The Role of Historical Data to Investigate Slow-Moving Landslides by Long-Term Monitoring Systems in Lower Austria
Abstract
:1. Introduction
- To gather historical data of landslide events in an inventory and to analyze their characteristics in each of the three study sites in Lower Austria.
- Assess how historical data played an important role in the landslide hazard assessment, in the selection of the study sites in Lower Austria, and the implementation of different methods within the monitoring systems.
- Explore how historical data lead to coping and response strategies in planning decisions.
2. Study Area
2.1. Hofermühle Landslide—Konradsheim District
2.2. Gresten Landslide—Scheibbs District
2.3. Brandstatt Landslide—Scheibbs District
3. Material and Methods
4. Analysis of Historical Landslide Data
4.1. Hofermühle Landslide
4.2. Gresten Landslide
4.3. Brandstatt Landslide
5. Establishment of Landslide Observatories (2014–Today)
5.1. Common Monitoring Devices
5.2. Site-Specific Monitoring Devices
5.2.1. Site-Specific Monitoring—Hofermühle
5.2.2. Site-Specific Monitoring—Gresten
5.2.3. Site-Specific Monitoring—Brandstatt
6. Discussion
6.1. The (Historical) Role of Human Impact and Land Use Planning
6.2. The Importance of Historical Data in Landslide Monitoring
6.3. Approaches of Linking Historical Data to Landslide Monitoring
7. Conclusions
8. Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guzzetti, F.; Carrara, A.; Cardinali, M.; Reichenbach, P. Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 1999, 31, 181–216. [Google Scholar] [CrossRef]
- Glade, T.; Crozier, M.J. The Nature of Landslide Hazard Impact. In Landslide Hazard and Risk; Glade, T., Anderson, M., Crozier, M.J., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2005; Volume 1, pp. 41–74. [Google Scholar]
- Petley, D. Global patterns of loss of life from landslides. Geology 2012, 40, 927–930. [Google Scholar] [CrossRef]
- Casteller, A.; Häfelfinger, T.; Cortés Donoso, E.; Podvin, K.; Kulakowski, D.; Bebi, P. Assessing the interaction between mountain forests and snow avalanches at Nevados de Chillán, Chile and its implications for ecosystem-based disaster risk reduction. Nat. Hazards Earth Syst. Sci. 2018, 18, 1173–1186. [Google Scholar] [CrossRef] [Green Version]
- Vranken, L.; Van Turnhout, P.; Van Den Eeckhaut, M.; Vandekerckhove, L.; Poesen, J. Economic valuation of landslide damage in hilly regions: A case study from Flanders, Belgium. Sci. Total Environ. 2013, 447, 323–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crozier, M.J. Deciphering the effect of climate change on landslide activity: A review. Geomorphology 2010, 124, 260–267. [Google Scholar] [CrossRef]
- Gariano, S.L.; Guzzetti, F. Landslides in a changing climate. Earth Sci. Rev. 2016, 162, 227–252. [Google Scholar] [CrossRef] [Green Version]
- Cruden, D.M.; Varnes, D.J. Landslide Types and Processes. Landslides: Investigation and Mitigation; Special Report 247; Transportation Research Board: Washington, DC, USA, 1996; pp. 36–75. [Google Scholar]
- Dikau, R.; Brunsden, D.; Schrott, L.; Ibsen, M.L. Landslide Recognition. Identification, Movement and Causes; John Wiley & Sons Ltd.: Chichester, UK, 1996; p. 251. [Google Scholar]
- Varnes, D.J. Landslide Hazard Zonation: A Review of Principles and Practice; IAEG Commission on Landslides and Other Mass-Movements; UNESCO Press: Paris, France, 1984. [Google Scholar]
- Dai, F.C.; Lee, C.F.; Ngai, Y.Y. Landslide risk assessment and management: An overview. Eng. Geol. 2002, 64, 65–87. [Google Scholar] [CrossRef]
- Glade, T.; Albini, P.; Frances, F. An Introduction to the Use of Historical Data in Hazard Assessment. In The Use of Historical Data in Natural Hazard Assessments; Glade, T., Albini, P., Frances, F., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; pp. XVII–XXV. [Google Scholar]
- Van Den Eeckhaut, M.; Poesen, J.; Vandekerckhove, L.; Van Gils, M.; Van Rompaey, A. Human-environment interactions in residential areas susceptible to landsliding: The Flemish Ardennes case study. Area 2010, 42, 339–358. [Google Scholar] [CrossRef]
- Carrara, A.; Crosta, G.; Frattini, P. Geomorphological and historical data in assessing landslide hazard. Earth Surf. Process. Landf. 2003, 28, 1125–1142. [Google Scholar] [CrossRef]
- Ray, R.L.; Lazzari, M. Introductory Chapter: Importance of Investigating Landslide Hazards. In Landslides-Investigation and Monitoring; IntechOpen: London, UK, 2020; p. 1. [Google Scholar]
- Brunsden, D.; Ibsen, M.L. The nature of the European archive of historical landslide data, with specific reference to the United Kingdom. In Temporal Occurrence and Forecasting of Landslides in the European Community; Final Report Epoch EC Programme; European Commission, Science Research Development: Brussels, Belgium, 1994; Volume 2. [Google Scholar]
- Ibsen, M.L.; Brunsden, D. The nature, use and problems of historical archives for the temporal occurrence of landslides, with specific reference to the south coast of Britain, Ventnor, Isle of Wight. Geomorphology 1996, 15, 241–258. [Google Scholar] [CrossRef]
- Guzzetti, F.; Cardinali, M.; Reichenbach, P. The AVI Project: A bibliographical and archive inventory of landslides and floods in Italy. Environ. Manag. 1994, 18, 623–633. [Google Scholar] [CrossRef]
- Cruden, D.M. Estimating the Risks from Landslides Using Historical Data. In Landslide Risk Assessment, Proceedings of the International Workshop; Cruden, D.M., Fell, R., Eds.; Balkema: Rotterdam, The Netherlands, 1997; pp. 177–184. [Google Scholar]
- Calcaterra, D.; Parise, M.; Palma, B. Combining historical and geological data for the assessment of the landslide hazard: A case study from Campania, Italy. Nat. Hazards Earth Syst. Sci. 2003, 3, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Esposito, G.; Carabella, C.; Paglia, G.; Miccadei, E. Relationships between Morphostructural/Geological Framework and Landslide Types: Historical Landslides in the Hilly Piedmont Area of Abruzzo Region (Central Italy). Land 2021, 10, 287. [Google Scholar] [CrossRef]
- Glade, T. Landslide Hazard Assessment and Historical Landslide Data—An Inseparable Couple. In The Use of Historical Data in Natural Hazard Assessments; Springer: Dordrecht, The Netherlands, 2001; pp. 153–168. [Google Scholar]
- Reid, M.E.; Baum, R.L.; Lahusen, R.G.; Ellis, W.L. Capturing Landslide Dynamics and Hydrologic Triggers Using Near-Real-Time Monitoring. In Landslides and Engineered Slopes. From the Past to the Future; CRC Press: Boca Raton, FL, USA, 2008; pp. 201–214. [Google Scholar]
- Loche, M.; Alvioli, M.; Marchesini, I.; Bakka, H.; Lombardo, L. Landslide susceptibility maps of Italy: Lesson learnt from dealing with multiple landslide types and the uneven spatial distribution of the national inventory. Earth Sci. Rev. 2022, 232, 104–125. [Google Scholar] [CrossRef]
- Calcaterra, D.; Parise, M. The Contribution of Historical Information in the Assessment of Landslide Hazard. In The Use of Historical Data in Natural Hazard Assessments; Glade, T., Albini, P., Frances, F., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; pp. 201–216. [Google Scholar]
- Pánek, T. Recent progress in landslide dating: A global overview. Prog. Phys. Geogr. Earth Environ. 2014, 39, 168–198. [Google Scholar] [CrossRef]
- Petschko, H.; Brenning, A.; Bell, R.; Goetz, J.; Glade, T. Assessing the quality of landslide susceptibility maps–case study Lower Austria. Nat. Hazards Earth Syst. Sci. 2014, 14, 95–118. [Google Scholar] [CrossRef] [Green Version]
- Stumvoll, M.J.; Canli, E.; Engels, A.; Thiebes, B.; Groiss, B.; Glade, T.; Schweigl, J.; Bertagnoli, M. The “Salcher” landslide observatory—Experimental long-term monitoring in the Flysch Zone of Lower Austria. Bull. Eng. Geol. Environ. 2019, 79, 1831–1848. [Google Scholar] [CrossRef] [Green Version]
- Stumvoll, M.J.; Schmaltz, E.M.; Kanta, R.; Roth, H.; Grall, B.; Luhn, J.; Flores-Orozco, A.; Glade, T. Exploring the dynamics of a complex, slow-moving landslide in the Austrian Flysch Zone with 4D surface and subsurface information. Catena 2022, 214, 106–203. [Google Scholar] [CrossRef]
- Sebald, J.; Senf, C.; Heiser, M.; Scheidl, C.; Pflugmacher, D.; Seidl, R. The effects of forest cover and disturbance on torrential hazards: Large-scale evidence from the Eastern Alps. Environ. Res. Lett. 2019, 14, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Schweigl, J.; Hervás, J. Landslide mapping in Austria. In Scientific and Technical Research Series; Office for Official Publications of the European Communities: Luxembourg:, 2009. [Google Scholar]
- Fuchs, S.; Wenk, M.; Keiler, M. Geomorphic Hazards in Austria. In Landscapes and Landforms of Austria; Springer: Cham, Switzerland, 2022; pp. 105–117. [Google Scholar]
- Lemenkova, P.; Promper, C.; Glade, T. Economic Assessment of Landslide Risk for the Waidhofen ad Ybbs Region, Alpine Foreland, Lower Austria. In Proceedings of the Protecting Society through Improved Understanding, 11th International Symposium on Landslides and the 2nd North American Symposium on Landslides and Engineered Slopes, Banff, AB, Canada, 3–8 June 2012; pp. 279–285. [Google Scholar]
- Promper, C.; Glade, T. Landcover Changes for Landslide Risk Evolution–First Results from Lower Austria. In Proceedings of the Protecting Society through Improved Understanding, 11th International Symposium on Landslides and 2nd North American Symposium on Landslides and Engineered Slopes, Banff, AB, Canada, 3–8 June 2012. [Google Scholar]
- Promper, C.; Puissant, A.; Malet, J.P.; Glade, T. Analysis of land cover changes in the past and the future as contribution to landslide risk scenarios. Appl. Geogr. 2014, 53, 11–19. [Google Scholar] [CrossRef]
- Promper, C.; Gassner, C.; Glade, T. Spatiotemporal patterns of landslide exposure—A step within future landslide risk analysis on a regional scale applied in Waidhofen/Ybbs Austria. Int. J. Disaster Risk Reduct. 2015, 12, 25–33. [Google Scholar] [CrossRef]
- Lacroix, P.; Handwerger, A.L.; Bièvre, G. Life and death of slow-moving landslides. Nat. Rev. Earth Environ. 2020, 1, 404–419. [Google Scholar] [CrossRef]
- Petley, D.N.; Carey, J.M.; Ng, K.Y.; Massey, C.I.; Froude, M.J. Understanding Patterns of Movement for Slow Moving Landslides. In Proceedings of the 20th NZGS Geotechnical Symposium, Napier, New Zealand, 24–26 November 2017. [Google Scholar]
- Li, Y.; Utili, S.; Milledge, D.; Chen, L.; Yin, K. Chasing a complete understanding of the failure mechanisms and potential hazards of the slow moving Liangshuijing landslide. Eng. Geol. 2021, 281, 10597. [Google Scholar] [CrossRef]
- Moradi, S.; Heinze, T.; Budler, J.; Gunatilake, T.; Kemna, A.; Huisman, J.A. Combining Site Characterization, Monitoring and Hydromechanical Modeling for Assessing Slope Stability. Land 2021, 10, 423. [Google Scholar] [CrossRef]
- BMDW. Digital Elevation Model (DEM) Based on Airborne Laserscan Data of the Austrian Federal States Raster Resolution 10 m. In Bundesministerium für Digitalisierung und Wirtschaftsstandort (BMDW); geoland.at, Ed.; data.gv.at (Open Data Österreich); BMDW: Vienna, Austria, 2015. [Google Scholar]
- Weber, L. Flächendeckende Beschreibung der Geologie von Osterreich 1:500.000 im Vektorformat. Exzerpt (Basiskarte Geologie) aus der Metallogenetischen Karte von Osterreich 1:500.000; Geologische Bundesanstalt: Vienna, Austria, 1997. [Google Scholar]
- Thenius, E. Geologie der Österreichischen Bundesländer in Kurzgefaßten Einzeldarstellungen; NiederÖsterreich, Geologische Bundesanstalt: Wien, Austria, 1974. [Google Scholar]
- Schnabel, W. The Flysch Zone of the Eastern Alps; Verlag der Geologischen Bundesanstalt (GBA): Vienna, Austria, 1999; p. 49. [Google Scholar]
- Petschko, H.; Bell, R.; Leopold, P.; Heiss, G.; Glade, T. Landslide Inventories for Reliable Susceptibility Maps in Lower Austria. In Landslide Science and Practice: Volume 1: Landslide Inventory and Susceptibility and Hazard Zoning; Margottini, C., Canuti, P., Sassa, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 281–286. [Google Scholar]
- Gottschling, P. Massenbewegungen. In Geologie der Österreichischen Bundesländer—Niederösterreich; Wessely, G., Ed.; Geologische Bundesanstalt: Vienna, Austria, 2006; pp. 335–340. [Google Scholar]
- Schwenk, H. Massenbewegungen in Niederösterreich 1953–1990. Jahrb. Geol. Bundesanst. 1992, 135, 597–660. [Google Scholar]
- Orozco, A.F.; Steiner, M.; Katona, T.; Roser, N.; Moser, C.; Stumvoll, M.J.; Glade, T. Application of induced polarization imaging across different scales to understand surface and groundwater flow at the Hofermühle landslide. Catena 2022, 219, 106–612. [Google Scholar]
- Sausgruber, T. Hofermühlrutschung Waidhofen/Ybbs; Forsttechnischer Dienst für Wildbach-und Lawinenverbauung: Melk, Austria, 2013. [Google Scholar]
- Jochum, B.; Lotter, M.; Ottner, F.; Tiefenbach, K. Geophysikalische und Ingenieurgeologische Methoden zur Untersuchung von durch Massenbewegungen bedingte Bauschäden in Niederösterreich. BBK-Projekt NC-62/F (2007) und ÜLG-35 (2007); Internal Report; Amt der Niederösterreichischen Landesregierung. Geologischer Dienst: Sankt Pölten, Austria, 2008. [Google Scholar]
- Schweigl, J. Abschlussbericht BD1-G-411/011-2009; Internal Report; Amt der Niederösterreichischen Landesregierung. Geologischer Dienst: Sankt Pölten, Austria, 2012. [Google Scholar]
- Amt der Niederösterreichischen Landesregierung. Gutachten (BD-96-G-1970); Internal Report; Amt der Niederösterreichischen Landesregierung: Sankt Pölten, Austria, 1970. [Google Scholar]
- Gottschling, P. Geologisches Gutachten BD1-G-867/1. Landesbaudirektion—Geologischer Dienst. Katastrophenerhebungsblatt. Hinteregger; Internal Report; Landesbaudirektion. Geologischer Dienst: Sankt Pölten, Austria, 2001. [Google Scholar]
- Sausgruber, T. Protokoll zum Lokalaugenschein Hangprozess Hofermühle/Hofermühlrutschung (3491/13-2016); Internal Report; Wildbach- und Lawinenverbauung: Melk, Austria, 2016. [Google Scholar]
- Kotzmaier, E. Aktenvermerk Krojer Rutschung (Hofermühle) 03.05.2013; Internal Report; Wildbach- und Lawinenverbauung: Melk, Austria, 2013. [Google Scholar]
- Stumvoll, M.J.; Schmaltz, E.M.; Glade, T. Dynamic characterization of a slow-moving landslide system—Assessing the challenges of small process scales utilizing multi-temporal TLS data. Geomorphology 2021, 389, 1–16. [Google Scholar] [CrossRef]
- NOEL GV. Digital Orthophoto; Department for Hydrology and Geoinformation, Federal State Government of Lower Austria, Ed.; Federal State Government of Lower Austria: St. Pölten, Austria, 2013. [Google Scholar]
- Schwenk, H. Marktgemeinde Gresten, Schiliftanlage der Fa; Pfeiffer & Kreuse OHG, Erdrutsch; Internal Report; Amt der niederösterreichischen Landesregierung: Sankt Pölten, Austria, 1976. [Google Scholar]
- Schwenk, H.; Gresten, G.; Salcher, G. Gemeinde Gresten, Güterweg Salcher. Erdrutschschaden 1978. Erhebungsbericht und Gutachten des geologischen Dienstes der Baudirektion; Internal Report; Melk, Austria, 1979. [Google Scholar]
- Schweigl, J. Gresten, Krause (Gst.Nr.1999/1), Bramreiter (Gst.Nr.1999/6) u.Plank (Gst.Nr.1999/7) Katastrophenschaden 2006, Rutschung Salcher, geologischer Abschlussbericht zu den Vermessungen (No. BD1-G-142/001-2007); Internal Report; Amt der Niederösterreichischen Landesregierung: Sankt Pölten, Austria, 2013. [Google Scholar]
- Hinteregger, H. Landesbaudirektion—Geologischer Dienst. Katastrophenerhebungsblatt. Geologisches Gutachten. (BD-G-867); Internal Report; Landesbaudirektion. Geologischer Dienst: Sankt Pölten, Austria, 1987. [Google Scholar]
- Lotter, M.; Jochum, B. Geophysikalische und Ingenieurgeologische Methoden zur Untersuchung von Durch Massenbewegungen Bedingte Bauschäden in Niederösterreich (BBK-Projekt NC-62/F (2007) und ÜLG-35 (2007)); Internal Report; Amt der Niederösterreichischen Landesregierung. Geologischer Dienst: Sankt Pölten, Austria, 2010. [Google Scholar]
- Simeoni, L.; Mongiovì, L. Inclinometer monitoring of the Castelrotto landslide in Italy. J. Geotech. Geoenviron. Eng. 2007, 133, 653–666. [Google Scholar] [CrossRef]
- Stark, T.D.; Choi, H. Slope inclinometers for landslides. Landslides 2008, 5, 339–350. [Google Scholar] [CrossRef]
- Bordoni, M.; Vivaldi, V.; Bonì, R.; Spanò, S.; Tararbra, M.; Lanteri, L.; Parnigoni, M.; Grossi, A.; Figini, S.; Meisina, C. A methodology for the analysis of continuous time-series of automatic inclinometers for slow-moving landslides monitoring in Piemonte region, northern Italy. Nat. Hazards 2022, 115, 1115–1142. [Google Scholar] [CrossRef]
- Glötzl. Datasheet Neigungsmessrohre ABS 50, ABS 74, PVC 60, ALU 48; GLÖTZL Gesellschaft für Baumesstechnik mbH: Rheinstetten, Germany, 2016; p. 2. [Google Scholar]
- Glötzl. Datasheet NMGD Vertikalneigungsmesser; GLÖTZL Gesellschaft für Baumesstechnik mbH: Rheinstetten, Germany, 2019; p. 1. [Google Scholar]
- Measurand. Datasheet SAAF Model 003; Measurand: Hanwell, NB, Canada, 2019; p. 6. [Google Scholar]
- Hauck, C.; Stumvoll, M.J.; Jochum, B.; Guardiani, C.; Glade, T. The Influence of Hydro-Meteorological Conditions on Landslide Dynamics—An Application to the Salcher Landslide in Gresten, Lower Austria. In EGU General Assembly Conference Abstracts; EGU: Vienna, Austria, 2018; p. 15672. [Google Scholar]
- Tsourlos, P.; Jochum, B.; Supper, R.; Ottowitz, D.; Kim, J.H. Optimizing Geoelectrical Arrays for Special Geoelectrical Monitoring Instruments. In Near Surface Geoscience 2016—22nd European Meeting of Environmental and Engineering Geophysics; European Association of Geoscientists & Engineers: Utrecht, The Netherlands, 2016; Volume 2016, p. 495. [Google Scholar]
- Lidauer, S.; Jochum, B.; Ottowitz, D.; Stumvoll, M.J.; Glade, T. Geoelectric long-time monitoring: Changes and pattern within subsurface resistivity during different precipitation events in the Salcher landslide, Gresten (Lower Austria). In EGU General Assembly Conference Abstracts; EGU: Vienna, Austria, 2018; p. 12679. [Google Scholar]
- Ottowitz, D.; Hoyer, S.; Jochum, B.; Riegler, M.; Preuner, P.; Scolobig, A.; Supper, A. Long-Term Landslide Monitoring for Understanding of Underlying Dynamic Processes as Basis for an End-User Focused Early Warning—LAMOND; Geologische Bundesansalt Fachabteilung Geophysik: Vienna, Austria, 2018. [Google Scholar] [CrossRef]
- Stumvoll, M.J.; Konzett, M.; Schmaltz, E.M.; Glade, T. Application of UAS to Detect Infrequent and Local Large-Scale Surficial Displacements: Critical Examples from the Fields of Landslide and Erosion Research. In sUAS Applications in Geography; Konsoer, K., Leitner, M., Lewis, Q., Eds.; Springer: Cham, Switzerland, 2022; pp. 203–233. [Google Scholar]
- Canli, E.; Höfle, B.; Hämmerle, M.; Thiebes, B.; Glade, T. Permanent 3D laser scanning system for an active landslide in Gresten (Austria). Geophys. Res. Abstr. 2015, 17, 2885. [Google Scholar]
- DIN EN ISO 22476-2:2005; Geotechnical Investigation and Testing—Field Testing—Part 2: Dynamic Probing. ISO: Geneva, Switzerland, 2005.
- Schwab, J.; Gori, P.; Jeer, S. Landslide Hazards and Planning; American Planning Association: Chicago, IL, USA, 2005. [Google Scholar]
- Klose, M.; Damm, B.; Terhorst, B. Databases in geohazard science: An introduction. Geomorphology 2015, 249, 1–3. [Google Scholar] [CrossRef]
- Piacentini, D.; Troiani, F.; Daniele, G.; Pizziolo, M. Historical geospatial database for landslide analysis: The Catalogue of Landslide Occurrences in the Emilia-Romagna Region (CLOCkER). Landslides 2018, 15, 811–822. [Google Scholar] [CrossRef]
- Klose, M.; Maurischat, P.; Damm, B. Landslide impacts in Germany: A historical and socioeconomic perspective. Landslides 2016, 13, 183–199. [Google Scholar] [CrossRef]
- Qiang, X. Understanding the landslide monitoring and early warning: Consideration to practical issues. J. Eng. Geol. 2020, 28, 360374. [Google Scholar] [CrossRef]
- Palis, E.; Lebourg, T.; Tric, E.; Malet, J.-P.; Vidal, M. Long-term monitoring of a large deep-seated landslide (La Clapiere, South-East French Alps): Initial study. Landslides 2017, 14, 155–170. [Google Scholar] [CrossRef]
- NOEL GV. Digital Orthophoto; Department for Hydrology and Geoinformation, Federal State Government of Lower Austria, Ed.; Federal State Government of Lower Austria: St. Pölten, Austria, 2002. [Google Scholar]
- NOEL GV. Digital Orthophoto; Department for Hydrology and Geoinformation, Federal State Government of Lower Austria, Ed.; Federal State Government of Lower Austria: St. Pölten, Austria, 2019. [Google Scholar]
- Dixon, N.; Bromhead, E.N. Landsliding in London Clay coastal cliffs. Q. J. Eng. Geol. Hydrogeol 2002, 35, 327–334. [Google Scholar] [CrossRef]
- Hobbs, P.R.N.; Jones, L.D.; Kirkham, M.P.; Holyoake, S.J.; Pennington, C.V.L.; Dashwood, C.; Reeves, H.J. Establishment of a coastal landslide observatory at Aldbrough, East Riding of Yorkshire, UK. Q. J. Eng. Geol. Hydrogeol 2020, 53, 88–100. [Google Scholar] [CrossRef]
- Hutchinson, J.N. Survey of the Coastal Landslides of Kent; Building Research Station: London, UK, 1965. [Google Scholar]
- Lissak, C.; Macaire, O.; Malet, J.P.; Bitri, A.; Samyn, K.; Grandjean, G.; Davidson, R. Airborne, and ground-based data sources for characterizing the morpho-structure of a coastal landslide. Geomorphology 2014, 217, 140–151. [Google Scholar] [CrossRef]
Methods | Data | ||
---|---|---|---|
Surface monitoring (A) | Subsurface monitoring (B) | Data (A) | Data (B) |
multi-temporal TLS measurements | 4 manual inclinometer (Glötzl NMGD) | high resolution 3D-point cloud 1 | measured values A/B [cm], deformation A/B [cm], borehole profile A/B [cm] 2 |
multi-temporal UAV measurements | automatic inclinometer (Measurand SAAF) | high resolution DEM 3 | deformation [mm] 4 |
GPS measurements, measuring stones (finished) | GPS time series | ||
Meteorological Station: | |||
-temperature and humidity (HC2S3) | 9 TDR probes (CS605) | temp [°C], rel. humidity [%] 4 | permittivity [unitless], electr. conductivity [dS/m], temp. [°C] 4 |
-air pressure (CS106) | 8 piezometers (Geokon 4500AL) | baro. pressure [mbar] 4 | avg. groundwater level [m], avg. temp. [°C] 4 |
-heated precipitation sensor (Young 52202) | total precip. [mm] 4 | ||
-precipitation sensor (SBS500) | total precip. [mm] 4 | ||
-pyranometer (CMP3) | solar radiance [kW and J, avg] 4 | ||
-Windsonic4 ultrasonic anemometer | direction [deg.], wind speed [ms, avg] 4 | ||
-mechanical anemometer (034B Met One) | direction [deg.], wind speed [ms, avg] 4 | ||
-distrometer (OTT Parsivel) | prec. intensity [mm/h], SYNOP Code, particle quantity, radar reflectivity [dBz] 4 | ||
-heated snow depth sensor (SR50AH) | distance to ground [m] 4 |
Methods | Data | ||
---|---|---|---|
Surface monitoring (A) | Subsurface monitoring (B) | Data (A) | Data (B) |
multi-temporal TLS measurements | 3 manual inclinometer (Glötzl NMGD) | high resolution 3D-point cloud 1 | measured values A/B [cm], deformation A/B [cm], borehole profile A/B [cm] 2 |
multi-temporal UAV measurements (finished) | automatic inclinometer (Glötzl SNMGD) | high resolution DEM 3 | deformation [cm], temp. [°C] 4 |
GPS and TS measurements, with geodetic plies (finished) | automatic ERT (operated by the GBA) | GPS time series 3 | model of the specific electrical resistance 5 |
wireless sensor network (finished) | dislocation measurements 6 | ||
Meteorological Station: | |||
-temperature and humidity (HC2S3) | 3 TDR probes (CS605) | temp [°C], rel. humidity [%] 7 | permittivity [unitless], electr. conductivity [dS/m], temp. [°C] 7 |
-air pressure (CS106) | 5 piezometers (Geokon 4500AL) | baro. pressure [mbar] 7 | avg. groundwater level [m], avg. temp. [°C] 7 |
-heated precipitation sensor (Young 52202) | total precip. [mm] 7 | ||
-precipitation sensor (SBS500) | total precip. [mm] 7 | ||
-pyranometer (MS-60) | solar radiance [kW and J, avg] 7 | ||
-Windsonic4 ultrasonic anemometer | direction [deg.], wind speed [ms, avg] 7 | ||
-mechanical anemometer (034B Met One) | direction [deg.], wind speed [ms, avg] 7 | ||
-distrometer (OTT Parsivel) | prec. intensity [mm/h], SYNOP Code, particle quantity, radar reflectivity [dBz] 7 |
Methods | Data | ||
---|---|---|---|
Surface monitoring (A) | Subsurface monitoring (B) | Data (A) | Data (B) |
multi-temporal TLS measurements | 5 manual inclinometer (Glötzl NMGD) | high resolution 3D-point cloud 1 | measured values A/B [cm], deformation A/B [cm], borehole profile A/B [cm] 2 |
multi-temporal UAV measurements | high resolution DEM 1 | ||
Meteorological Station: | |||
-temperature and humidity (HC2S3) | 9 TDR probes (CS605) | temp [°C], rel. humidity [%] 3 | permittivity [unitless], electr. conductivity [dS/m], temp. [°C] 3 |
-air pressure (CS106) | 3 piezometers (Geokon 4500AL) | baro. pressure [mbar] 3 | avg. groundwater level [m], avg. temp. [°C] 3 |
-heated precipitation sensor (Young 52202) | total precip. [mm] 3 | ||
-pyranometer (MS-60) | solar radiance [kW and J, avg] 3 | ||
-Windsonic4 ultrasonic anemometer | direction [deg.], wind speed [ms, avg] 3 | ||
-heated snow depth sensor (SR50AH) | distance to ground [m] 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marr, P.; Jiménez Donato, Y.A.; Carraro, E.; Kanta, R.; Glade, T. The Role of Historical Data to Investigate Slow-Moving Landslides by Long-Term Monitoring Systems in Lower Austria. Land 2023, 12, 659. https://doi.org/10.3390/land12030659
Marr P, Jiménez Donato YA, Carraro E, Kanta R, Glade T. The Role of Historical Data to Investigate Slow-Moving Landslides by Long-Term Monitoring Systems in Lower Austria. Land. 2023; 12(3):659. https://doi.org/10.3390/land12030659
Chicago/Turabian StyleMarr, Philipp, Yenny Alejandra Jiménez Donato, Edoardo Carraro, Robert Kanta, and Thomas Glade. 2023. "The Role of Historical Data to Investigate Slow-Moving Landslides by Long-Term Monitoring Systems in Lower Austria" Land 12, no. 3: 659. https://doi.org/10.3390/land12030659
APA StyleMarr, P., Jiménez Donato, Y. A., Carraro, E., Kanta, R., & Glade, T. (2023). The Role of Historical Data to Investigate Slow-Moving Landslides by Long-Term Monitoring Systems in Lower Austria. Land, 12(3), 659. https://doi.org/10.3390/land12030659