Urban Flood Hazard Assessment and Management Practices in South Asia: A Review
Abstract
:1. Introduction
1.1. Urban Flood in South Asia
1.2. Causes of Urban Flooding
2. Materials and Methods
3. Methodology Used for Urban Flood Hazard Assessment in South Asian Cities
3.1. Application of Hydraulic/Hydrological Models
3.1.1. HEC-RAS and HEC-HMS Model
3.1.2. Application of SWMM and PCSWMM
3.1.3. Application of MIKE
3.2. Application of Remote Sensing and GIS in Urban Flood Studies
4. Urban Flood Management Practices in South Asian Cities
4.1. Structural Measures
4.2. Non-Structural Measures
Early Warning System
5. Existing Gap in Urban Flood Hazard Assessment and Management Practices between SA Countries and the Developed World
6. Conclusions
Limitations of Study
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CRED; UNDRR. Human Cost of Disasters an Overview of the Last 20 Years 2000–2019; UNDRR: Geneva, Switzerland, 2020. [Google Scholar]
- Shariat, R.; Roozbahani, A.; Ebrahimian, A. Risk Analysis of Urban Stormwater Infrastructure Systems Using Fuzzy Spatial Multi-Criteria Decision Making. Sci. Total Environ. 2019, 647, 1468–1477. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Leng, G.; Su, J.; Ren, Y. Comparison of Urbanization and Climate Change Impacts on Urban Flood Volumes: Importance of Urban Planning and Drainage Adaptation. Sci. Total Environ. 2019, 658, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Sundermann, L.; Schelske, O.; Hausmann, P. Mind the Risk a Global Ranking of Cities under Threat from Natural Disasters; Swiss Re: Zürich, Switzerland, 2014; pp. 1–30. [Google Scholar]
- Rosenfeld, D. Suppression of Rain and Snow by Urban and Industrial Air Pollution. Science 2000, 287, 1793–1796. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, E.C.; Thorne, C.R. Drivers of Future Urban Flood Risk. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2020, 378, 20190216. [Google Scholar] [CrossRef] [Green Version]
- United Nations. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420); Department of Economic and Social Affairs, Population Division, United Nations: New York, NY, USA, 2019; ISBN 9789211483192.
- Hernantes, J.; Maraña, P.; Gimenez, R.; Sarriegi, J.M.; Labaka, L. Towards Resilient Cities: A Maturity Model for Operationalizing Resilience. Cities 2019, 84, 96–103. [Google Scholar] [CrossRef]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global Forecasts of Urban Expansion to 2030 and Direct Impacts on Biodiversity and Carbon Pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, F.; Ban, Y.; Yin, H.; James, P.; Dronova, I. Environmental Modelling & Software Modeling Stormwater Management at the City District Level in Response to Changes in Land Use and Low Impact Development. Environ. Model. Softw. 2017, 95, 132–142. [Google Scholar] [CrossRef]
- Xie, J.; Wu, C.; Li, H.; Chen, G. Study on Storm-Water Management of Grassed Swales and Permeable Pavement Based on SWMM. Water 2017, 9, 840. [Google Scholar] [CrossRef] [Green Version]
- Denissen, A.-K. Climate Change & Its Impacts on Bangladesh. 2012, pp. 86–95. Available online: http://www.ncdo.nl/artikel/climate-change-its-impacts-bangladesh (accessed on 5 April 2021).
- Li, A.; Deng, W.; Zhao, W.; Liu, B.; Zhang, J.; Kong, B.; Nan, X.; Bian, J.; Koirala, H.L.; Gilani, H.; et al. A Geo-Spatial Database about the Eco-Environment and Its Key Issues in South Asia. Big Earth Data 2018, 2, 298–319. [Google Scholar] [CrossRef] [Green Version]
- Otto, F.E.L.; Zachariah, M.; Saeed, F.; Siddiqi, A.; Shahzad, K.; Mushtaq, H.; AchutaRao, K.; T, C.S.; Barnes, C.; Philip, S.; et al. Climate Change Likely Increased Extreme Monsoon Rainfall, Flooding Highly Vulnerable Communities in Pakistan. World Weather Attrib. 2022, 10, 12. [Google Scholar]
- Cao, W.; Zhou, Y.; Güneralp, B.; Li, X.; Zhao, K.; Zhang, H. Increasing Global Urban Exposure to Flooding: An Analysis of Long-Term Annual Dynamics. Sci. Total Environ. 2022, 817, 153012. [Google Scholar] [CrossRef]
- Emilsson, T.; Sang, Å.O. Impacts of Climate Change on Urban Areas and Nature-Based Solutions for Adaptation. In Nature-based Solutions to Climate Change Adaptation in Urban Areas, Theory and Practice of Urban Sustainability Transitions; Kabisch, N., Korn, H., Stadler, J., Aletta, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 15–27. ISBN 9783319560915. [Google Scholar]
- Zhou, Q. A Review of Sustainable Urban Drainage Systems Considering the Climate Change and Urbanization Impacts. Water 2014, 6, 976–992. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Regional Fact Sheet—Urban Areas; IPCC: Geneva, Switzerland, 2021. [Google Scholar]
- Douglas, I. Climate Change, Flooding and Food Security in South Asia. Food Secur. 2009, 1, 127–136. [Google Scholar] [CrossRef]
- Mukherjee, S.; Aadhar, S.; Stone, D.; Mishra, V. Increase in Extreme Precipitation Events under Anthropogenic Warming in India. Weather Clim. Extrem. 2018, 20, 45–53. [Google Scholar] [CrossRef]
- Ali, H.; Mishra, V. Contrasting Response of Rainfall Extremes to Increase in Surface Air and Dewpoint Temperatures at Urban Locations in India. Sci. Rep. 2017, 7, 1228. [Google Scholar] [CrossRef] [Green Version]
- Vaidyanathan, G. How India Is Battling Deadly Rain Storms. Nature 2023, 614, 210–213. [Google Scholar] [CrossRef]
- Roxy, M.K.; Ghosh, S.; Pathak, A.; Athulya, R.; Mujumdar, M.; Murtugudde, R.; Terray, P.; Rajeevan, M. A Threefold Rise in Widespread Extreme Rain Events Over Central India. Nat. Commun. 2017, 8, 708. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, R.; Sabin, T.P.; Ayantika, D.C.; Kitoh, A.; Sugi, M.; Murakami, H.; Turner, A.G.; Slingo, J.M.; Rajendran, K. Will the South Asian Monsoon Overturning Circulation Stabilize Any Further? Clim. Dyn. 2013, 40, 187–211. [Google Scholar] [CrossRef]
- Ali, H.; Modi, P.; Mishra, V. Increased Flood Risk in Indian Sub-Continent under the Warming Climate. Weather Clim. Extrem. 2019, 25, 100212. [Google Scholar] [CrossRef]
- Milesi, C.; Churkina, G. Measuring and Monitoring Urban Impacts on Climate Change from Space. Remote Sens. 2020, 12, 3494. [Google Scholar] [CrossRef]
- Mujumdar, M.; Bhaskar, P.; Ramarao, M.V.S.; Uppara, U.; Goswami, M.; Borgaonkar, H.; Chakraborty, S.; Ram, S.; Mishra, V.; Rajeevan, M.; et al. Assessment of Climate Change over the Indian Region; Springer: Singapore, 2020; ISBN 9789811543272. [Google Scholar]
- Wang, B.; Biasutti, M.; Byrne, M.P.; Castro, C.; Chang, C.P.; Cook, K.; Fu, R.; Grimm, A.M.; Ha, K.J.; Hendon, H.; et al. Monsoons Climate Change Assessment. Bull. Am. Meteorol. Soc. 2021, 102, E1–E19. [Google Scholar] [CrossRef]
- Schreider, S.Y.; Smith, D.I.; Jakeman, A.J. Climate Change Impacts on Urban Flooding. Clim. Chang. 2000, 47, 91–115. [Google Scholar] [CrossRef]
- Dutta, D.; Herath, S.; Musiake, K. A Mathematical Model for Flood Loss Estimation. J. Hydrol. 2003, 277, 24–49. [Google Scholar] [CrossRef]
- McMichael, A.J.; Woodruff, R.E.; Hales, S. Climate Change and Human Health: Present and Future Risks. Lancet 2006, 367, 859–869. [Google Scholar] [CrossRef] [PubMed]
- Shanableh, A.; Al-Ruzouq, R.; Yilmaz, A.G.; Siddique, M.; Merabtene, T.; Imteaz, M.A. Effects of Land Cover Change on Urban Floods and Rainwater Harvesting: A Case Study in Sharjah, UAE. Water 2018, 10, 631. [Google Scholar] [CrossRef] [Green Version]
- Richards, D.R.; Edwards, P.J. Using Water Management Infrastructure to Address Both Flood Risk and the Urban Heat Island. Int. J. Water Resour. Dev. 2018, 34, 490–498. [Google Scholar] [CrossRef]
- Sheng, J.; Wilson, J.P. Watershed Urbanization and Changing Flood Behavior across the Los Angeles Metropolitan Region. Nat. Hazards 2009, 48, 41–57. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C. Impacts of Urbanization on Surface Runoff of the Dardenne Creek Watershed, St. Charles County, Missouri. Phys. Geogr. 2009, 30, 556–573. [Google Scholar] [CrossRef]
- Kumar, M.; Sharif, M.; Ahmed, S. Impact of Urbanization on the River Yamuna Basin. Int. J. River Basin Manag. 2019, 18, 461–475. [Google Scholar] [CrossRef]
- Du, S.; Cheng, X.; Huang, Q.; Chen, R.; Ward, P.J.; Aerts, J.C.J.H. Brief Communication: Rethinking the 1998 China Floods to Prepare for a Nonstationary Future. Nat. Hazards Earth Syst. Sci. 2019, 19, 715–719. [Google Scholar] [CrossRef] [Green Version]
- Vorobevskii, I.; Al Janabi, F.; Schneebeck, F.; Bellera, J.; Krebs, P. Urban Floods: Linking the Overloading of a Storm Water Sewer System to Precipitation Parameters. Hydrology 2020, 7, 35. [Google Scholar] [CrossRef]
- Morita, M. Flood Risk Impact Factor for Comparatively Evaluating the Main Causes That Contribute to Flood Risk in Urban Drainage Areas. Water 2014, 6, 253–270. [Google Scholar] [CrossRef] [Green Version]
- Rahman, A.U.; Shaw, R. Flood Risk and Reduction Approaches in Pakistan. In Disaster Risk Reduction Approaches in Pakistan; Rahman, A.U., Khan, A.N., Shaw, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 145–160. ISBN 9784431553694. [Google Scholar]
- Lyu, H.; Dong, Z.; Roobavannan, M.; Kandasamy, J.; Pande, S. Rural Unemployment Pushes Migrants to Urban Areas in Jiangsu Province, China. Palgrave Commun. 2019, 5, 92. [Google Scholar] [CrossRef] [Green Version]
- Montoya, L. Geo-Data Acquisition through Mobile GIS and Digital Video: An Urban Disaster Management Perspective. Environ. Model. Softw. 2003, 18, 869–876. [Google Scholar] [CrossRef]
- WMO. Integrated Flood Management Case Study Pakistan: Lai Nullah Basin Flood Problem Islamabad-Rawalpindi Cities; WMO: Geneva, Switzerland, 2004. [Google Scholar]
- Okubo, K.; Khan, M.S.A.; Hassan, M.Q. Hydrological Processes of Adsorption, Sedimentation, and Infiltration into the Lake Bed during the 2004 Urban Flood in Dhaka City, Bangladesh. Environ. Earth Sci. 2010, 60, 95–106. [Google Scholar] [CrossRef]
- Lei, M.; Niyogi, D.; Kishtawal, C.; Pielke, R.A.; Beltr, A. Effect of Explicit Urban Land Surface Representation on the Simulation of the 26 July 2005 Heavy Rain Event over Mumbai, India. Atmos. Chem. Phys 2008, 8, 5975–5995. [Google Scholar] [CrossRef] [Green Version]
- Alam, A.; Bhat, M.S.; Farooq, H.; Ahmad, B.; Ahmad, S.; Sheikh, A.H. Flood Risk Assessment of Srinagar City in Jammu and Kashmir, India. Int. J. Disaster Resil. Built Environ. 2018, 9, 114–129. [Google Scholar] [CrossRef]
- Narasimhan, B.; Bhallamudi, S.M.; Mondal, A.; Ghosh, S.; Mujumdar, P. Chennai Floods 2015 A Rapid Assessment; Interdisciplinary Centre for Water Research (ICWaR): Bengaluru, India, 2016. [Google Scholar]
- Devi, N.N.; Sridharan, B.; Bindhu, V.M.; Narasimhan, B.; Bhallamudi, S.M.; Bhatt, C.M.; Usha, T.; Vasan, D.T.; Kuiry, S.N. Investigation of Role of Retention Storage in Tanks (Small Water Bodies) on Future Urban Flooding: A Case Study of Chennai City, India. Water 2020, 12, 2875. [Google Scholar] [CrossRef]
- Zia, S.; Shirazi, S.A. Spatio-Temporal Analysis of Areas Vulnerable to Urban Flooding: A Case Study of Lahore, Pakistan. Int. J. Econ. Env. 2019, 10, 85–89. [Google Scholar]
- Vemula, S.; Raju, K.S.; Veena, S.S.; Kumar, A.S. Urban Floods in Hyderabad, India, under Present and Future Rainfall Scenarios: A Case Study. Nat. Hazards 2018, 95, 637–655. [Google Scholar] [CrossRef]
- Gehrels, H. Protecting Colombo against Future Floods. Available online: https://www.deltares.nl/en/projects/protecting-colombo-against-future-floods/ (accessed on 15 December 2021).
- Jadhav, R.; Bhat, S. Death Toll from Mumbai Floods Jumps to 14, Rain Eases Up. Available online: https://www.reuters.com/article/us-india-monsoon-idUSKCN1BA0GH (accessed on 30 August 2021).
- Bhatta, B.P.; Pandey, R.K. Bhaktapur Urban Flood Related Disaster Risk and Strategy after 2018. J. APF Command. Staff. Coll. 2020, 3, 72–89. [Google Scholar] [CrossRef]
- Mishra, A.K.; Nagaraju, V. Space-Based Monitoring of Severe Flooding of a Southern State in India during South-West Monsoon Season of 2018. Nat. Hazards 2019, 97, 949–953. [Google Scholar] [CrossRef]
- Sangomla, A. Mumbai Rains Once Again Prove Climate Change Is No Hoax. Available online: https://www.downtoearth.org.in/news/climate-change/mumbai-rains-once-again-prove-climate-change-is-no-hoax-65387 (accessed on 2 July 2021).
- Wadhawan, S.K.; Singh, B.; Ramesh, M.V. Causative Factors of Landslides 2019: Case Study in Malappuram and Wayanad Districts of Kerala, India. Landslides 2020, 17, 2689–2697. [Google Scholar] [CrossRef]
- Read, C. Flash Floods DEVASTATE Afghanistan Killing 20 and Destroying 2000 Homes. Available online: https://www.express.co.uk/news/world/1094803/afghanistan-floods-death-toll-Kandahar-city-united-nations (accessed on 20 October 2021).
- Uprety, M. A Dramatic Start to Nepal’s 2019 Monsoon Season. Available online: https://floodresilience.net/blogs/a-dramatic-start-to-nepals-2019-monsoon-season/ (accessed on 4 November 2021).
- Shams, S. Urban Flooding—Who Is Responsible for Karachi’s Woes? DW Made Minds; Deutsche Welle (DW): Bonn, Germany, 2020. [Google Scholar]
- Priyam, S. Four Die, Houses Crumble as Heavy Monsoon Rains Swamp Delhi-NCR. More Rains Forecast. Available online: https://weather.com/en-IN/india/monsoon/news/2020-07-20-two-die-houses-crumble-roads-flood-heavy-monsoon-rains-delhi-ncr-more (accessed on 30 June 2021).
- Atta-ur-Rahman; Shaw, R.; Surjan, A.; Parvin, G.A. Urban Disasters and Approaches to Resilience. Urban Disasters Resil. Asia 2016, 1–19. [Google Scholar] [CrossRef]
- Gupta, K. Challenges in Developing Urban Flood Resilience in India. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2020, 378, 20190211. [Google Scholar] [CrossRef] [Green Version]
- Surampudi, S.; Yarrakula, K. Mapping and Assessing Spatial Extent of Floods from Multitemporal Synthetic Aperture Radar Images: A Case Study on Brahmaputra River in Assam State, India. Environ. Sci. Pollut. Res. 2020, 27, 1521–1532. [Google Scholar] [CrossRef]
- Ray, K.; Pandey, P.; Pandey, C.; Dimri, A.P.; Kishore, K. On the Recent Floods in India. Curr. Sci. 2019, 117, 204–218. [Google Scholar] [CrossRef]
- Kabir, M.H.; Ahmed, I.; Von Meding, J.; Forino, G.; Ghosh, A.K. Impacts of Prolonged Waterlogging on Educational Continuity at Schools in Peri-Urban Areas of Dhaka, Bangladesh. Dhaka Univ. J. Earth Environ. Sci. 2021, 9, 13–23. [Google Scholar] [CrossRef]
- Dasgupta, S.; Zaman, A.; Roy, S.; Huq, M.; Jahan, S.; Nishat, A. Urban Flooding of Greater Dhaka in a Changing Climate; World Bank Publications: Washington, DC, USA, 2015; ISBN 9781464807107. [Google Scholar]
- UNDRR. Disaster Risk Reduction in Pakistan: Status Report 2019; UNDRR: Bangkok, Thailand, 2019. [Google Scholar]
- Shah, S.M.H.; Mustaffa, Z.; Teo, F.Y.; Imam, M.A.H.; Yusof, K.W.; Al-Qadami, E.H.H. A Review of the Flood Hazard and Risk Management in the South Asian Region, Particularly Pakistan. Sci. African 2020, 10, e00651. [Google Scholar] [CrossRef]
- Manawadu, L.; Wijeratne, V.P.I.S. Anthropogenic Drivers and Impacts of Urban Flooding—A Case Study in Lower Kelani River Basin, Colombo Sri Lanka. Int. J. Disaster Risk Reduct. 2021, 57, 102076. [Google Scholar] [CrossRef]
- Kc, S.; Shrestha, S.; Ninsawat, S.; Chonwattana, S. Predicting Flood Events in Kathmandu Metropolitan City under Climate Change and Urbanisation. J. Environ. Manag. 2021, 281, 111894. [Google Scholar] [CrossRef]
- Manawi, S.M.A.; Nasir, K.A.M.; Shiru, M.S.; Hotaki, S.F.; Sediqi, M.N. Urban Flooding in the Northern Part of Kabul City: Causes and Mitigation. Earth Syst. Environ. 2020, 4, 599–610. [Google Scholar] [CrossRef]
- Villordon, M.B.B.L.; Gourbesville, P. Community-Based Flood Vulnerability Index for Urban Flooding: Understanding Social Vulnerabilities and Risks. Springer Water 2016, 2014, 75–96. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Ye, M.; Yin, Z.; Xu, S. A Review of Advances in Urban Flood Risk Analysis over China. Stoch. Environ. Res. Risk Assess. 2014, 29, 1063–1070. [Google Scholar] [CrossRef]
- De Moel, H.; Van Alphen, J.; Aerts, J.C.J.H. Flood Maps in Europe—Methods, Availability and Use. Nat. Hazards Earth Syst. Sci. 2009, 9, 289–301. [Google Scholar] [CrossRef] [Green Version]
- Jain, G.V.; Agrawal, R.; Bhanderi, R.J.; Jayaprasad, P.; Patel, J.N.; Agnihotri, P.G.; Samtani, B.M. Estimation of Sub-Catchment Area Parameters for Storm Water Management Model (SWMM) Using Geo-Informatics. Geocarto Int. 2016, 31, 462–476. [Google Scholar] [CrossRef]
- Jacobson, C.R. Identification and Quantification of the Hydrological Impacts of Imperviousness in Urban Catchments: A Review. J. Environ. Manag. 2011, 92, 1438–1448. [Google Scholar] [CrossRef]
- Andimuthu, R.; Kandasamy, P.; Mudgal, B.V.; Jeganathan, A.; Balu, A.; Sankar, G. Performance of Urban Storm Drainage Network under Changing Climate Scenarios: Flood Mitigation in Indian Coastal City. Sci. Rep. 2019, 9, 7783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahmati, O.; Darabi, H.; Panahi, M.; Kalantari, Z.; Naghibi, S.A.; Ferreira, C.S.S.; Kornejady, A.; Karimidastenaei, Z.; Mohammadi, F.; Stefanidis, S.; et al. Development of Novel Hybridized Models for Urban Flood Susceptibility Mapping. Sci. Rep. 2020, 10, 12937. [Google Scholar] [CrossRef]
- Bisht, D.S.; Chatterjee, C.; Kalakoti, S.; Upadhyay, P.; Sahoo, M.; Panda, A. Modeling Urban Floods and Drainage Using SWMM and MIKE URBAN: A Case Study. Nat. Hazards 2016, 84, 749–776. [Google Scholar] [CrossRef]
- Feng, B.; Wang, J.; Zhang, Y.; Hall, B.; Zeng, C. Urban Flood Hazard Mapping Using a Hydraulic–GIS Combined Model. Nat. Hazards 2020, 100, 1089–1104. [Google Scholar] [CrossRef]
- Rajib, A.; Golden, H.E.; Lane, C.R.; Wu, Q. Surface Depression and Wetland Water Storage Improves Major River Basin Hydrologic Predictions. Water Resour. Res. 2020, 56, e2019WR026561. [Google Scholar] [CrossRef] [PubMed]
- Henonin, J.; Russo, B.; Mark, O.; Gourbesville, P. Real-Time Urban Flood Forecasting and Modeiling—A State of the Art. J. Hydroinformatics 2013, 15, 717–736. [Google Scholar] [CrossRef]
- Jiang, L.; Chen, Y.; Wang, H. Urban Flood Simulation Based on the SWMM Model. In Proceedings of the RSHS14 and ICGRHWE14, Guangzhou, China, 24–27 August 2014; Volume 368. [Google Scholar]
- Bhattacharjee, S.; Kumar, P.; Thakur, P.K.; Gupta, K. Hydrodynamic Modelling and Vulnerability Analysis to Assess Flood Risk in a Dense Indian City Using Geospatial Techniques. Nat. Hazards 2021, 105, 2117–2145. [Google Scholar] [CrossRef]
- Bellos, V.; Kourtis, I.M.; Tsihrintzis, V.A. A Simplified Methodology for Flood Simulation in Urban Catchments. Eur. Water 2017, 57, 307–313. [Google Scholar]
- Pathak, S.; Liu, M.; Jato-Espino, D.; Zevenbergen, C. Social, Economic and Environmental Assessment of Urban Sub-Catchment Flood Risks Using a Multi-Criteria Approach: A Case Study in Mumbai City, India. J. Hydrol. 2020, 591, 125216. [Google Scholar] [CrossRef]
- Zope, P.E.; Eldho, T.I.; Jothiprakash, V. Impacts of Urbanization on Flooding of a Coastal Urban Catchment: A Case Study of Mumbai City, India. Nat. Hazards 2015, 75, 887–908. [Google Scholar] [CrossRef]
- Zope, P.E.; Eldho, T.I.; Jothiprakash, V. Impacts of Land Use-Land Cover Change and Urbanization on Flooding: A Case Study of Oshiwara River Basin in Mumbai, India. Catena 2016, 145, 142–154. [Google Scholar] [CrossRef]
- Zope, P.E.; Eldho, T.I.; Jothiprakash, V. Hydrological Impacts of Land Use–Land Cover Change and Detention Basins on Urban Flood Hazard: A Case Study of Poisar River Basin, Mumbai, India. Nat. Hazards 2017, 87, 1267–1283. [Google Scholar] [CrossRef]
- Suriya, S.; Mudgal, B.V. Impact of Urbanization on Flooding: The Thirusoolam Sub Watershed—A Case Study. J. Hydrol. 2012, 412–413, 210–219. [Google Scholar] [CrossRef]
- Devi, N.N.; Sridharan, B.; Kuiry, S.N. Impact of Urban Sprawl on Future Flooding in Chennai City, India. J. Hydrol. 2019, 574, 486–496. [Google Scholar] [CrossRef]
- Rangari, V.A.; Sridhar, V.; Umamahesh, N.V.; Patel, A.K. Floodplain Mapping and Management of Urban Catchment Using HEC-RAS: A Case Study of Hyderabad City. J. Inst. Eng. Ser. A 2019, 100, 49–63. [Google Scholar] [CrossRef]
- Rangari, V.A.; Umamahesh, N.V.; Patel, A.K. Flood-Hazard Risk Classification and Mapping for Urban Catchment under Different Climate Change Scenarios: A Case Study of Hyderabad City. Urban Clim. 2021, 36, 100793. [Google Scholar] [CrossRef]
- Rangari, V.A.; Bhatt, C.M.; Umamahesh, N.V. Rapid Assessment of the October 2020 Hyderabad Urban Flood and Risk Analysis Using Geospatial Data. Curr. Sci. 2021, 120, 1840–1847. [Google Scholar] [CrossRef]
- Surwase, T.; Manjusree, P. Urban Flood Simulation—A Case Study of Hyderabad City. In Proceedings of the National Conference on Flood Early Warning for Disaster Risk Reduction, Hyderabad, India, 30–31 May 2019; pp. 133–143. [Google Scholar]
- Pathan, A.I.; Agnihotri, P.G.; Patel, D.; Prieto, C. Improving Assessment of Flood Inundation of Navsari (India) via Open-Source Data and HEC-RAS Model. In Proceedings of the vEGU21: Gather Online, Online, 19–30 April 2021. [Google Scholar] [CrossRef]
- Pathan, A.I.; Agnihotri, P.G. Application of New HEC-RAS Version 5 for 1D Hydrodynamic Food. Pdf. Model. Earth Syst. Environ. 2020, 7, 1133–1144. [Google Scholar] [CrossRef]
- Zafar, S.; Zaidi, A. Impact of Urbanization on Basin Hydrology: A Case Study of the Malir Basin, Karachi, Pakistan. Reg. Environ. Chang. 2019, 19, 1815–1827. [Google Scholar] [CrossRef]
- Masood, M.; Takeuchi, K. Assessment of Flood Hazard, Vulnerability and Risk of Mid-Eastern Dhaka Using DEM and 1D Hydrodynamic Model. Nat. Hazards 2012, 61, 757–770. [Google Scholar] [CrossRef]
- Pandey, P.; Dugar, S. Flood Hazard Mapping in an Urban Context: A Case Study of Hanumante Stream, Bhaktapur (Nepal). Proc. IOE Grad. Conf. 2019, 6, 435–444. [Google Scholar]
- Talchabhadel, R.; Prajapati, R. Numerical Simulation of Urban Inundation Using Citizen-Based Data: A Case Study of Monsoon 2019 in Hanumante River Basin, Kathmandu Valley. In Proceedings of the 8th International Conference on Flood Management, Iowa City, IA, USA, 17–19 August 2021. [Google Scholar]
- Basnet, K. Flood Modelling of Patu River in Tulsipur City of Nepal and Analysis of Flooding Impact on Encroached Settlement along the River. Int. J. Adv. Res. Ideas Innov. Technol. ISSN 2020, 6, 375–384. [Google Scholar]
- Dangol, S.; Bormudoi, A. Flood Hazard Mapping and Vulnerability Analysis of Bishnumati River, Nepal. Nepal. J. Geoinformatics Surv. Dep. Nepal 2015, 14, 20–24. [Google Scholar] [CrossRef]
- Tenzin, J.; Bhaskar, A.S. Modeling of the Precipitation Induced Flash Flood in Sarpang, Bhutan Using HEC-RAS. Rasayan J. Chem. 2017, 10, 399–406. [Google Scholar]
- Rangari, V.A.; Gonugunta, R.; Umamahesh, N.V.; Patel, A.K.; Bhatt, C.M. 1D-2D Modeling of Urban Floods and Risk Map Generation for the Part of Hyderabad City. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII–5, 445–450. [Google Scholar] [CrossRef] [Green Version]
- Rangari, V.A.; Sai Prashanth, S. Simulation of Urban Drainage System Using a Storm Water Management Model (SWMM). Asian J. Eng. Appl. Technol. 2018, 7, 7–10. [Google Scholar] [CrossRef]
- Avinash, S.; Prasad, K.L.; Reddy, G.S.S.; Mukund, D. Urban Flood Forecast System—A Case Study of Bangalore, India Urban Flood Forecast System—A Case Study of Bangalore, India. Univers. Rev. 2018, 7, 170–179. [Google Scholar]
- Harsha, S.S.; Agarwal, S.; Kiran, C.H. Regional Flood Forecasting Using SWMM for Urban Catchment. Int. J. Eng. Adv. Technol. 2020, 9, 1027–1031. [Google Scholar] [CrossRef]
- Harsha, S.S.; Agarwal, S.; Kiran, C.H. Urban Flood Modelling and Management Using Storm Water Management Model. Test Eng. Manag. 2020, 83, 6160–6167. [Google Scholar]
- Sonavane, N.; Rangari, V.A.; Waikar, M.L.; Patil, M. Urban Storm-Water Modeling Using EPA SWMM-a Case Study of Pune City. In Proceedings of the 2020 IEEE Bangalore Humanitarian Technology Conference (B-HTC), Vijiyapur, India, 8–10 October 2020; pp. 9–13. [Google Scholar] [CrossRef]
- Ahammad, M.; Tarek, M.H.; Khan, M.S.M. Stormwater Management in Begunbari Canal Catchment of Dhaka, Bangladesh. In Proceedings of the World Environmental and Water Resources Congress 2018, Minneapolis, MN, USA, 3–7 June 2018; Volume 1, p. 489. [Google Scholar]
- Akter, A.; Asce, M.; Alam, M.T. Urban Flood Hazard Modeling and Mapping Using PCSWMM. In Proceedings of the International Conference on Sustainable Infrastructure 2019, Online, 6–10 December 2018. [Google Scholar]
- Akter, A.; Tanim, A.H.; Islam, M.K. Possibilities of Urban Flood Reduction through Distributed-Scale Rainwater Harvesting. Water Sci. Eng. 2020, 13, 95–105. [Google Scholar] [CrossRef]
- Pradhan-Salike, I.; Raj Pokharel, J. Impact of Urbanization and Climate Change on Urban Flooding: A Case of the Kathmandu Valley. J. Nat. Resour. Dev. 2017, 7, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Pervin, I.A.; Rahman, S.M.M.; Nepal, M.; Haque, A.K.E.; Karim, H.; Dhakal, G. Adapting to Urban Flooding: A Case of Two Cities in South Asia. Water Policy 2020, 22, 162–188. [Google Scholar] [CrossRef]
- Khan, D.M.; Veerbeek, W.; Chen, A.S.; Hammond, M.J.; Islam, F.; Pervin, I.; Djordjević, S.; Butler, D. Back to the Future: Assessing the Damage of 2004 Dhaka Flood in the 2050 Urban Environment. J. Flood Risk Manag. 2018, 11, S43–S54. [Google Scholar] [CrossRef]
- Mark, O.; Jørgensen, C.; Hammond, M.; Khan, D.; Tjener, R.; Erichsen, A.; Helwigh, B. A New Methodology for Modelling of Health Risk from Urban Flooding Exemplified by Cholera—Case Dhaka, Bangladesh. J. Flood Risk Manag. 2018, 11, S28–S42. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.S.; Hammond, M.J.; Djordjević, S.; Butler, D.; Khan, D.M.; Veerbeek, W. From Hazard to Impact: Flood Damage Assessment Tools for Mega Cities; Springer Nature: Berlin/Heidelberg, Germany, 2016; Volume 82, ISBN 1106901622. [Google Scholar]
- Wagenaar, D.J.; Dahm, R.J.; Diermanse, F.L.M.; Dias, W.P.S.; Dissanayake, D.M.S.S.; Vajja, H.P.; Gehrels, J.C.; Bouwer, L.M. International Journal of Disaster Risk Reduction Evaluating Adaptation Measures for Reducing Fl Ood Risk: A Case Study in the City of Colombo, Sri Lanka. Int. J. Disaster Risk Reduct. 2019, 37, 101162. [Google Scholar] [CrossRef]
- Moufar, M.M.M.; Perera, E.D.P. Floods and Countermeasures Impact Assessment for the Metro Colombo Canal System, Sri Lanka. Hydrology 2018, 5, 11. [Google Scholar] [CrossRef] [Green Version]
- Rijal, S.; Rimal, B.; Sloan, S. Flood Hazard Mapping of a Rapidly Urbanizing City in the Foothills (Birendranagar, Surkhet) of Nepal. Land 2018, 7, 60. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.; Bose, A.; Singha, N.; Basak, D.; Chowdhury, I.R. Urban Waterlogging Risk as an Undervalued Environmental Challenge: An Integrated MCDA-GIS Based Modeling Approach. Environ. Chall. 2021, 4, 100194. [Google Scholar] [CrossRef]
- Wijeratne, V.P.I.S.; Li, G. Urban Sprawl and Its Stress on the Risk of Extreme Hydrological Events (EHEs) in the Kelani River Basin, Sri Lanka. Int. J. Disaster Risk Reduct. 2022, 68, 102715. [Google Scholar] [CrossRef]
- Bui, D.T.; Khosravi, K.; Li, S.; Shahabi, H.; Panahi, M.; Singh, V.P.; Chapi, K.; Shirzadi, A.; Panahi, S.; Chen, W.; et al. New Hybrids of ANFIS with Several Optimization Algorithms for Flood Susceptibility Modeling. Water 2018, 10, 1210. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.K.; Sharma, A.K. GIS and a Remote Sensing Based Approach for Urban Flood-Plain Mapping for the Tapi Catchment, India. Iahs-Aish Publ. 2009, 331, 389–394. [Google Scholar]
- Tomar, P.; Singh, S.K.; Kanga, S.; Meraj, G.; Kranjčić, N.; Ðurin, B.; Pattanaik, A. Gis-Based Urban Flood Risk Assessment and Management—A Case Study of Delhi National Capital Territory (NCT), India. Sustainability 2021, 13, 12850. [Google Scholar] [CrossRef]
- Schumann, G.; Giustarini, L.; Tarpanelli, A.; Jarihani, B.; Martinis, S. Flood Modeling and Prediction Using Earth Observation Data. Surv. Geophys. 2022, 1–26. [Google Scholar] [CrossRef]
- Mondal, B.K.; Sahoo, S. Application of Geospatial Techniques for Urban Flood Management: A Review. In Spatial Modelling of Flood Risk and Flood Hazards. GIScience and Geo-Environmental Modelling; Pradhan, B., Shit, P.K., Bhunia, G.S., Adhikary, P.P., Pourghasemi, H.R., Eds.; Springer Nature: Berlin/Heidelberg, Germany, 2022; pp. 225–236. [Google Scholar] [CrossRef]
- Lammers, R.; Li, A.; Nag, S.; Ravindra, V. Prediction Models for Urban Flood Evolution for Satellite Remote Sensing. J. Hydrol. 2021, 603, 127175. [Google Scholar] [CrossRef]
- Sadiq, R.; Akhtar, Z.; Imran, M.; Ofli, F. Integrating Remote Sensing and Social Sensing for Flood Mapping. Remote Sens. Appl. Soc. Environ. 2022, 25, 100697. [Google Scholar] [CrossRef]
- Kucharczyk, M.; Hugenholtz, C.H. Remote Sensing of Environment Remote Sensing of Natural Hazard-Related Disasters with Small Drones: Global Trends, Biases, and Research Opportunities. Remote Sens. Environ. 2021, 264, 112577. [Google Scholar] [CrossRef]
- Suthakaran, S.; Jayakody, S.; Subasinghe, S.; Seneviratne, N.; Alahakoon, R. Mapping the Flood Risk Exposure Using Open-Source Geospatial Tools and Techniques: A Case of Gampaha Divisional Secretariat Division, Sri Lanka. J. Geosci. Environ. Prot. 2022, 10, 18–31. [Google Scholar] [CrossRef]
- Sowmya, K.; John, C.M.; Shrivasthava, N.K. Urban Flood Vulnerability Zoning of Cochin City, Southwest Coast of India, Using Remote Sensing and GIS. Nat. Hazards 2015, 75, 1271–1286. [Google Scholar] [CrossRef]
- Dammalage, T.L.; Jayasinghe, N.T. Land-Use Change and Its Impact on Urban Flooding: A Case Study on Colombo District Flood on May 2016. Eng. Technol. Appl. Sci. Res. 2019, 9, 3887–3891. [Google Scholar] [CrossRef]
- Smith, A.; Bates, P.D.; Wing, O.; Sampson, C.; Quinn, N.; Neal, J. New Estimates of Flood Exposure in Developing Countries Using High-Resolution Population Data. Nat. Commun. 2019, 10, 1814. [Google Scholar] [CrossRef] [Green Version]
- Notaro, V.; Fontanazza, C.M.; Freni, G.; La Loggia, G. Assessment of Modelling Structure and Data Availability Influence on Urban Flood Damage Modelling Uncertainty. Procedia Eng. 2014, 89, 788–795. [Google Scholar] [CrossRef] [Green Version]
- Hula, M.A.; Udoh, J.C. An Assessment of the Impact of Flood Events in Makurdi, Nigeria. Civ. Environ. Res. 2015, 7, 53–60. [Google Scholar]
- Texier, P. Floods in Jakarta: When the Extreme Reveals Daily Structural Constraints and Mismanagement. Disaster Prev. Manag. An Int. J. 2008, 17, 358–372. [Google Scholar] [CrossRef]
- Kubal, C.; Haase, D.; Meyer, V.; Scheuer, S. Integrated Urban Flood Risk Assessment—Adapting a Multicriteria Approach to a City. Nat. Hazards Earth Syst. Sci. 2009, 9, 1881–1895. [Google Scholar] [CrossRef] [Green Version]
- Kadaverugu, A.; Nageshwar, C.; Viswanadh, R.G.K. Quantification of Flood Mitigation Services by Urban Green Spaces Using InVEST Model: A Case Study of Hyderabad City, India. Model. Earth Syst. Environ. 2020, 7, 589–602. [Google Scholar] [CrossRef]
- Sahoo, S.N.; Pekkat, S. Detention Ponds for Managing Flood Risk Due to Increased Imperviousness: Case Study in an Urbanizing Catchment of India. Nat. Hazards Rev. 2018, 19, 05017008. [Google Scholar] [CrossRef]
- Sarmah, T.; Das, S. Urban Flood Mitigation Planning for Guwahati: A Case of Bharalu Basin. J. Environ. Manag. 2018, 206, 1155–1165. [Google Scholar] [CrossRef]
- Ali, M.H.; Bhattacharya, B.; Islam, A.K.M.S.; Islam, G.M.T.; Hossain, M.S.; Khan, A.S. Challenges for Flood Risk Management in Flood-Prone Sirajganj Region of Bangladesh. J. Flood Risk Manag. 2019, 12, e12450. [Google Scholar] [CrossRef] [Green Version]
- Bashar, M.Z.I.; Karim, M.R.; Imteaz, M.A. Reliability and Economic Analysis of Urban Rainwater Harvesting: A Comparative Study within Six Major Cities of Bangladesh. Resour. Conserv. Recycl. 2018, 133, 146–154. [Google Scholar] [CrossRef]
- Khan, A.N.; Ali, A. Disaster Risk Reduction Methods, Approaches and Practices; Springer: Berlin/Heidelberg, Germany, 2015; pp. 281–294. [Google Scholar] [CrossRef]
- Lo, K.F.A.; Koralegedara, S.B. Effects of Climate Change on Urban Rainwater Harvesting in Colombo City, Sri Lanka. Environments 2015, 2, 105–124. [Google Scholar] [CrossRef] [Green Version]
- Jonkman, S.N.; Dawson, R.J. Issues and Challenges in Flood Risk Management—Editorial for the Special Issue on Flood Risk Management. Water 2012, 4, 785–792. [Google Scholar] [CrossRef] [Green Version]
- Sahu, A.; Bose, T.; Samal, D.R. Urban Flood Risk Assessment and Development of Urban Flood Resilient Spatial Plan for Bhubaneswar. Environ. Urban. ASIA 2021, 12, 269–291. [Google Scholar] [CrossRef]
- CPHEEO. Manual on Sewerage and Sewage Treatment; Ministry of Urban Development: New Delhi, Indai, 2013.
- Jha, A.K.; Bloch, R.; Lamond, J. Cities and Flooding: A Guide to Integrated Urban Flood Risk Management for the 21st Century; World Bank: Washington, DC, USA, 2012. [Google Scholar]
- Gupta, K. Urban Flood Resilience Planning and Management and Lessons for the Future: A Case Study of Mumbai, India. Urban Water J. 2007, 4, 183–194. [Google Scholar] [CrossRef]
- Ghosh, S.; Karmakar, S.; Saha, A.; Mohanty, M.P.; Ali, S.; Raju, S.K.; Krishnakumar, V.; Sebastian, M.; Behera, M.R.; Ashrit, R.; et al. Development of India’s First Integrated Expert Urban Flood Forecasting System for Chennai. Curr. Sci. 2019, 117, 741–745. [Google Scholar] [CrossRef]
- Gupta, K.; Nikam, V. Technological and Innovative Measures to Improve Flood Disaster Recovery Following Mumbai 2005 Mega-Flood. In Disaster Recovery: Used or Misused Development Opportunity; Shaw, R., Ed.; Springer: Tokyo, Japan, 2014; pp. 287–297. ISBN 978-4-431-54255-1. [Google Scholar]
- Das, K. Guwahati Gets an Experimental Flood Warning System. Sci. Wire. 2020. Available online: https://science.thewire.in/environment/guwahati-assam-flood-warning-system/ (accessed on 10 October 2021).
- Mohanty, M.P.; Mudgil, S.; Karmakar, S. Flood Management in India: A Focussed Review on the Current Status and Future Challenges. Int. J. Disaster Risk Reduct. 2020, 49, 101660. [Google Scholar] [CrossRef]
- Bhuvana, N.; Arul Aram, I. Facebook and Whatsapp as Disaster Management Tools during the Chennai (India) Floods of 2015. Int. J. Disaster Risk Reduct. 2019, 39, 101135. [Google Scholar] [CrossRef]
- Riaz, K.; Hassan, A.; Fakhruddin, S.H. Community Participation in Flood Management. In Options for Flood Risk and Damage Reduction in Bangladesh; Siddiqui, K., Hossain, A.N., Eds.; The University Press Ltd.: Dhaka, Bangladesh, 2010. [Google Scholar]
- Deltares. Mobile Services for Flood Early Warning in Bangladesh: Final Report; Deltares: Silver Spring, MD, USA, 2015. [Google Scholar]
- World Bank Bangladesh and World Bank Sign $113 Million to Improve Weather Forecasting and Early Warning Systems. Available online: https://www.worldbank.org/en/news/press-release/2017/04/05/bangladesh-and-world-bank-sign-113-million-to-improve-weather-forecasting-and-early-warning-systems (accessed on 20 August 2021).
- Rahman, A.U.; Shaw, R. Disaster Resilience: Generic Overview and Pakistan Context. In Disaster Risk Reduction Approaches in Pakistan; Rahman, A.U., Khan, A.N., Shaw, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Mustafa, D.; Gioli, G.; Qazi, S.; Waraich, R.; Zahoor, R. Gendering Flood Early Warning Systems: The Case of Pakistan. Environ. Hazards 2015, 7891, 312–328. [Google Scholar] [CrossRef]
- Premasiri, R.; Chandranath, R. Development of Warning System for Mitigation of Urban Flood Hazard. In Proceedings of the 37th Asian Conference Remote Sensing, ACRS 2016, Colombo, Sri Lanka, 17–21 October 2016; Volume 3, pp. 1771–1777. [Google Scholar]
- Budimir, M.; Donovan, A.; Brown, S.; Shakya, P.; Gautam, D.; Uprety, M.; Cranston, M.; Sneddon, A.; Smith, P.; Dugar, S. Communicating Complex Forecasts: An Analysis of the Approach in Nepal’s Flood Early Warning System. Geosci. Commun. 2020, 3, 49–70. [Google Scholar] [CrossRef] [Green Version]
- UNDRR. Disaster Risk Reduction in Nepal: Status Report 2019; UNDRR: Bangkok, Thailand, 2019. [Google Scholar]
- DHMS. Flood Early Warning. Available online: http://www.hydromet.gov.bt/?q=21 (accessed on 5 June 2021).
- ICIMOD. Flood Early Warning Systems in Bhutan; ICIMOD: Kathmandu, Nepal, 2016. [Google Scholar]
- Noori, M.M.; Sherzad, M.H. Current State of Early Warning System in Afghanistan: An Outlook of the Flood Early Warning System; UN: New York, NY, USA, 2020. [Google Scholar]
- Roy, C.; Sarkar, S. The Current Cyclone Early Warning System in Bangladesh: Providers’ and Receivers’ Reviews. Int. J. Disaster Risk Reduct. 2015, 12, 285–299. [Google Scholar] [CrossRef] [Green Version]
- Brouwer, R.O.Y.; Akter, S.; Brander, L.; Haque, E. Economic Valuation of Flood Risk Exposure and Reduction in a Severely Flood Prone Developing Country. Environ. Dev. Econ. 2009, 14, 397–417. [Google Scholar] [CrossRef]
- Leitão, J.P.; Boonya-aroonnet, S.; Prodanović, D.; Maksimović, Č. The Influence of Digital Elevation Model Resolution on Overland Flow Networks for Modelling Urban Pluvial Flooding. Water Sci. Technol. 2009, 60, 3137–3149. [Google Scholar] [CrossRef]
- Al-Suhili, R.; Cullen, C.; Khanbilvardi, R. An Urban Flash Flood Alert Tool for Megacities-Application for Manhattan, New York City, USA. Hydrology 2019, 6, 56. [Google Scholar] [CrossRef] [Green Version]
- Othmer, F.J.; Becker, D.; Schulte, L.M.; Greiving, S. A Methodological Approach to Municipal Pluvial Flood Risk Assessment Based on a Small City Case Study. Sustainability 2020, 12, 10487. [Google Scholar] [CrossRef]
- Mihu-pintilie, A.; Alexandru, U.; Cuza, I.; Cimpianu, C.I.; Alexandru, U.; Cuza, I.; Stoleriu, C.; Alexandru, U.; Cuza, I. Using High-Density LiDAR Data and 2D Streamflow Hydraulic Modeling to Improve Urban Flood Hazard. Water 2019, 11, 1832. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Hou, J.; Zhou, N.; Yang, S.; Tong, Y.; Su, F.; Huang, L.; Bi, X. High-Resolution Urban Flood Forecasting by Using a Coupled Atmospheric and Hydrodynamic Flood Models. Front. Earth Sci. 2020, 8, 545612. [Google Scholar] [CrossRef]
- Wang, B.; Loo, B.P.Y.; Zhen, F.; Xi, G. Urban Resilience from the Lens of Social Media Data: Responses to Urban Flooding in Nanjing, China. Cities 2020, 106, 102884. [Google Scholar] [CrossRef]
- de Almeida, G.A.M.; Bates, P.; Ozdemir, H. Modelling Urban Floods at Submetre Resolution: Challenges or Opportunities for Flood Risk Management? J. Flood Risk Manag. 2018, 11, S855–S865. [Google Scholar] [CrossRef] [Green Version]
- Saravi, S.; Kalawsky, R.; Joannou, D.; Casado, M.R.; Fu, G.; Meng, F. Use of Artificial Intelligence to Improve Resilience and Preparedness against Adverse Flood Events. Water (Switzerland) 2019, 11, 973. [Google Scholar] [CrossRef] [Green Version]
- Esfandiari, M.; Abdi, G.; Jabari, S.; McGrath, H.; Coleman, D. Flood Hazard Risk Mapping Using a Pseudo Supervised Random Forest. Remote Sens. 2020, 12, 3206. [Google Scholar] [CrossRef]
- Shrestha, S.; Cui, S.; Xu, L.; Wang, L.; Manandhar, B.; Ding, S. Impact of Land Use Change Due to Urbanisation on Surface Runoff Using GIS-Based SCS–CN Method: A Case Study of Xiamen City, China. Land 2021, 10, 839. [Google Scholar] [CrossRef]
- Skilodimou, H.D.; Bathrellos, G.D.; Alexakis, D.E. Flood Hazard Assessment Mapping in Burned and Urban Areas. Sustain. 2021, 13, 4455. [Google Scholar] [CrossRef]
- Joo, H.; Choi, C.; Kim, J.; Kim, D.; Kim, S.; Kim, H.S. A Bayesian Network-Based Integrated for Flood Risk Assessment (InFRA). Sustainability 2019, 11, 3733. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.C.; Hsieh, T.H.; Liu, H.M. Flood Risk Assessment in Urban Areas of Southern Taiwan. Sustainability 2021, 13, 3180. [Google Scholar] [CrossRef]
- Vojtek, M.; Vojteková, J. Flood Susceptibility Mapping on a National Scale in Slovakia Using the Analytical Hierarchy Process. Water 2019, 11, 364. [Google Scholar] [CrossRef] [Green Version]
- Khoirunisa, R. Forecasted Climate Analysis from 2000 to 2100 Using RCP 4.5 and RCP 8.5 Model Scenario as A Hazard Early-Warning System in Prague City, Czech Republic. Smart City 2022, 2, 4. [Google Scholar] [CrossRef]
- Chan, F.K.S.; Griffiths, J.A.; Higgitt, D.; Xu, S.; Zhu, F.; Tang, Y.T.; Xu, Y.; Thorne, C.R. “Sponge City” in China—A Breakthrough of Planning and Flood Risk Management in the Urban Context. Land Use Policy 2018, 76, 772–778. [Google Scholar] [CrossRef]
- Randall, M.; Sun, F.; Zhang, Y.; Jensen, M.B. Evaluating Sponge City Volume Capture Ratio at the Catchment Scale Using SWMM. J. Environ. Manag. 2019, 246, 745–757. [Google Scholar] [CrossRef]
- Yin, D.; Evans, B.; Wang, Q.; Chen, Z.; Jia, H.; Chen, A.S.; Fu, G.; Ahmad, S.; Leng, L. Integrated 1D and 2D Model for Better Assessing Runoff Quantity Control of Low Impact Development Facilities on Community Scale. Sci. Total Environ. 2020, 720, 137630. [Google Scholar] [CrossRef]
- Zhang, L.; Ye, Z.; Shibata, S. Assessment of Rain Garden Effects for the Management of Urban Storm Runoff in Japan. Sustainability 2020, 12, 9982. [Google Scholar] [CrossRef]
- Costa, S.; Peters, R.; Martins, R.; Postmes, L.; Keizer, J.J.; Roebeling, P. Effectiveness of Nature-Based Solutions on Pluvial Flood Hazard Mitigation: The Case Study of the City of Eindhoven (The Netherlands). Resources 2021, 10, 24. [Google Scholar] [CrossRef]
- Goswami, S.; Basak, S. Is Urban India Going Underwater Again? Available online: https://wri-india.org/blog/urban-india-going-underwater-again (accessed on 12 July 2021).
- Goniewicz, K.; Burkle, F.M. Analysis of the Potential of IT System Support in Early Warning Systems: Mitigating Flood Risk in Poland. Prehosp. Disaster Med. 2019, 34, 563–565. [Google Scholar] [CrossRef]
- Rodriguez Castro, D.; Roucour, S.; Archambeau, P.; Cools, M.; Erpicum, S.; Habchi, I.; Hardy, J.; Pirotton, M.; Weber, L.; Teller, J.; et al. Modelling Direct Flood Losses: What Can We Learn from the July 2021 Flood in the Meuse Basin (Belgium)? KAHR Sci. Conf. 2022, 2021–2022. [Google Scholar]
- Zhou, Q.; Panduro, T.E.; Thorsen, B.J.; Arnbjerg-Nielsen, K. Adaption to Extreme Rainfall with Open Urban Drainage System: An Integrated Hydrological Cost-Benefit Analysis. Environ. Manag. 2013, 51, 586–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnbjerg-Nielsen, K.; Fleischer, H.S. Feasible Adaptation Strategies for Increased Risk of Flooding in Cities Due to Climate Change. Water Sci. Technol. 2009, 60, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Mikkelsen, P.S.; Halsnæs, K.; Arnbjerg-Nielsen, K. Framework for Economic Pluvial Flood Risk Assessment Considering Climate Change Effects and Adaptation Benefits. J. Hydrol. 2012, 414–415, 539–549. [Google Scholar] [CrossRef]
- Pyke, C.; Warren, M.P.; Johnson, T.; Lagro, J.; Scharfenberg, J.; Groth, P.; Freed, R.; Schroeer, W.; Main, E. Landscape and Urban Planning Assessment of Low Impact Development for Managing Stormwater with Changing Precipitation Due to Climate Change. Landsc. Urban Plan. 2011, 103, 166–173. [Google Scholar] [CrossRef]
- Zahmatkesh, Z.; Burian, S.J.; Karamouz, M.; Tavakol-davani, H.; Goharian, E. Low-Impact Development Practices to Mitigate Climate Change Effects on Urban Stormwater Runoff: Case Study of New York City. J. Irrig. Drain. Eng. 2015, 141, 04014043. [Google Scholar] [CrossRef]
- Kang, N.; Kim, S.; Kim, Y.; Noh, H.; Hong, J.S. Urban Drainage System Improvement for Climate Change Adaptation. Water 2016, 8, 268. [Google Scholar] [CrossRef] [Green Version]
- Sebti, A.; Fuamba, M.; Bennis, S. Optimization Model for BMP Selection and Placement in a Combined Sewer. J. Water Resour. Plan. Manag. 2016, 142, 04015068. [Google Scholar] [CrossRef]
- Olsson, J.; Amaguchi, H.; Alsterhag, E. Adaptation to Climate Change Impacts on Urban Storm Water: A Case Study in Arvika, Sweden. Clim. Chang. 2013, 116, 231–247. [Google Scholar] [CrossRef]
- Tscheikner-gratl, F.; Zeisl, P.; Kinzel, C.; Leimgruber, J.; Ertl, T.; Rauch, W.; Kleidorfer, M. Lost in Calibration: Why People Still Do Not Calibrate Their Models, and Why They Still Should—A Case Study from Urban Drainage Modelling. Water Sci. Technol. 2016, 74, 2337–2348. [Google Scholar] [CrossRef] [Green Version]
- Babovic, F.; Mijic, A. Economic Evaluation of Adaptation Pathways for an Urban Drainage System Experiencing Deep Uncertainty. Water 2019, 11, 531. [Google Scholar] [CrossRef] [Green Version]
Date | Location | Meteorological Driver | Reported Impacts | Ref. |
---|---|---|---|---|
23 July 2001 | Islamabad and Rawalpindi, Pakistan | 620 mm rainfall in just 10 hrs. | 74 people lost their lives, and affected 400,000 people | [43] |
September 2004 | Dhaka, Bangladesh | 341 mm rainfall in a day and >600 mm in 5 days | 730 people lost their lives, and 30 million people were made homeless | [44] |
26 July 2005 | Mumbai, India | 944 mm of rainfall in 24 hrs. | At least 400 people and 20,000 cattle lost their lives. | [45] |
September 2014 | Srinagar, Jammu and Kashmir, India | Discharge of ~1, 15,218 upstream at Sangam and ~72,585 cusecs downstream | 282 people lost their lives, and 253,000 houses were damaged | [46] |
November– December 2015 | Chennai, India | >400 mm of rainfall | 400 people lost their lives and caused enormous economic damages | [47] |
December 2015 | Chennai, Tamil Nadu | 494 mm of rain over a 24-h | Deaths of around 250 people | [48] |
28 August 2016 | Lahore, Pakistan | 12 h and 30 min of intense rainfall of 59 mm | Lahore district was inundated by urban flooding | [49] |
23 September 2016 | Hyderabad, Telangana, India | 165 mm rainfall | Economic losses of 137,839 USD | [50] |
15 May 2016 | Colombo, Sri Lanka | 256 mm rainfall | Death of 3 lives and 185,000 people were directly affected | [51] |
29 August 2017 | Mumbai, India | 468 mm of rainfall in 12 h | Confirmed death of 14 people | [52] |
11–12 July 2018 | Kathmandu, Nepal | 129.6 mm of rain in 10 h | Damaged 522 houses, 15 sheds, 28 industries, and factories, including petrol pumps | [53] |
14–15 August 2018 | Kerala, India | Rainfall range of 270–300 mm. | 483 people lost their lives, and 5000 thousand people were affected, with a 200 billion USD loss | [54] |
27 June 2019 | Mumbai, India | Five days received 137.8 mm of rainfall | 32 people lost their lives, and the transportation was disrupted | [55] |
4–8 August 2019 | Malappuram and Wayanad districts of Kerala, India | 400% over the normal average rainfall | 81 people lost their lives, >39 houses and a walkover bridge washed away | [56] |
1 March 2019 | Kandahar city, Afghanistan | Rainfall of 97 mm in 30 h | 20 people lost their lives, and many houses collapsed | [57] |
11–12 July 2019 | Kathmandu, Nepal | Around 150 mm of rainfall in 12 h | 100 families were affected, and Balkhu and Kuleshwor witnessed levels of flooding never seen before | [58] |
25–27 August 2020 | 2020 Karachi, Pakistan | 345 mm rainfall for a single day | More than 40 people lost their lives | [59] |
19 July 2020 | Delhi, India | Recorded nearly 100 mm of rainfall | Four people lost their lives | [60] |
Location | BGI Considered | Results | Ref. |
---|---|---|---|
Hyderabad, India | Rain gardens | RGs with a depth varying from 400 to 500 mm have shown excellent performance during the monsoon season | [62] |
Mumbai, India | Bioretention basins | Found unsuitable for heavy rainfall intensity | [62] |
Hyderabad, India | Green spaces | 44–50% of the precipitation is retained by the urban green and open spaces | [140] |
Hyderabad, India | Porous pavements and vegetated roofs | Reduced surface runoff | [50] |
Guwahati city, India | Detention pond, widening of the channels | Maximum flood depth and inundated area reduced flooding adjacent to the channels. | [141] |
Guwahati city, India | De-siltation and cleaning of drains; rainwater harvesting; establishing new pumping stations | Integrated drainage network act as ‘self-healing’ to flood certain extent | [142] |
Mumbai, India | Detention ponds | Decrease in peak discharge and total flood hazard area | [89] |
Sirajganj town, Bangladesh | Detention ponds | Store water during storm events | [143] |
Bangladesh | RWH system in all the proposed new buildings | Controlling water logging in urban areas | [144]. |
Metro Colombo basin, Sri Lanka | Diversion | The flood water level at different locations was reduced | [120] |
Sri Lanka | Mandatory requirement of RWH in modern buildings | Reduce water logging in urban areas | [146] |
Location | Early Warning System | Designed by | Ref. |
---|---|---|---|
Chennai | Integrated expert urban flood forecasting system with a real-time forecast, monitoring, and data sharing | Chennai Flood Warning System (C-FLOWS) designed by NCCR | [152] |
Mumbai | Automatic weather stations were installed for rainfall monitoring and dissemination of real-time rainfall, flood alerts on the webpage as well as on smartphones | Municipal Corporation of Greater Mumbai (MCGM) area | [153] |
Guwahati | Fully automated web-based flood warning system | Energy and Resources Institute (TERI) in New Delhi and National Disaster Management Authority (NDMA) | [154] |
Bangalore city India | High-intensity rainfall alerts and rainfall Forecasts Alerts, Flood forecasts, Early warnings | Karnataka State Natural Disaster Monitoring Center (KSNDMC) | [107] |
Bangladesh | Produce up to 48- to 72-h—forecasts, disseminating forecasts from national to district levels through email, website, and cell phone services. | Flood Forecasting and Warning Center of the Bangladesh Water Development Board | [169] |
Bangladesh | Flood EWS at the community level, using existing 48-hrs. forecasts | The Center for Environmental and Geographical Information Service | [157] |
Panadura urban council area Sri Lanka | GPS, RS, GIS techniques, PIC Control circuit, Google API, Arc Server, PHP, JavaScript, and Google My maps to monitor and warn real-time flood event displays flooding area in the web system | [162] | |
Nepal | Early Warning Systems for water-related hazards utilize automatic sensing and mobile communication technology for real-time climate and hydrological data acquisition and warning dissemination and send mobile SMS to residents of the risk zone. | Flood Forecasting Section of the DHM, Nepal | [163] |
Bhutan | The hydrometeorological observation network transmits real-time data at a pre-set interval of 15 min. | Department of Hydro-Met Services (DHMS) | [166] |
Afghanistan | Flood warnings are disseminated to the public through websites and social media accounts at the scale of a province | AMD and NWARA | [167] |
Country | City | Model | Topographic and Rainfall Data | Adaptation Method | Ref. |
---|---|---|---|---|---|
Denmark | Aarhus | 1D–2D coupled urban inundation model | DEM derived from LIDAR data of grid resolution 2 m, Chicago Design Storms (CDSs) | Pipe enlargement, LID, Open Urban Drainage Systems (OUDs)/recreational basins | [193] |
Denmark | Roskilde and Aalborg | Mike Urban | Topography data were obtained using laser scanning from aircraft, CDSs | Sewer enlargement, open basin strategy, dikes. | [194] |
Denmark | Odense | Mike Urban and Mike Flood | DEM of 1.6 m * 1.6 m resolution, rainfall scenarios A2 based on RCM HIRHAM4, CDSs | Sewer enlargement and infiltration | [195] |
USA | South Weymouth Naval Air Station | SG WATER | Daily precipitation data, six precipitation scenarios | Conventional practices and LID practices | [196] |
USA | Bronx river watershed, New York | SWMM | Daily precipitation is disaggregated to hourly precipitation using the CFA | Rainwater harvesting, bioretention, and permeable pavements | [197] |
Korea | Incheon | XP-SWMM | Daily rainfall data produced from the HadGEM3-RA climate model | Sewer enlargement | [198] |
Canada | Greater Montreal region, Quebec | Improved Rational Hydrograph method and SWMM | Sewer network, rainfall data | Detention ponds; infiltration trenches; green roofs; and rain gardens | [199] |
Sweden | Arvika | MOUSE and TSR | Land-use map, high-resolution DEM, a network map of the main sewer pipes, time series of 30-min precipitation intensities from a matrix of 3×3 RCA3 grid boxes | Sewer enlargement and detention ponds | [200] |
Austria | Tyrol municipality | SWMM | Sewer system network, land use map, precipitation data temporal resolution of 1 min | Sewer rehabilitation | [201] |
UK | London | Infoworks ICM (1D-2D) | The current drainage system, precipitation data | Green roofs, porous pavements, lake deepening, sewer enlargement, and combinations | [202] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manandhar, B.; Cui, S.; Wang, L.; Shrestha, S. Urban Flood Hazard Assessment and Management Practices in South Asia: A Review. Land 2023, 12, 627. https://doi.org/10.3390/land12030627
Manandhar B, Cui S, Wang L, Shrestha S. Urban Flood Hazard Assessment and Management Practices in South Asia: A Review. Land. 2023; 12(3):627. https://doi.org/10.3390/land12030627
Chicago/Turabian StyleManandhar, Bikram, Shenghui Cui, Lihong Wang, and Sabita Shrestha. 2023. "Urban Flood Hazard Assessment and Management Practices in South Asia: A Review" Land 12, no. 3: 627. https://doi.org/10.3390/land12030627
APA StyleManandhar, B., Cui, S., Wang, L., & Shrestha, S. (2023). Urban Flood Hazard Assessment and Management Practices in South Asia: A Review. Land, 12(3), 627. https://doi.org/10.3390/land12030627