Cost-Effectiveness of Nature-Based Solutions under Different Implementation Scenarios: A National Perspective for Italian Urban Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Input Data
2.2. Assessing the Costs of Nature-Based Solutions
2.3. Scenario Building
2.4. Calculating Costs and Effectiveness for Each Scenario
3. Results
3.1. Costs Assessment
3.2. Nature-Based Solutions Selected for Each Scenario
3.3. Comparison among Scenarios
4. Discussions
4.1. Characteristics of Urban Areas and Implication for Nature-Based Solutions Implementation
4.2. Variation in Costs and Effectiveness among Scenarios
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Nature Based Solutions | Performance Score (PS/m2) | Inv Cost (EUR/m2) | Ann Inv Costs (EUR/m2)/7yr | Maint. Costs (EUR/m2/yr) 2.5% | Costs (EUR/m2/yr) | ||||||
I-NBS | AIR | CLIM | WAT | AIR-CLIM | AIR-WAT | CLIM-WAT | ALL | ||||
Street trees | 0.8 | 0.9 | 0.4 | 0.8 | 0.6 | 0.7 | 0.7 | 125 | 17.9 | 3.1 | 21.0 |
Extensive green roof | 0.5 | 0.9 | 0.6 | 0.7 | 0.5 | 0.7 | 0.7 | 110 | 15.7 | 2.8 | 18.5 |
Raingardens | 0.4 | 0.3 | 0.8 | 0.4 | 0.6 | 0.6 | 0.5 | 80 | 11.4 | 2.0 | 13.4 |
Vegetated grid pave | 0.2 | 0.5 | 0.8 | 0.3 | 0.5 | 0.6 | 0.5 | 115 | 16.4 | 2.9 | 19.3 |
Private gardens | 0.5 | 1.0 | 0.8 | 0.8 | 0.6 | 0.9 | 0.8 | 300 | 42.9 | 7.5 | 50.4 |
Pocket garden/park | 0.6 | 0.6 | 0.8 | 0.6 | 0.7 | 0.7 | 0.7 | 210 | 30.0 | 5.3 | 35.3 |
Semi-intensive green roof | 0.7 | 0.8 | 1.0 | 0.8 | 0.8 | 0.9 | 0.8 | 310 | 44.3 | 7.8 | 52.0 |
Intensive green roof | 0.7 | 0.9 | 0.8 | 0.8 | 0.8 | 0.9 | 0.8 | 310 | 44.3 | 7.8 | 52.0 |
Swales | 0.6 | 0.2 | 0.9 | 0.4 | 0.7 | 0.5 | 0.6 | 90 | 12.9 | 2.3 | 15.1 |
Green faCade | 1.0 | 1.0 | 0.2 | 1.0 | 0.6 | 0.6 | 0.7 | 470 | 67.1 | 11.8 | 78.9 |
Vegetated pergola | 0.5 | 0.8 | 0.3 | 0.6 | 0.4 | 0.5 | 0.5 | 600 | 85.7 | 15.0 | 100.7 |
Green wall system | 1.0 | 0.8 | 0.0 | 0.9 | 0.5 | 0.4 | 0.6 | 700 | 100.0 | 17.5 | 117.5 |
Vertical mobile garden | 1.0 | 0.9 | 0.0 | 1.0 | 0.5 | 0.5 | 0.6 | 850 | 121.4 | 21.3 | 142.7 |
P-NBS | |||||||||||
(Wet) Retention Pond | 0.8 | 0.6 | 1.0 | 0.7 | 0.9 | 0.8 | 0.8 | 193 | 27.5 | 4.8 | 32.3 |
Infiltration basin | 0.8 | 0.8 | 1.0 | 0.8 | 0.9 | 0.9 | 0.9 | 183 | 26.1 | 4.6 | 30.6 |
Green Corridors | 1.0 | 1.0 | 0.7 | 1.0 | 0.8 | 0.8 | 0.9 | 230 | 32.9 | 5.8 | 38.6 |
Large urban park | 1.0 | 1.0 | 0.9 | 1.0 | 1.0 | 1.0 | 1.0 | 225 | 32.1 | 5.6 | 37.8 |
Community garden | 0.3 | 0.5 | 0.8 | 0.4 | 0.6 | 0.7 | 0.6 | 160 | 22.9 | 4.0 | 26.9 |
Heritage garden | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 300 | 42.9 | 7.5 | 50.4 |
Urban forest | 1.0 | 0.9 | 0.8 | 0.9 | 0.9 | 0.9 | 0.9 | 225 | 32.1 | 5.6 | 37.8 |
Urban orchards | 0.3 | 0.2 | 0.5 | 0.3 | 0.4 | 0.3 | 0.3 | 135 | 19.3 | 3.4 | 22.7 |
Constructed wetlands | 0.0 | 0.3 | 1.0 | 0.1 | 0.5 | 0.6 | 0.4 | 750 | 107.1 | 18.8 | 125.9 |
References
- World Economic Forum. Scaling Investments in Nature—The Next Critical Frontier for Private Sector Leadership; World Economic Forum: Cologny, Switzerland, 2022. [Google Scholar]
- Raymond, C.M.; Frantzeskaki, N.; Kabisch, N.; Berry, P.; Breil, M.; Nita, M.R.; Geneletti, D.; Calfapietra, C. A Framework for Assessing and Implementing the Co-Benefits of Nature-Based Solutions in Urban Areas. Environ. Sci. Policy 2017, 77, 15–24. [Google Scholar] [CrossRef]
- Lhotka, O.; Kyselý, J. The 2021 European Heat Wave in the Context of Past Major Heat Waves. Earth Space Sci. 2022, 2003. [Google Scholar] [CrossRef]
- Kornhuber, K. Accelerated Western European Heatwave Trends Linked to More-Persistent Double Jets over Eurasia. Nat. Commun. 2022, 13, 1351. [Google Scholar] [CrossRef]
- Reguero, B.G.; Beck, M.W.; Bresch, D.N.; Calil, J.; Meliane, I. Comparing the Cost Effectiveness of Nature-Based and Coastal Adaptation: A Case Study from the Gulf Coast of the United States. PLoS ONE 2018, 13, e0192132. [Google Scholar] [CrossRef] [Green Version]
- European Union. The Vital Role of Nature-Based Solutions in a Nature Positive Economy; European Union: Luxembourg, 2022. [Google Scholar]
- European Union. Carbon Economy—Studies on Support to Research and Innovation Policy in the Area of Bio-Based Products and Services; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar]
- Palahí, M.; Pantsar, M.; Costanza, R.; Kubiszewski, I.; Potočnik, J.; Stuchtey, M.; Nasi, R.; Lovins, H.; Giovannini, E.; Fioramonti, L.; et al. Investing in Nature as the True Engine of Our Economy: A 10-Point Action Plan for a Circular Bioeconomy of Wellbeing; European Forest Institute: Joensuu, Finland, 2020; ISBN 978-952-5980-92-9. [Google Scholar]
- UNEP; IUCN. Nature-Based Solutions for Climate Change Mitigation; UNEP: Nairobi, Kenya; IUCN: Gland, Switzerland, 2021. [Google Scholar]
- Cohen-Shacham, E.; Andrade, A.; Dalton, J.; Dudley, N.; Jones, M.; Kumar, C.; Maginnis, S.; Maynard, S.; Nelson, C.R.; Renaud, F.G.; et al. Core Principles for Successfully Implementing and Upscaling Nature-Based Solutions. Environ. Sci. Policy 2019, 98, 20–29. [Google Scholar] [CrossRef]
- European Commission. Towards an EU Research and Innovation Policy Agenda for Nature-Based Solutions & Re-Naturing Cities; Publications Office of the European Union: Luxembourg, 2015. [Google Scholar] [CrossRef]
- Masiero, M.; Biasin, A.; Amato, G.; Malaggi, F.; Pettenella, D.; Nastasio, P.; Anelli, S. Urban Forests and Green Areas as Nature-Based Solutions for Brownfield Redevelopment: A Case Study from Brescia Municipal Area (Italy). Forests 2022, 13, 444. [Google Scholar] [CrossRef]
- Venter, Z.S.; Barton, D.N.; Martinez-Izquierdo, L.; Langemeyer, J.; Baró, F.; McPhearson, T. Interactive Spatial Planning of Urban Green Infrastructure—Retrofitting Green Roofs Where Ecosystem Services Are Most Needed in Oslo. Ecosyst. Serv. 2021, 50, 101314. [Google Scholar] [CrossRef]
- Eggermont, H.; Balian, E.; Azevedo, J.M.N.; Beumer, V.; Brodin, T.; Claudet, J.; Fady, B.; Grube, M.; Keune, H.; Lamarque, P.; et al. Nature-Based Solutions: New Influence for Environmental Management and Research in Europe. Gaia 2015, 24, 243–248. [Google Scholar] [CrossRef]
- Snep, R.P.H.; Voeten, J.G.W.F.; Mol, G.; Van Hattum, T. Nature Based Solutions for Urban Resilience: A Distinction Between No-Tech, Low-Tech and High-Tech Solutions. Front. Environ. Sci. 2020, 8, 599060. [Google Scholar] [CrossRef]
- Chausson, A.; Turner, B.; Seddon, D.; Chabaneix, N.; Girardin, C.A.J.; Kapos, V.; Key, I.; Roe, D.; Smith, A.; Woroniecki, S.; et al. Mapping the Effectiveness of Nature-based Solutions for Climate Change Adaptation. Glob. Chang. Biol. 2020, 26, 6134–6155. [Google Scholar] [CrossRef]
- Balzan, M.V.; Zulian, G.; Maes, J.; Borg, M. Assessing Urban Ecosystem Services to Prioritise Nature-Based Solutions in a High-Density Urban Area. Nat.-Based Solut. 2021, 1, 100007. [Google Scholar] [CrossRef]
- Maes, J.; Jacobs, S. Nature-Based Solutions for Europe’s Sustainable Development. Conserv. Lett. 2017, 10, 121–124. [Google Scholar] [CrossRef] [Green Version]
- Kooijman, E.D.; McQuaid, S.; Rhodes, M.L.; Collier, M.J.; Pilla, F. Innovating with Nature: From Nature-Based Solutions to Nature-Based Enterprises. Sustainability 2021, 13, 1263. [Google Scholar] [CrossRef]
- IUCN. IUCN Global Standard for Nature-Based Solutions: A User-Friendly Framework for the Verification, Design and Scaling up of NbS, 1st ed.; IUCN, International Union for Conservation of Nature: Gland, Switzerland, 2020. [Google Scholar]
- Kumar, P.; Debele, S.E.; Sahani, J.; Rawat, N.; Marti-Cardona, B.; Alfieri, S.M.; Basu, B.; Basu, A.S.; Bowyer, P.; Charizopoulos, N.; et al. Nature-Based Solutions Efficiency Evaluation against Natural Hazards: Modelling Methods, Advantages and Limitations. Sci. Total Environ. 2021, 784, 147058. [Google Scholar] [CrossRef] [PubMed]
- Seddon, N.; Chausson, A.; Berry, P.; Girardin, C.A.J.; Smith, A.; Turner, B. Understanding the Value and Limits of Nature-Based Solutions to Climate Change and Other Global Challenges. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190120. [Google Scholar] [CrossRef] [Green Version]
- Wild, T.; Bulkeley, H.; Naumann, S.; Vojinovic, Z.; Calfapietra, C.; Whiteoak, K. Nature-Based Solutions: State of the Art in EU-Funded Projects; Publications Office of the European Union: Luxembourg, 2020; p. 308. [Google Scholar] [CrossRef]
- Faivre, N.; Fritz, M.; Freitas, T.; de Boissezon, B.; Vandewoestijne, S. Nature-Based Solutions in the EU: Innovating with Nature to Address Social, Economic and Environmental Challenges. Environ. Res. 2017, 159, 509–518. [Google Scholar] [CrossRef]
- Larrey-Lassalle, P.; Decker, S.A.; Perfido, D.; Naneci, S.; Rugani, B. Life Cycle Assessment Applied to Nature-Based Solutions: Learnings, Methodological Challenges, and Perspectives from a Critical Analysis of the Literature. Land 2022, 11, 649. [Google Scholar] [CrossRef]
- Hepburn, C.; O’Callaghan, B.; Stern, N.; Stiglitz, J.; Zenghelis, D. Will COVID-19 Fiscal Recovery Packages Accelerate or Retard Progress on Climate Change? Oxf. Rev. Econ. Policy 2020, 36, S359–S381. [Google Scholar] [CrossRef]
- Schröter, B.; Hack, J.; Hüesker, F.; Kuhlicke, C.; Albert, C. Beyond Demonstrators—Tackling Fundamental Problems in Amplifying Nature-Based Solutions for the Post-COVID-19 World. NPJ Urban Sustain. 2022, 2, 4. [Google Scholar] [CrossRef]
- Di Pirro, E.; Mendes, R.; Fidélis, T.; Sallustio, L.; Roebeling, P.; Marchetti, M.; Lasserre, B. The Embeddedness of Nature-Based Solutions in the Recovery and Resilience Plans as Multifunctional Approaches to Foster the Climate Transition: The Cases of Italy and Portugal. Land 2022, 11, 1254. [Google Scholar] [CrossRef]
- Jia, H.; Wang, Z.; Zhen, X.; Clar, M.; Yu, S.L. China’s Sponge City Construction: A Discussion on Technical Approaches. Front. Environ. Sci. Eng. 2017, 11, 18. [Google Scholar] [CrossRef]
- Kang, S.; Kroeger, T.; Shemie, D.; Echavarria, M.; Montalvo, T.; Bremer, L.L.; Bennett, G.; Barreto, S.R.; Bracale, H.; Calero, C.; et al. Investing in Nature-Based Solutions: Cost Profiles of Collective-Action Watershed Investment Programs. Ecosyst. Serv. 2023, 59, 101507. [Google Scholar] [CrossRef]
- Ciasca, B.S.; Klemz, C.; Raepple, J.; Kroeger, T.; Acosta, E.A.P.; Cho, S.J.; Barreto, S.; Bracale, H.; Cesário, F. Economic Cost of Drought and Potential Benefits of Investing in Nature-Based Solutions: A Case Study in São Paulo, Brazil. Water 2023, 15, 466. [Google Scholar] [CrossRef]
- McDonald, R.; Aljabar, L.; Aubuchon, C.; Birnbaum, H.; Chandler, C.; Toomey, B.; Daley, J.; Jimenez, W.; Trieschman, E.; Paque, J.; et al. Funding Trees for Health. An Analysis of Finance and Policy Actions to Enable Tree Planting for Public Health; The Nature Conservancy: Arlington County, VA, USA, 2017; Volume 36. [Google Scholar]
- La Rosa, D.; Privitera, R. Innovation in Urban and Regional Planning. In Lecture Notes in Civil Engineering, Proceeding; La Rosa, D., Privitera, R., Eds.; Springer International Publishing: Cham, Switzerland, 2022; Volume 242, ISBN 978-3-030-96984-4. [Google Scholar]
- Le Coent, P.; Graveline, N.; Altamirano, M.A.; Arfaoui, N.; Benitez-Avila, C.; Biffin, T.; Calatrava, J.; Dartee, K.; Douai, A.; Gnonlonfin, A.; et al. Is-It Worth Investing in NBS Aiming at Reducing Water Risks? Insights from the Economic Assessment of Three European Case Studies. Nat.-Based Solut. 2021, 1, 100002. [Google Scholar] [CrossRef]
- Crauderueff, R.; Margolis, S.; Tanikawa, S. Greening Vacant Lots: Planning and Implementation Strategies. A Report Prepared for The Nature Conservancy as Part of the NatLab Collaboration; The Nature Conservancy: New York, NY, USA, 2012. [Google Scholar]
- Babí Almenar, J.; Petucco, C.; Sonnemann, G.; Geneletti, D.; Elliot, T.; Rugani, B. Modelling the Net Environmental and Economic Impacts of Urban Nature-Based Solutions by Combining Ecosystem Services, System Dynamics and Life Cycle Thinking: An Application to Urban Forests. Ecosyst. Serv. 2023, 60, 101506. [Google Scholar] [CrossRef]
- Shahab, S. Transaction Costs in Planning Literature: A Systematic Review. J. Plan. Lit. 2022, 37, 403–414. [Google Scholar] [CrossRef]
- Vallecillo, S.; La Notte, A.; Zulian, G.; Ferrini, S.; Maes, J. Ecosystem Services Accounts: Valuing the Actual Flow of Nature-Based Recreation from Ecosystems to People. Ecol. Modell. 2019, 392, 196–211. [Google Scholar] [CrossRef]
- Genevieve, G.; Knatz, G.; Hutson, N.; Sys, C.; Vanelslander, T.; Carlan, V. Decosion-Making for Maritime Innovation Investments: The Significance of Cost Benefit and Cost Effectiveness Analysis; University of Antwerp: Antwerp, Belgium, 2016. [Google Scholar]
- García-Herrero, L.; Lavrnić, S.; Guerrieri, V.; Toscano, A.; Milani, M.; Cirelli, G.L.; Vittuari, M. Cost-Benefit of Green Infrastructures for Water Management: A Sustainability Assessment of Full-Scale Constructed Wetlands in Northern and Southern Italy. Ecol. Eng. 2022, 185, 106797. [Google Scholar] [CrossRef]
- Biasin, A.; Masiero, M.; Amato, G.; Pettenella, D. Nature-Based Solutions Modeling and Cost-Benefit Analysis to Face Climate Change Risks in an Urban Area: The Case of Turin (Italy). Land 2023, 12, 280. [Google Scholar] [CrossRef]
- Ghafourian, M.; Stanchev, P.; Mousavi, A.; Katsou, E. Economic Assessment of Nature-Based Solutions as Enablers of Circularity in Water Systems. Sci. Total Environ. 2021, 792, 148267. [Google Scholar] [CrossRef] [PubMed]
- Valatin, G.; Ovando, P.; Abildtrup, J.; Accastello, C.; Andreucci, M.B.; Chikalanov, A.; El Mokaddem, A.; Garcia, S.; Gonzalez-Sanchis, M.; Gordillo, F.; et al. Approaches to Cost-Effectiveness of Payments for Tree Planting and Forest Management for Water Quality Services. Ecosyst. Serv. 2022, 53, 101373. [Google Scholar] [CrossRef]
- Qiu, Y.; Schertzer, D.; Tchiguirinskaia, I. Assessing Cost-Effectiveness of Nature-Based Solutions Scenarios: Integrating Hydrological Impacts and Life Cycle Costs. J. Clean. Prod. 2021, 329, 129740. [Google Scholar] [CrossRef]
- Vail Castro, C. Optimizing Nature-Based Solutions by Combining Social Equity, Hydro-Environmental Performance, and Economic Costs through a Novel Gini Coefficient. J. Hydrol. X 2022, 16, 100127. [Google Scholar] [CrossRef]
- Qiu, S.; Yin, H.; Deng, J.; Li, M. Cost-Effectiveness Analysis of Green–Gray Stormwater Control Measures for Non-Point Source Pollution. Int. J. Environ. Res. Public Health 2020, 17, 998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, A.; Sarma, A.K.; Hack, J. Cost-Effective Optimization of Nature-Based Solutions for Reducing Urban Floods Considering Limited Space Availability. Environ. Process. 2020, 7, 297–319. [Google Scholar] [CrossRef]
- Kremer, P.; Hamstead, Z.; Haase, D.; McPhearson, T.; Frantzeskaki, N.; Andersson, E.; Kabisch, N.; Larondelle, N.; Rall, E.L.; Voigt, A.; et al. Key Insights for the Future of Urban Ecosystem Services Research. Ecol. Soc. 2016, 21, 29. [Google Scholar] [CrossRef] [Green Version]
- Brousmiche, D.; Occelli, F.; Genin, M.; Cuny, D.; Deram, A.; Lanier, C. Spatialized Composite Indices to Evaluate Environmental Health Inequalities: Meeting the Challenge of Selecting Relevant Variables. Ecol. Indic. 2020, 111, 106023. [Google Scholar] [CrossRef]
- Flacke, J.; Köckler, H. Spatial Urban Health Equity Indicators—A Framework-Based Approach Supporting Spatial Decision Making. In Proceedings of the Sustainable Development and Planning VII, Istanbul, Turkey, 19 May 2015; Köckler, H., Ed.; WIT Press: Southampton, UK; Volume 1, pp. 365–376. [Google Scholar]
- Fischer, E.M.; Schär, C. Consistent Geographical Patterns of Changes in High-Impact European Heatwaves. Nat. Geosci. 2010, 3, 398–403. [Google Scholar] [CrossRef]
- Pyrgou, A.; Santamouris, M. Increasing Probability of Heat-Related Mortality in a Mediterranean City Due to Urban Warming. Int. J. Environ. Res. Public Health 2018, 15, 1571. [Google Scholar] [CrossRef] [Green Version]
- D’Ippoliti, D.; Michelozzi, P.; Marino, C.; De’Donato, F.; Menne, B.; Katsouyanni, K.; Kirchmayer, U.; Analitis, A.; Medina-Ramón, M.; Paldy, A.; et al. The Impact of Heat Waves on Mortality in 9 European Cities: Results from the EuroHEAT Project. Environ. Health 2010, 9, 37. [Google Scholar] [CrossRef] [Green Version]
- European Environment Agency (EEA). Air Quality in Europe—2020 Report; Publications Office of the European Union: Luxembourg, 2020; ISBN 978-92-9480-292-7.
- Amato, F.; Maimone, B.; Martellozzo, F.; Nolè, G.; Murgante, B. The Effects of Urban Policies on the Development of Urban Areas. Sustainability 2016, 8, 297. [Google Scholar] [CrossRef] [Green Version]
- Sallustio, L.; De Toni, A.; Strollo, A.; Di Febbraro, M.; Gissi, E.; Casella, L.; Geneletti, D.; Munafò, M.; Vizzarri, M.; Marchetti, M. Assessing Habitat Quality in Relation to the Spatial Distribution of Protected Areas in Italy. J. Environ. Manag. 2017, 201, 129–137. [Google Scholar] [CrossRef]
- Strollo, A.; Smiraglia, D.; Bruno, R.; Assennato, F.; Congedo, L.; De Fioravante, P.; Giuliani, C.; Marinosci, I.; Riitano, N.; Munafò, M. Land Consumption in Italy. J. Maps 2020, 16, 113–123. [Google Scholar] [CrossRef]
- Munafò, M.; Salvati, L.; Zitti, M. Estimating Soil Sealing Rate at National Level—Italy as a Case Study. Ecol. Indic. 2013, 26, 137–140. [Google Scholar] [CrossRef]
- Salbitano, F.; Sanesi, G. Decree on Climate 2019. What Resources Support Forests and Silviculture in Our Cities? For.-Riv. Di Selvic. Ed Ecol. For. 2019, 16, 74–76. [Google Scholar] [CrossRef] [Green Version]
- CLC CORINE Land Cover. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (accessed on 15 September 2022).
- Di Pirro, E.; Sallustio, L.; Castellar, J.; Sgrigna, G.; Marchetti, M.; Lasserre, B. Facing Multiple Environmental Challenges through Maximizing the Co-Benefits of Nature-Based Solutions at a National Scale in Italy. Forests 2022, 13, 548. [Google Scholar] [CrossRef]
- Di Pirro, E.; Sallustio, L.; Sgrigna, G.; Marchetti, M.; Lasserre, B. Strengthening the Implementation of National Policy Agenda in Urban Areas to Face Multiple Environmental Stressors: Italy as a Case Study. Environ. Sci. Policy 2022, 129, 1–11. [Google Scholar] [CrossRef]
- ISPRA Copertura Del Suolo—Dati ISPRA-Sentinel. Available online: https://groupware.sinanet.isprambiente.it/uso-copertura-e-consumo-di-suolo/library/copertura-del-suolo/carta-di-copertura-del-suolo/copertura-del-suolo-2018-dati-ispra-sentinel (accessed on 23 September 2022).
- SOS4LIFE LIFE15 ENV/IT/000225—Final Report. Available online: https://www.sos4life.it/wp-content/uploads/SOS4Life_Final-Report-ENG_2020.pdf (accessed on 1 March 2022).
- URBAN GreenUP Technical Specifications of Valladolid Demo. Available online: https://www.urbangreenup.eu/resources/deliverables/deliverables-overview/d2-3---technical-specifications-of-valladolid-demo.kl (accessed on 1 March 2022).
- UNaLab Business Models & Financing Strategies. Deliverable 6.3. Available online: https://unalab.eu/system/files/2020-05/d63-business-models-and-financing-strategies2020-05-18.pdf (accessed on 1 March 2022).
- Monteiro, A.; Carvalho, V.; Velho, S.; Sousa, C. Assessing and Monitoring Urban Resilience Using COPD in Porto. Sci. Total Environ. 2012, 414, 113–119. [Google Scholar] [CrossRef]
- Grilo, F.; Pinho, P.; Aleixo, C.; Catita, C.; Silva, P.; Lopes, N.; Freitas, C.; Santos-Reis, M.; McPhearson, T.; Branquinho, C. Using Green to Cool the Grey: Modelling the Cooling Effect of Green Spaces with a High Spatial Resolution. Sci. Total Environ. 2020, 724, 138182. [Google Scholar] [CrossRef]
- Raymond, C.M.; Pam, B.; Breil, M.; Nita, M.R.; Kabisch, N.; de Bel, M.; Enzi, V.; Frantzeskaki, N.; Geneletti, D.; Cardinaletti, M.; et al. An Impact Evaluation Framework to Support Planning and Evaluation of Nature-Based Solutions Projects; Centre for Ecology & Hydrology: Wallingford, UK, 2017. [Google Scholar]
- European Commission. The 3 Billion Tree Planting Pledge for 2030. Available online: https://knowledge4policy.ec.europa.eu/publication/commission-staff-working-document-swd2021651-3-billion-tree-planting-pledge-2030_en (accessed on 10 May 2022).
- Seymour, F. Seeing the Forests as Well as the (Trillion) Trees in Corporate Climate Strategies. One Earth 2020, 2, 390–393. [Google Scholar] [CrossRef]
- Sarabi, S.E.; Han, Q.; Romme, A.G.L.; de Vries, B.; Wendling, L. Key Enablers of and Barriers to the Uptake and Implementation of Nature-Based Solutions in Urban Settings: A Review. Resources 2019, 8, 121. [Google Scholar] [CrossRef] [Green Version]
- Blanco, I.; Schettini, E.; Vox, G. Effects of Vertical Green Technology on Building Surface Temperature. Int. J. Des. Nat. Ecodynamics 2018, 13, 384–394. [Google Scholar] [CrossRef] [Green Version]
- Morabito, M.; Crisci, A.; Guerri, G.; Messeri, A.; Congedo, L.; Munafò, M. Surface Urban Heat Islands in Italian Metropolitan Cities: Tree Cover and Impervious Surface Influences. Sci. Total Environ. 2021, 751, 142334. [Google Scholar] [CrossRef] [PubMed]
- McPherson, E.G.; van Doorn, N.; de Goede, J. Structure, Function and Value of Street Trees in California, USA. Urban For. Urban Green. 2016, 17, 104–115. [Google Scholar] [CrossRef] [Green Version]
- Stovin, V. The Potential of Green Roofs to Manage Urban Stormwater. Water Environ. J. 2010, 24, 192–199. [Google Scholar] [CrossRef]
- Zölch, T.; Henze, L.; Keilholz, P.; Pauleit, S. Regulating Urban Surface Runoff through Nature-Based Solutions—An Assessment at the Micro-Scale. Environ. Res. 2017, 157, 135–144. [Google Scholar] [CrossRef]
- Gromaire, M.C.; Ramier, D.; Seidl, M.; Berthier, E.; Saad, M.; de Gouvello, B. Impact of Extensive Green Roofs on the Quantity and the Quality of Runoff—First Results of a Test Bench in the Paris Region. Novatech 2013, 2013, 1–10. [Google Scholar]
- Croeser, T.; Garrard, G.E.; Visintin, C.; Kirk, H.; Butt, A.; Taylor, E.; Bekessy, S.A.; Ossola, A. Finding Space for Nature in Cities: The Considerable Potential of Redundant Car Parking. NPJ Urban Sustain. 2022, 2, 27. [Google Scholar] [CrossRef]
- Fini, A.; Frangi, P.; Mori, J.; Donzelli, D.; Ferrini, F. Nature Based Solutions to Mitigate Soil Sealing in Urban Areas: Results from a 4-Year Study Comparing Permeable, Porous, and Impermeable Pavements. Environ. Res. 2017, 156, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Sallustio, L.; Quatrini, V.; Geneletti, D.; Corona, P.; Marchetti, M. Assessing Land Take by Urban Development and Its Impact on Carbon Storage: Findings from Two Case Studies in Italy. Environ. Impact Assess. Rev. 2015, 54, 80–90. [Google Scholar] [CrossRef] [Green Version]
- Di Pirro, E.; Sallustio, L.; Capotorti, G.; Marchetti, M.; Lasserre, B. A Scenario-Based Approach to Tackle Trade-Offs between Biodiversity Conservation and Land Use Pressure in Central Italy. Ecol. Modell. 2021, 448, 109533. [Google Scholar] [CrossRef]
- di Cristofaro, M.; Di Pirro, E.; Ottaviano, M.; Marchetti, M.; Lasserre, B.; Sallustio, L. Greener or Greyer? Exploring the Trends of Sealed and Permeable Spaces Availability in Italian Built-Up Areas during the Last Three Decades. Forests 2022, 13, 1983. [Google Scholar] [CrossRef]
- Oliveira, E.; Tobias, S.; Hersperger, A.M. Can Strategic Spatial Planning Contribute to Land Degradation Reduction in Urban Regions? State of the Art and Future Research. Sustainability 2018, 10, 949. [Google Scholar] [CrossRef] [Green Version]
- Cortinovis, C.; Geneletti, D. Mapping and Assessing Ecosystem Services to Support Urban Planning: A Case Study on Brownfield Regeneration in Trento, Italy. One Ecosyst. 2018, 3, e25477. [Google Scholar] [CrossRef]
- Sallustio, L.; Harfouche, A.L.; Salvati, L.; Marchetti, M.; Corona, P. Evaluating the Potential of Marginal Lands Available for Sustainable Cellulosic Biofuel Production in Italy. Socioecon. Plann. Sci. 2022, 82, 101309. [Google Scholar] [CrossRef]
- Churkina, G.; Organschi, A.; Reyer, C.P.O.; Ruff, A.; Vinke, K.; Liu, Z.; Reck, B.K.; Graedel, T.E.; Schellnhuber, H.J. Buildings as a Global Carbon Sink. Nat. Sustain. 2020, 3, 269–276. [Google Scholar] [CrossRef]
- Cortinovis, C.; Olsson, P.; Boke-Olén, N.; Hedlund, K. Scaling up Nature-Based Solutions for Climate-Change Adaptation: Potential and Benefits in Three European Cities. Urban For. Urban Green. 2022, 67, 127450. [Google Scholar] [CrossRef]
- Veerkamp, C.; Ramieri, E.; Romanovska, L.; Zandersen, M.; Förster, J.; Rogger, M.; Martinsen, L. Assessment Frameworks of Nature-Based Solutions for Climate Change Adaptation and Disaster Risk Reduction; European Topic Centre on Climate Change impacts, Vulnerability and Adaptation (ETC/CCA) Technical Paper 2021/3; European Environment Agency: Copenhagen, Denmark, 2021. [CrossRef]
- van den Bosch, M.; Ode Sang, Å. Urban Natural Environments as Nature-Based Solutions for Improved Public Health—A Systematic Review of Reviews. Environ. Res. 2017, 158, 373–384. [Google Scholar] [CrossRef]
- Barboza, E.P.; Cirach, M.; Khomenko, S.; Iungman, T.; Mueller, N.; Barrera-Gómez, J.; Rojas-Rueda, D.; Kondo, M.; Nieuwenhuijsen, M. Green Space and Mortality in European Cities: A Health Impact Assessment Study. Lancet Planet. Health 2021, 5, e718–e730. [Google Scholar] [CrossRef]
- Marchetti, M.; Palahí, M. Perspectives in Bioeconomy: Strategies, Green Deal and Covid19. For.-Riv. Di Selvic. Ed Ecol. For. 2020, 17, 52–55. [Google Scholar] [CrossRef]
- Wilkes-Allemann, J.; van der Velde, R.; Kopp, M.; Bernasconi, A.; Karaca, E.; Coleman Brantschen, E.; Cepic, S.; Tomicevic-Dubljevic, J.; Bauer, N.; Petit-Boix, A.; et al. Research Agenda—Biocities of the Future; European Forest Institute: Joensuu, Finland, 2022. [Google Scholar]
- Meerow, S.; Newell, J.P. Spatial Planning for Multifunctional Green Infrastructure: Growing Resilience in Detroit. Landsc. Urban Plan. 2017, 159, 62–75. [Google Scholar] [CrossRef]
- Cheng, Z.; Nitoslawski, S.; Konijnendijk van den Bosch, C.; Sheppard, S.; Nesbitt, L.; Girling, C. Alignment of Municipal Climate Change and Urban Forestry Policies: A Canadian Perspective. Environ. Sci. Policy 2021, 122, 14–24. [Google Scholar] [CrossRef]
- Scott, M.; Lennon, M.; Haase, D.; Kazmierczak, A.; Clabby, G.; Beatley, T. Nature-Based Solutions for the Contemporary City/Re-Naturing the City/Reflections on Urban Landscapes, Ecosystems Services and Nature-Based Solutions in Cities/Multifunctional Green Infrastructure and Climate Change Adaptation: Brownfield Greening as an Adaptation Strategy for Vulnerable Communities?/Delivering Green Infrastructure through Planning: Insights from Practice in Fingal, Ireland/Planning for Biophilic Cities: From Theory to Practice. Plan. Theory Pract. 2016, 17, 267–300. [Google Scholar] [CrossRef] [Green Version]
- Kato-Huerta, J.; Geneletti, D. A Distributive Environmental Justice Index to Support Green Space Planning in Cities. Landsc. Urban Plan. 2023, 229, 104592. [Google Scholar] [CrossRef]
- Cutter, S.L.; Burton, C.G.; Emrich, C.T. Disaster Resilience Indicators for Benchmarking Baseline Conditions. J. Homel. Secur. Emerg. Manag. 2010, 7, 1–22. [Google Scholar] [CrossRef]
- Hamel, P.; Guerry, A.D.; Polasky, S.; Han, B.; Douglass, J.A.; Hamann, M.; Janke, B.; Kuiper, J.J.; Levrel, H.; Liu, H.; et al. Mapping the Benefits of Nature in Cities with the InVEST Software. NPJ Urban Sustain. 2021, 1, 25. [Google Scholar] [CrossRef]
- Baró, F.; Haase, D.; Gómez-Baggethun, E.; Frantzeskaki, N. Mismatches between Ecosystem Services Supply and Demand in Urban Areas: A Quantitative Assessment in Five European Cities. Ecol. Indic. 2015, 55, 146–158. [Google Scholar] [CrossRef] [Green Version]
- Cortinovis, C.; Geneletti, D.; Hedlund, K. Synthesizing Multiple Ecosystem Service Assessments for Urban Planning: A Review of Approaches, and Recommendations. Landsc. Urban Plan. 2021, 213, 104129. [Google Scholar] [CrossRef]
- Grêt-Regamey, A.; Sirén, E.; Brunner, S.H.; Weibel, B. Review of Decision Support Tools to Operationalize the Ecosystem Services Concept. Ecosyst. Serv. 2017, 26, 306–315. [Google Scholar] [CrossRef] [Green Version]
- Locke, D.H.; Grove, J.M.; Galvin, M.F.; O’Neil-Dunne, J.P.M.; Murphy, C. Applications of Urban Tree Canopy Assessment and Prioritization Tools: Supporting Collaborative Decision Making to Achieve Urban Sustainability Goals. Cities Environ. 2013, 6, 7. [Google Scholar]
- Bodnaruk, E.W.; Kroll, C.N.; Yang, Y.; Hirabayashi, S.; Nowak, D.J.; Endreny, T.A. Where to Plant Urban Trees? A Spatially Explicit Methodology to Explore Ecosystem Service Tradeoffs. Landsc. Urban Plan. 2016, 157, 457–467. [Google Scholar] [CrossRef] [Green Version]
- Sarabi, S.; Han, Q.; de Vries, B.; Romme, A.G.L. The Nature-Based Solutions Planning Support System: A Playground for Site and Solution Prioritization. Sustain. Cities Soc. 2022, 78, 103608. [Google Scholar] [CrossRef]
- Baró, F.; Chaparro, L.; Gómez-Baggethun, E.; Langemeyer, J.; Nowak, D.J.; Terradas, J. Contribution of Ecosystem Services to Air Quality and Climate Change Mitigation Policies: The Case of Urban Forests in Barcelona, Spain. Ambio 2014, 43, 466–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larondelle, N.; Haase, D.; Kabisch, N. Mapping the Diversity of Regulating Ecosystem Services in European Cities. Glob. Environ. Chang. 2014, 26, 119–129. [Google Scholar] [CrossRef]
- Davis, M.; Abhold, K.; Mederake, L.; Knoblauch, D. NBS in European and National Policy Framework. Naturvation 2018, 50, 1–52. [Google Scholar]
- Ramirez-Rubio, O.; Daher, C.; Fanjul, G.; Gascon, M.; Mueller, N.; Pajín, L.; Plasencia, A.; Rojas-Rueda, D.; Thondoo, M.; Nieuwenhuijsen, M.J. Urban Health: An Example of a “Health in All Policies” Approach in the Context of SDGs Implementation. Glob. Health 2019, 15, 87. [Google Scholar] [CrossRef]
Scenarios | NBS, PS, Costs | AIR | CLIM | WAT | AIR-CLIM | AIR-WAT | CLIM-WAT | ALL |
---|---|---|---|---|---|---|---|---|
BP | I-NBS | Green facade | Private gardens | Semi-intensive green roof | Green façade | Intensive green roof | Intensive green roof | Private gardens |
PS per m2 | 1 | 1 | 1 | 1 | 0.8 | 0.9 | 0.8 | |
Cost (EUR/m2/yr) | 78.9 | 50.4 | 52.0 | 78.9 | 52.0 | 52.0 | 50.4 | |
P-NBS | Large urban park | Large urban park | Infiltration basin | Large urban park | Large urban park | Large urban park | Large urban park | |
PS per m2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
Cost (EUR/m2/yr) | 37.8 | 37.8 | 30.6 | 37.8 | 37.8 | 37.8 | 37.8 | |
LC | I-NBS | Raingardens | Raingardens | Raingardens | Raingardens | Raingardens | Raingardens | Raingardens |
PS per m2 | 0.4 | 0.3 | 0.8 | 0.4 | 0.6 | 0.6 | 0.5 | |
Cost (EUR/m2/yr) | 13.4 | 13.4 | 13.4 | 13.4 | 13.4 | 13.4 | 13.4 | |
P-NBS | Urban orchards | Urban orchards | Urban orchards | Urban orchards | Urban orchards | Urban orchards | Urban orchards | |
PS per m2 | 0.3 | 0.2 | 0.5 | 0.3 | 0.4 | 0.3 | 0.3 | |
Cost (EUR/m2/yr) | 22.7 | 22.7 | 22.7 | 22.7 | 22.7 | 22.7 | 22.7 | |
CP | I-NBS | Swales | Extensive green roof | Raingardens | Street trees | Swales | Raingardens | Raingardens |
PS per m2 | 0.6 | 0.9 | 0.8 | 0.8 | 0.7 | 0.6 | 0.5 | |
Cost (EUR/m2/yr) | 15.1 | 18.5 | 13.4 | 21.0 | 15.1 | 13.4 | 13.4 | |
P-NBS | Large urban park | Large urban park | Infiltration basin | Large urban park | Infiltration basin | Infiltration basin | Infiltration basin | |
PS per m2 | 1 | 1 | 1 | 1 | 0.9 | 0.9 | 0.9 | |
Cost (EUR/m2/yr) | 37.8 | 37.8 | 30.6 | 37.8 | 30.6 | 30.6 | 30.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Pirro, E.; Roebeling, P.; Sallustio, L.; Marchetti, M.; Lasserre, B. Cost-Effectiveness of Nature-Based Solutions under Different Implementation Scenarios: A National Perspective for Italian Urban Areas. Land 2023, 12, 603. https://doi.org/10.3390/land12030603
Di Pirro E, Roebeling P, Sallustio L, Marchetti M, Lasserre B. Cost-Effectiveness of Nature-Based Solutions under Different Implementation Scenarios: A National Perspective for Italian Urban Areas. Land. 2023; 12(3):603. https://doi.org/10.3390/land12030603
Chicago/Turabian StyleDi Pirro, Elena, Peter Roebeling, Lorenzo Sallustio, Marco Marchetti, and Bruno Lasserre. 2023. "Cost-Effectiveness of Nature-Based Solutions under Different Implementation Scenarios: A National Perspective for Italian Urban Areas" Land 12, no. 3: 603. https://doi.org/10.3390/land12030603
APA StyleDi Pirro, E., Roebeling, P., Sallustio, L., Marchetti, M., & Lasserre, B. (2023). Cost-Effectiveness of Nature-Based Solutions under Different Implementation Scenarios: A National Perspective for Italian Urban Areas. Land, 12(3), 603. https://doi.org/10.3390/land12030603