mechanisms of Rural Residentials from the Perspective of the Human-Land Relationship: A Case Study from Luoyang, China. Land 2022, 11, 1216. [Google Scholar] [CrossRef]
- Luo, G.; Wang, B.; Li, R.; Luo, D.; Wei, C. Study of the Agglomeration Characteristics of Cultivated Land in Underdeveloped Mountainous Areas Based on Spatial Auto-Correlation: A Case of Pengshui County, Chongqing, China. Land 2022, 11, 854. [Google Scholar] [CrossRef]
- Gao, X.; Chen, J.; Liu, L.; Han, F.; Nie, C.; Liu, D. Spatial distribution characteristics and construction occupancy zoning of cultivated land quality in Xiongan New Area. Trans. Chin. Soc. Agric. Eng. 2018, 34, 1–7. [Google Scholar]
- Li, S.; Yun, W.; Jin, J.; Wang, J.; Li, H.; Chen, Y. Ecosystem Health Assessment and Temporal-spatial Variation Analysis of Shen Wu Irrigation Area in Hetao Irrigation District, Inner Mongolia. Areal Res. Dev. 2018, 37, 128–133. [Google Scholar]
- Chen, H.; Zhu, D.; Yun, W.; Yang, L.; Tang, H.; Tang, C. Analysis on cultivated land fragmentation and spatial agglomeration pattern in Jiaxing city. Trans. Chin. Soc. Agric. Eng. 2012, 28, 235–242. [Google Scholar]
- Guan, X.; Jin, X.; Pan, Q.; Zhou, Y. Analysis on spatial difference of newly increased farmland by land consolidation in China at county level. Trans. Chin. Soc. Agric. Eng. 2013, 29, 226–233. [Google Scholar]
- Li, W.; Zhu, C.; Wang, H.; Xu, B. Multi-scale spatial autocorrelation analysis of cultivated land quality in Zhejiang province. Trans. Chin. Soc. Agric. Eng. 2016, 32, 239–245+315. [Google Scholar]
Decision-Making Level | Target Level | Criterion Level | Indicator Level | Selection Basis | Effect |
---|---|---|---|---|---|
Cultivated land Quality | Natural Factors | Terrain topography | Average slope | Field flatness | − |
Soil conditions | Effective soil layer thickness | Crop root growth | + | ||
Surface soil texture | Soil permeability | + | |||
Organic matter content | Soil fertility | + | |||
Soil PH | Soil acidity and alkalinity | ||||
Socio-economic factors | Infrastructure conditions | Irrigation guarantee rate | Drought resistance | + | |
Drainage conditions | Drainage capacity | + | |||
Density of field roads | Field accessibility | + | |||
Farming Conveniences | Cultivation distance | Ease of management | − | ||
Patch size | Mechanizable degree | + | |||
Patch regularity (D11) | Arable potential | − | |||
Ecological factors | Ecological quality | Ecological land coverage | Ecological adaptive capacity | + | |
Soil erodibility K value | Soil and water conservation capacity | − | |||
Environmental conditions | Soil pollution level | Soil heavy metal pollution | − |
Evaluation Indicators | Score | Weights | ||||
---|---|---|---|---|---|---|
100 | 80 | 60 | 40 | 20 | ||
Average slope | ≤2 | (2, 5] | (5, 8] | (8, 15] | >15 | 0.16 |
Effective soil layer thickness | ≥100 | [70, 100) | [50, 70) | [25, 50] | <25 | 0.07 |
Surface soil texture | Loam | Sandy loam | Clay | Sandy soil | Gravelly soil | 0.09 |
Organic matter content | ≥40 | [20, 40) | [10, 20) | [6, 10) | <6 | 0.12 |
Soil PH | [6.5, 7.5) | (4.5, 6.5) | [7.5, 8.5) | ≤4.5 | ≥8.5 | 0.05 |
Irrigation guarantee rate | 1 | 2 | 3 | 0 | 4 | 0.11 |
Drainage conditions | 1 | 2 | 3 | 0 | 4 | 0.04 |
Density of field roads | [0.85, 1) | [0.60, 0.85) | [0.45, 0.65) | [0.20, 0.45) | <0.2 | 0.05 |
Cultivation distance | [0, 0.2] | (0.2, 0.5] | (0.5, 1] | (1, 1.8] | >1.8 | 0.06 |
Patch size | ≥100 | [50, 100) | [10, 50) | [5, 10) | <5 | 0.03 |
Patch regularity | ≤1.25 | (1.25, 1.8] | (1.8, 2.5] | (2.5, 3.7] | >3.7 | 0.02 |
Ecological land coverage | ≥0.7 | [0.5, 0.7) | [0.3, 0.5) | [0.17, 0.3) | <0.17 | 0.04 |
Soil erodibility K value | ≤0.0024 | (0.0024, 0.0026] | (0.0026, 0.0028] | (0.0028, 0.003] | >0.003 | 0.06 |
Soil pollution level | 0 | Mild | Moderate | 0 | Severe | 0.10 |
Land Use Type | Area Change | Land-Use Dynamicity (%) | |||||
---|---|---|---|---|---|---|---|
2010 | 2020 | Increase or Decrease | |||||
Area (Hectares) | Proportion (%) | Area (Hectares) | Proportion (%) | Area (Hectares) | Proportion (%) | ||
Paddy land | 12,907.49 | 5.60 | 11,194.31 | 4.86 | −1713.18 | −0.74 | −1.33% |
Irrigable land | 20.47 | 0.01 | 69.20 | 0.03 | 48.72 | 0.02 | 23.80% |
Dry land | 54,863.27 | 23.80 | 35,630.73 | 15.45 | −19,232.53 | −8.34 | −3.51% |
Cultivated land (subtotal) | 67,791.23 | 29.40 | 46,894.24 | 20.34 | −20,896.99 | −9.06 | −3.08% |
Orchard | 16,654.31 | 7.22 | 19,028.77 | 8.25 | 2374.47 | 1.03 | 1.43% |
Other garden land | 264.72 | 0.11 | 4009.86 | 1.74 | 3745.14 | 1.62 | 141.48% |
Orchard (subtotal) | 16,919.03 | 7.34 | 23,038.64 | 9.99 | 6119.61 | 2.65 | 3.62% |
Forest land | 104,805.18 | 45.46 | 14,0325.43 | 60.86 | 35,520.25 | 15.41 | 3.39% |
Grass land | 2650.09 | 1.15 | 1157.50 | 0.50 | −1492.59 | −0.65 | −5.63% |
Urban land | 1392.58 | 0.60 | 1975.56 | 0.86 | 582.98 | 0.25 | 4.19% |
Rural residential land | 3869.87 | 1.68 | 3325.77 | 1.44 | −544.09 | −0.24 | −1.41% |
Other construction land | 3256.19 | 1.41 | 5664.84 | 2.46 | 2408.65 | 1.04 | 7.40% |
Water and water conservancy establishment land | 5638.54 | 2.45 | 6970.81 | 3.02 | 1332.27 | 0.58 | 2.36% |
Other lands | 24,238.41 | 10.51 | 1208.32 | 0.52 | −23,030.09 | −9.99 | −9.50% |
Year | |||||
---|---|---|---|---|---|
2010 | 36,473,065.06 | 2,556,113.04 | 24,960.18 | 13,206.77 | 97.50 |
2020 | 36,469,780.12 | 2,556,057.73 | 24,475.51 | 13,150.12 | 99.36 |
Difference | −3284.94 | −55.31 | −484.67 | −56.65 | 1.85 |
Cultivated Land Grade | Cultivated Land Area and Its Proportion | |||||
---|---|---|---|---|---|---|
2010 | 2020 | 2020–2010 | ||||
Area (Hectares) | Proportion (%) | Area (Hectares) | Proportion (%) | Area (Hectares) | Proportion (%) | |
Grade 1 | 11,879.80 | 17.52% | 11,301.69 | 24.10% | −578.11 | 2.77% |
Grade 2 | 13,993.28 | 20.64% | 13,590.35 | 28.98% | −402.93 | 1.93% |
Grade 3 | 20,428.58 | 30.13% | 14,120.60 | 30.11% | −6307.98 | 30.19% |
Grade 4 | 14,545.08 | 21.46% | 6589.68 | 14.05% | −7955.41 | 38.07% |
Grade 5 | 5825.54 | 8.59% | 1244.14 | 2.65% | −4581.40 | 21.92% |
Grade 6 | 1118.95 | 1.65% | 47.78 | 0.10% | −1071.17 | 5.13% |
Total | 67,791.23 | 100.00% | 46,894.24 | 100.00% | −20,896.99 | 100.00% |
Evaluation Objectives | Evaluation Factors | Evaluation Indicators | 2010 | 2020 | Percentage of Change |
---|---|---|---|---|---|
Cultivated land Quality | Natural Factors | Average slope | 14.94 | 15.21 | 1.81% |
Effective soil layer thickness | 6.93 | 6.93 | 0.00% | ||
Surface soil texture | 8.13 | 8.19 | 0.74% | ||
Organic matter content | 9.03 | 9.96 | 10.30% | ||
Soil PH | 3.96 | 4.43 | 11.87% | ||
Subtotal | 42.97 | 44.72 | 4.07% | ||
Socio-economic Factors | Irrigation guarantee rate | 5.14 | 5.41 | 5.25% | |
Drainage conditions | 4.29 | 4.29 | 0.00% | ||
Density of field roads | 1.03 | 1.03 | 0.00% | ||
Cultivation distance | 5.21 | 5.11 | −1.92% | ||
Patch size | 1.12 | 0.87 | −22.32% | ||
Patch regularity | 1.47 | 1.64 | 11.56% | ||
Subtotal | 18.33 | 17.55 | 0.49% | ||
Ecological Factors | Ecological land coverage | 2.05 | 2.57 | 25.37% | |
Soil erodibility K value | 6.09 | 6.09 | 0.00% | ||
Soil pollution level | 6.61 | 6.31 | −4.54% | ||
Subtotal | 14.74 | 14.97 | 1.56% | ||
Total | 75.98 | 78.04 | 2.71% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, J.; Yun, W.; Wu, K.; Li, S.; Liu, B.; Lu, Q. Spatio-Temporal Analysis of Cultivated Land from 2010 to 2020 in Long’an County, Karst Region, China. Land 2023, 12, 515. https://doi.org/10.3390/land12020515
Dong J, Yun W, Wu K, Li S, Liu B, Lu Q. Spatio-Temporal Analysis of Cultivated Land from 2010 to 2020 in Long’an County, Karst Region, China. Land. 2023; 12(2):515. https://doi.org/10.3390/land12020515
Chicago/Turabian StyleDong, Jianhui, Wenju Yun, Kening Wu, Shaoshuai Li, Bingrui Liu, and Qiaoyuan Lu. 2023. "Spatio-Temporal Analysis of Cultivated Land from 2010 to 2020 in Long’an County, Karst Region, China" Land 12, no. 2: 515. https://doi.org/10.3390/land12020515
APA StyleDong, J., Yun, W., Wu, K., Li, S., Liu, B., & Lu, Q. (2023). Spatio-Temporal Analysis of Cultivated Land from 2010 to 2020 in Long’an County, Karst Region, China. Land, 12(2), 515. https://doi.org/10.3390/land12020515