The Impact of the Digital Economy on Carbon Emissions from Cultivated Land Use
Abstract
:1. Introduction
2. Theoretical Mechanism and Research Hypothesis
2.1. Digital Economy and Carbon Emissions from Cultivated Land Use
2.2. Green Technology Innovation and Carbon Emissions from Cultivated Land Use
3. Methodology
3.1. Variable Selection
3.1.1. Core Interpreted Variable
3.1.2. Core Explanatory Variables
Intermediary Variables
Control Variables
3.2. Model Settings
3.2.1. Fixed-Effect Model
3.2.2. Mediation Effect Model
3.3. Data Description
4. Results
4.1. Spatial and Temporal Aspects of China’s Carbon Emissions from Cultivated Land Usage
4.1.1. Time-Series Pattern of Carbon Emissions from Cultivated Land in China
4.1.2. Spatial Characteristics of Carbon Emissions from Cultivated Land in China
4.2. Benchmark Regression
4.3. Robustness Test
4.3.1. Replacing Explanatory Variables and Remove Some Samples
4.3.2. Random Sampling and Adjust Sample Period
4.3.3. Quantile Regression
4.4. Endogeneity Test
4.5. Mechanism Analysis
5. Discussion
6. Conclusions and Suggestions
- (1)
- The development of the digital economy significantly reduces carbon emissions from cultivated land use, and even after considering endogeneity and conducting robustness tests, this conclusion is still valid.
- (2)
- Green technology evolution plays a significant mediating role in the effect of digital economic growth on carbon emissions from cultivated land use. The growth of the digital economy considerably enhances green technical renovation, which can effectively reduce carbon emissions from cultivated land use by promoting increasing green invention patent applications and licenses, thus bringing into play the carbon emissions effect of the digital economy.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F.; Leip, A. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment of the People’s Republic of China. The Third National communication of the People’s Republic of China on Climate Change. 2018. Available online: https://www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/201907/P020190701762678052438.pdf (accessed on 15 January 2023).
- Cui, X.; Cai, T.; Deng, W.; Zheng, R.; Jiang, Y.; Bao, H. Indicators for Evaluating High-Quality Agricultural Development: Empirical Study from Yangtze River Economic Belt, China. Soc. Indic. Res. 2022, 164, 1101–1127. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Lin, Z. Coupling coordination between agricultural carbon emission efficiency and economic growth at provincial level in China. China Popul. Resour. Environ. 2022, 32, 13–22. [Google Scholar]
- Huang, X.; Yang, F.; Lu, Q. Research on the Rebound Effect of Agricultural Carbon Emission Based on Technological Progress in Main Grain Producing Areas. Resour. Environ. Yangtze Basin 2022, 31, 2780–2788. [Google Scholar]
- Yang, X.; Jin, X.; Xiang, X.; Fan, Y.; Liu, J.; Shan, W.; Zhou, Y. Estimation of carbon emissions from cultivated land reclamation in China in recent 300 years. China Sci. Earth Sci. 2019, 49, 554–568. [Google Scholar]
- Xie, H.; Zhang, Y.; Choi, Y. Measuring the cultivated land use efficiency of the main grain-producing areas in China under the constraints of carbon emissions and agricultural nonpoint source pollution. Sustainability 2018, 10, 1932. [Google Scholar] [CrossRef] [Green Version]
- Ding, B.; Yang, S.; Zhao, Y.; Yi, S. Study on the spatio-temporal characteristics and decoupling effect of carbon emissions from the use of cultivated land resources in China. China Land Sci. 2019, 33, 45–54. [Google Scholar]
- Ke, N.; Zhang, X.; Lu, X.; Kuang, B.; Jiang, B. Regional Disparities and Influencing Factors of Eco-Efficiency of Arable Land Utilization in China. Land 2022, 11, 257. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, A.; Wen, G. Spatial and temporal pattern and evolution trend of ecological efficiency of cultivated land use in major grain producing areas in the middle and lower reaches of the Yangtze River. China Land Sci. 2021, 35, 50–60. [Google Scholar]
- Wen, G.; Hu, R.; Tang, X.; Tang, Y.; Zheng, J.; Meng, J. Temporal and spatial characteristics of carbon emissions and ecological efficiency of cultivated land use in Dongting Lake District. Ecol. Econ. 2022, 38, 132–138. [Google Scholar]
- Ma, L.; Zhang, R.; Pan, Z.; Wei, F. Analysis on spatio-temporal pattern evolution and influencing factors of ecological efficiency of cultivated land use among provinces in China—Based on panel data from 2000 to 2019. China Land Sci. 2022, 36, 74–85. [Google Scholar]
- Luo, X.; Ao, X.; Zhang, Z.; Wan, Q.; Liu, X. Spatio-temporal variations of cultivated land use efficiency in the Yangtze River Economic Belt based on carbon emission constraints. J. Geogr. Sci. 2020, 30, 535–552. [Google Scholar] [CrossRef]
- Vleeshouwers, L.M.; Verhagen, A. Carbon emission and sequestration by agricultural land use: A model study for Europe. Glob. Chang. Biol. 2010, 8, 519–530. [Google Scholar] [CrossRef]
- Zaman, K.; Shah, I.Q.; Jaboob, S.; Ahmad, M. Measuring the Impact of CO2 Emission and Arable Land on Specific Growth Factors in Pakistan. Int. J. Ecol. Econ. Stat. 2013, 29, 74–86. [Google Scholar]
- Xiao, P.; Zhang, Y.; Qian, P.; Lu, M.; Yu, Z.; Xu, J.; Zhao, C.; Qian, H. Spatio-temporal Characteristics, Decoupling Effect and Driving Factors of Carbon Emission from Cultivated Land Utilization in Hubei Province. Int. J. Environ. Res. Public Health 2022, 19, 9326. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Yu, J.; Li, J.; Li, S.; Zhang, D.; Wu, D.; Pan, S.; Chen, W. Spatial correlation among cultivated land intensive use and carbon emission efficiency: A case study in the Yellow River Basin, China. Environ. Sci. Pollut. Res. 2022, 29, 43341–43360. [Google Scholar] [CrossRef]
- Zhou, M.; Zhang, H.; Ke, N. Cultivated Land Transfer, Management Scale, and Cultivated Land Green Utilization Efficiency in China: Based on Intermediary and Threshold Models. Int. J. Environ. Res. Public Health 2022, 19, 12786. [Google Scholar] [CrossRef]
- Tian, H.; Guan, H. Research on the Impact of Digital Economy on Carbon Emissions from Food Production—Empirical Evidence from 108 Prefecture Level Cities in the Yangtze River Economic Belt. 2022. Available online: http://kns.cnki.net/kcms/detail/11.3513.S.20220818.1050.012.html (accessed on 15 January 2023).
- Wang, J.; Wang, J.; Li, Z. Digital Finance Development and Household Consumption Carbon Emission. Financ. Sci. 2022, 409, 118–132. [Google Scholar]
- Zhang, W.; Liu, X.; Wang, D.; Zhou, J. Digital economy and carbon emissions performance: Evidence at China’s city level. Energy Policy 2022, 165, 112927. [Google Scholar] [CrossRef]
- Ma, Q.; Khan, Z.; Tariq, M.; IŞik, H.; Rjoub, H. Sustainable digital economy and trade adjusted carbon emissions: Evidence from China’s provincial data. Ekon. Istraž./Econ. Res. 2022, 35, 1–17. [Google Scholar] [CrossRef]
- Li, X.; Liu, J.; Ni, P. The Impact of the Digital Economy on CO2 Emissions: A Theoretical and Empirical Analysis. Sustainability 2021, 13, 7267. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Y. Digital technology development, spatio-temporal dynamic effects and regional carbon emissions. Sci. Sci. Res. 2022, 1–17. [Google Scholar] [CrossRef]
- Ma, Q.; Tariq, M.; Mahmood, H.; Khan, Z. The nexus between digital economy and carbon dioxide emissions in China: The moderating role of investments in research and development. Technol. Soc. 2022, 68, 101910. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J. The Dynamic Impact of Digital Economy on Carbon Emission Reduction: Evidence City-level Empirical Data in China. J. Clean. Prod. 2022, 351, 131570. [Google Scholar] [CrossRef]
- Guo, F.; Yang, S.; Ren, Y. Digital Economy, Green Technology Innovation and Carbon Emission—Empirical Evidence from the Urban Level of China. J. Shaanxi Norm. Univ. 2022, 51, 45–60. [Google Scholar]
- Han, D.; Ding, Y.; Shi, Z.; He, Y. The impact of digital economy on total factor carbon productivity: The threshold effect of technology accumulation. Environ. Sci. Pollut. Res. 2022, 29, 55691–55706. [Google Scholar] [CrossRef]
- Yi, Z.; Wei, L.; Wang, L. Research on the Effect of Digital Industry Technology Development on Carbon Emission Intensity. Int. Econ. Trade Explor. 2022, 38, 22–37. [Google Scholar]
- Bao, Z.; Zhou, X. Digital empowerment and urban carbon emissions—A quasi-natural experiment based on the next generation Internet demonstration cities. Prog. Clim. Chang. Res. 2022, 18, 503–508. [Google Scholar]
- Xu, W.; Zhou, J.; Liu, C. The impact of digital economy on urban carbon emissions:Based on the analysis of spatial effects. Geogr. Res. 2022, 41, 111–129. [Google Scholar]
- Miao, L.; Chen, J.; Fan, T.; Lv, Y. The impact of digital economy development on carbon emissions—Panel data analysis based on 278 prefecture level cities. China South. Financ. 2022, 546, 45–57. [Google Scholar]
- Ge, L.; Mo, L.; Huang, N. Digital economy development, industrial structure upgrading, and urban carbon emissions. Mod. Financ. Econ. 2022, 42, 20–37. [Google Scholar]
- Li, Z.; Wang, J. How does the development of digital economy affect space carbon emissions in the context of economic agglomeration? J. Xi’an Jiaotong Univ. 2022, 42, 87–97. [Google Scholar]
- Xie, Y. Effect and mechanism of digital economy on regional carbon emission intensity. Contemp. Econ. Manag. 2022, 44, 68–78. [Google Scholar]
- Yu, S.; Fan, X.; Jiang, H. Research on the Impact of Digital Economy Development on the Improvement of Carbon Productivity. Stat. Inf. Forum 2022, 37, 26–35. [Google Scholar]
- Kuang, B.; Lu, X.; Zhou, M.; Chen, D. Provincial cultivated land use efficiency in China: Empirical analysis based on the SBM-DEA model with carbon emissions considered. Technol. Forecast. Soc. Chang. 2020, 151, 119874. [Google Scholar] [CrossRef]
- Wu, F.; Li, L.; Zhang, H.; Chen, F. Effects of conservation tillage on net carbon release from farmland ecosystem. Chin. J. Ecol. 2007, 26, 2035–2039. [Google Scholar]
- Zhou, Y.; Yang, Y.; Yuan, W.; Gao, J. GIS based ecological sensitivity analysis and evaluation of Xiaoqing River basin in Jinan. J. Northwest For. Univ. 2016, 31, 50–56. [Google Scholar]
- Zhi, J.; Gao, J. Comparative analysis of carbon emissions from food consumption in urban and rural China. Prog. Geogr. 2009, 28, 429–434. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Institute for Global Environmental Strategies; IPCC: Hayama, Japan, 2006. [Google Scholar]
- Wang, B.; Zhang, W. Study on measurement and temporal and spatial difference of agricultural ecological efficiency in China. China Popul. Resour. Environ. 2016, 26, 11–19. [Google Scholar] [CrossRef]
- Bo, L.; Junbiao, Z.; Haipeng, L. Temporal and spatial characteristics of agricultural carbon emissions in China and decomposition of influencing factors. China Popul. Resour. Environ. 2011, 21, 80–86. [Google Scholar]
- Zhao, T.; Zhang, Z.; Liang, S. Digital Economy, Entrepreneurship Activity and High Quality Development—Empirical Evidence from Chinese Cities. Manag. World 2020, 36, 65–76. [Google Scholar]
- Li, X.; Wu, F.; Zhu, L. Digital Economy and Regional Innovation Performance. J. Shanxi Univ. Financ. Econ. 2021, 43, 17–30. [Google Scholar]
- Guo, F.; Wang, J.; Wang, F.; Kong, T.; Zhang, X.; Cheng, Z. Measuring China’s digital inclusive financial development: Index compilation and spatial characteristics. Economics (Quarterly) 2020, 19, 1401–1418. [Google Scholar]
- Wen, Z.; Zhang, L.; Hou, J.; Liu, H. Mediation effect test procedure and its application. J. Psychol. 2004, 36, 614–620. [Google Scholar]
- Beijing Municipal Bureau of Statistics, Survey Office of the National Bureau of Statistics in Beijing. Beijing Statistical Yearbook (2020); China Statistics Press: Beijing, China, 2020.
- Shanghai Municipal Bureau of Statistics, Survey Office of the National Bureau of Statistics in Shanghai. Shanghai Statistical Yearbook (2020); China Statistics Press: Beijing, China, 2020.
- Dang, Y.; Sheng, D. “Pollution Shelter” Hypothesis Test—An empirical Study on the Connotative Pollution of China’s Bilateral Trade with the United States, Japan and Germany. Mod. Econ. Discuss. 2018, 435, 54–66. [Google Scholar]
- Dang, L.; Li, X.; Shen, S. Digital Economy, Innovation Environment and Cooperative Innovation Performance. J. Shanxi Univ. Financ. Econ. 2021, 43, 1–15. [Google Scholar]
- Koenker, R.; Bassett, G.W. Regression quantiles. Econometrica 1978, 46, 211–244. [Google Scholar] [CrossRef]
- Zhang, Z.; Fu, W.K.; Ma, L. The impact of digital economy on green development in China. Front. Environ. Sci. 2022, 10, 1464. [Google Scholar] [CrossRef]
- Huang, X.; Zhou, J.; Zhou, Y. Digital Economy’s Spatial Implications on Urban Innovation and Its Threshold: Evidence from China. Complexity 2022, 2022, 3436741. [Google Scholar] [CrossRef]
- Liu, L.; Ding, T.; Wang, H. Digital Economy, Technological Innovation and Green High-Quality Development of Industry: A Study Case of China. Sustainability 2022, 14, 11078. [Google Scholar] [CrossRef]
- Dai, D.; Fan, Y.; Wang, G.; Xie, J. Digital Economy, R&D Investment, and Regional Green Innovation—Analysis Based on Provincial Panel Data in China. Sustainability 2022, 14, 6508. [Google Scholar]
- You, X.; Chen, Z. Interaction and mediation effects of economic growth and innovation performance on carbon emissions: Insights from 282 Chinese cities. Sci. Total Environ. 2022, 831, 154910. [Google Scholar] [CrossRef] [PubMed]
- Dong, F.; Zhu, J.; Li, Y.; Chen, Y.; Gao, Y.; Hu, M.; Qin, C.; Sun, J. How green technology innovation affects carbon emission efficiency: Evidence from developed countries proposing carbon neutrality targets. Environ. Sci. Pollut. Res. 2022, 29, 35780–35799. [Google Scholar] [CrossRef]
- Liu, J.; Duan, Y.; Zhong, S. Does green innovation suppress carbon emission intensity? New evidence from China. Environ. Sci. Pollut. Res. 2022, 29, 1–22. [Google Scholar] [CrossRef]
- Gao, P.; Wang, Y.; Zou, Y.; Su, X.; Che, X.; Yang, X. Green technology innovation and carbon emissions nexus in China: Does industrial structure upgrading matter? Front. Psychol. 2022, 13, 951172. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Zhu, Q. Innovation in emerging economies: Research on the digital economy driving high-quality green development. J. Bus. Res. 2022, 145, 801–813. [Google Scholar] [CrossRef]
- Zhang, J.; Lyu, Y.; Li, Y.; Geng, Y. Digital economy: An innovation driving factor for low-carbon development. Environ. Impact Assess. Rev. 2022, 96, 106821. [Google Scholar] [CrossRef]
- Bai, F.; Huang, Y.; Shang, M.; Ahmad, M. Modeling the impact of digital economy on urban environmental pollution: Empirical evidence from 277 prefecture-level cities in China. Front. Environ. Sci. 2022, 10, 1489. [Google Scholar] [CrossRef]
- Dong, F.; Hu, M.; Gao, Y.; Liu, Y.; Zhu, J.; Pan, Y. How does digital economy affect carbon emissions? Evidence from global 60 countries. Sci. Total Environ. 2022, 852, 158401. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, S.; Zhu, Z. Has the Digital Economy Reduced Carbon Emissions?: Analysis Based on Panel Data of 278 Cities in China. Int. J. Environ. Res. Public Health 2022, 19, 11814. [Google Scholar] [CrossRef]
- Lee, C.C.; Yuanm, Y.; Wen, H. Can Digital Economy Alleviate CO2 Emissions in the Transport Sector? Evidence from Provincial Panel Data in China; Natural Resources Forum; Blackwell Publishing Ltd.: Oxford, UK, 2022; Volume 46, pp. 289–310. [Google Scholar]
- Berkhout, P.H.G.; Muskens, J.C.; Velthuijsen, J.W. Defining the rebound effect. Energy Policy 2000, 28, 425–432. [Google Scholar] [CrossRef]
- Shao, S.; Yang, L.; Huang, T. Theoretical model of energy rebound effect and China’s experience. Econ. Res. J. 2013, 48, 96–109. [Google Scholar]
- Gu, J. Sharing economy, technological innovation and carbon emissions: Evidence from Chinese cities. J. Innov. Knowl. 2022, 7, 100228. [Google Scholar] [CrossRef]
- Hao, X.; Wen, S.; Li, Y.; Xu, Y.; Xue, Y. Can the digital economy development curb carbon emissions? Evidence from China. Front. Psychol. 2022, 13, 938918. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, X.; Ran, Q.; Wu, H.; Irfan, M.; Ahmad, M. Energy structure, digital economy, and carbon emissions: Evidence from China. Environ. Sci. Pollut. Res. 2021, 28, 64606–64629. [Google Scholar] [CrossRef]
- Chen, P. Relationship between the digital economy, resource allocation, and corporate carbon emission intensity: New evidence from listed Chinese companies. Environ. Res. Commun. 2022, 4, 075005. [Google Scholar] [CrossRef]
- Xiang, X.; Yang, G.; Sun, H. The impact of the digital economy on low-carbon, inclusive growth: Promoting or restraining. Sustainability 2022, 14, 7187. [Google Scholar] [CrossRef]
- Zhong, K.; Fu, H.; Li, T. Can the Digital Economy Facilitate Carbon Emissions Decoupling? An Empirical Study Based on Provincial Data in China. Int. J. Environ. Res. Public Health 2022, 19, 6800. [Google Scholar] [CrossRef]
Carbon Source of Cultivated Land Utilization | Expressions | Explanations |
---|---|---|
Cultivation () | Sown area of grain crops; the coefficient is 312.6 kg CE/hm2 [38] | |
Chemical fertilizer () | The amount converted from fertilizer application; the coefficient is 0.8956 kg CE/kg2 [39] | |
Pesticides () | Pesticide usage; the coefficient is 4.9341 kg CE/kg [40] | |
Agricultural diesel () | Agricultural diesel consumption; the coefficient is 0.5927 kg CE/kg [41] | |
Agricultural film () | Amount of agricultural film used; the coefficient is 5.18 kg CE/kg [42] | |
Agricultural irrigation () | Agricultural irrigation amount; the coefficient is 20.476 kg CE/hm2 [43] |
Variable Name | Variable Symbol | Sample Size | Average Value | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|---|---|
Carbon emissions from cultivated land use | clu | 270 | 29.129 | 19.773 | 1.195 | 87.088 |
Digital economy development | dig | 270 | 0.341 | 0.150 | 0.077 | 0.895 |
T inclusive financial index | df | 270 | 0.203 | 0.092 | 0.018 | 0.410 |
Opening level | openlevel | 270 | 4.842 | 1.121 | 1.869 | 6.987 |
Planting structure | planting_structure | 270 | 4.168 | 0.222 | 3.576 | 4.575 |
human capital | hucap | 270 | −2.074 | 0.400 | −2.925 | −0.683 |
rural energy consumption | encon | 270 | 4.853 | 1.328 | 1.411 | 7.575 |
Domestic waste disposal | waste_disposal | 270 | 4.510 | 0.160 | 3.731 | 4.605 |
Environmental regulation | eg | 270 | 1.342 | 0.751 | 0.300 | 4.240 |
Highway mileage | road | 270 | 7.064 | 0.847 | 4.605 | 8.123 |
Variables | (1) | (2) | (3) |
---|---|---|---|
fe_non Control | fe | re | |
dig | −3.936 *** | −9.362 *** | −10.91 *** |
(−4.34) | (−5.76) | (−6.77) | |
openlevel | 1.448 *** | 1.564 *** | |
(2.79) | (2.98) | ||
planting_structure | −15.82 *** | −13.13 *** | |
(−5.19) | (−4.34) | ||
hucap | 0.533 | −0.210 | |
(0.54) | (−0.21) | ||
encon | 1.871 *** | 2.338 *** | |
(2.69) | (3.46) | ||
waste_disposal | 2.838 ** | 2.710 ** | |
(2.34) | (2.17) | ||
eg | 0.234 | 0.199 | |
(0.92) | (0.76) | ||
road | 3.496 | 8.441 *** | |
(1.59) | (4.73) | ||
_cons | 30.47 *** | 45.45 ** | −3.903 |
(91.46) | (2.20) | (−0.21) | |
N | 270 | 270 | 270 |
R2 | 0.073 | 0.267 |
Variables | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
fe | thfe | xtfe | bsfe | tzfe | |
dig | −9.362 *** | −10.43 *** | −9.362 *** | −13.74 *** | |
(−5.76) | (−5.43) | (−5.30) | (−8.78) | ||
openlevel | 1.448 *** | 1.714 *** | 1.765 *** | 1.448 ** | 0.742 |
(2.79) | (3.13) | (3.17) | (2.25) | (1.48) | |
planting_structure | −15.82 *** | −13.17 *** | −18.63 *** | −15.82 *** | −17.26 *** |
(−5.19) | (−4.15) | (−4.86) | (−3.62) | (−3.89) | |
hucap | 0.533 | −0.447 | 0.778 | 0.533 | −0.413 |
(0.54) | (−0.42) | (0.77) | (0.60) | (−0.33) | |
encon | 1.871 *** | 1.601 ** | 5.889 *** | 1.871 * | 0.783 |
(2.69) | (2.13) | (4.83) | (1.93) | (0.96) | |
waste_disposal | 2.838 ** | 1.992 | 4.094 *** | 2.838 ** | −5.410 ** |
(2.34) | (1.53) | (3.17) | (2.19) | (−2.37) | |
eg | 0.234 | 0.502 * | 0.399 | 0.234 | −0.125 |
(0.92) | (1.90) | (1.43) | (0.69) | (−0.52) | |
road | 3.496 | 0.472 | −2.776 | 3.496 | 0.781 |
(1.59) | (0.20) | (−0.94) | (1.59) | (0.34) | |
df | −6.664 ** | ||||
(−2.35) | |||||
_cons | 45.45 ** | 55.39 ** | 79.95 *** | 45.45 ** | 117.8 *** |
(2.20) | (2.46) | (2.90) | (2.24) | (4.47) | |
N | 270 | 270 | 234 | 270 | 150 |
R2 | 0.267 | 0.182 | 0.364 | 0.267 | 0.588 |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
fe | fe30 | fe60 | fe90 | |
dig | −9.362 *** | −9.456 *** | −9.275 *** | −9.156 *** |
(−5.76) | (−3.39) | (−5.54) | (−3.89) | |
openlevel | 1.448 *** | 1.663 * | 1.249 ** | 0.978 |
(2.79) | (1.91) | (2.39) | (1.33) | |
planting_structure | −15.82 *** | −16.09 ** | −15.57 *** | −15.22 ** |
(−5.19) | (−2.22) | (−3.58) | (−2.49) | |
hucap | 0.533 | 0.292 | 0.756 | 1.061 |
(0.54) | (0.18) | (0.76) | (0.76) | |
encon | 1.871 *** | 2.500 * | 1.289 | 0.493 |
(2.69) | (1.76) | (1.51) | (0.41) | |
waste_disposal | 2.838 ** | 2.999 | 2.691 ** | 2.488 |
(2.34) | (1.41) | (2.11) | (1.39) | |
eg | 0.234 | 0.362 | 0.116 | −0.0466 |
(0.92) | (0.58) | (0.31) | (−0.09) | |
road | 3.496 | 3.540 | 3.456 * | 3.400 |
(1.59) | (1.17) | (1.90) | (1.33) | |
_cons | 45.45 ** | |||
(2.20) | ||||
N | 270 | 270 | 270 | 270 |
R2 | 0.267 |
Variables | (1) | (2) |
---|---|---|
Phase I | Phase II | |
IV | 1.044 *** | |
(32.02) | ||
dig | −11.03 *** | |
(−6.55) | ||
control variables | yes | yes |
_cons | 0.885 ** | |
(2.37) | ||
N | 240 | 240 |
R2 | 0.951 | 0.390 |
Variables | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
fir | sec1 | thir1 | sec2 | thir2 | |
dig | −9.362 *** | 3.034 *** | −11.51 *** | 2.377 *** | −10.43 *** |
(−4.66) | (11.69) | (−5.54) | (11.48) | (−4.87) | |
openlevel | 1.448 | −0.0973 | 1.571 | −0.0313 | 1.500 |
(1.44) | (−1.34) | (1.60) | (−0.54) | (1.50) | |
planting_structure | −15.82 ** | 1.326 ** | −16.23 ** | 0.891 * | −15.60 ** |
(−2.44) | (2.29) | (−2.53) | (1.97) | (−2.33) | |
hucap | 0.533 | 0.190 | 0.795 | 0.125 | 0.903 |
(0.54) | (1.13) | (0.82) | (0.75) | (0.93) | |
encon | 1.871 | 0.349 | 1.772 | 0.179 | 1.986 * |
(1.61) | (1.68) | (1.61) | (1.47) | (1.77) | |
waste_disposal | 2.838 * | 0.0409 | −0.106 | ||
(1.76) | (0.26) | (−0.66) | |||
eg | 0.234 | 0.0206 | 0.226 | 0.0831 *** | 0.175 |
(1.02) | (0.61) | (1.01) | (2.80) | (0.76) | |
road | 3.496 | 1.683 *** | 1.539 | 1.740 *** | 1.730 |
(1.21) | (3.51) | (0.53) | (5.61) | (0.60) | |
gretech1 | 1.030 *** | ||||
(2.90) | |||||
gretech2 | 0.880 * | ||||
(1.85) | |||||
_cons | 45.45 * | −12.11 ** | 67.36 ** | −10.88 *** | 64.91 ** |
(1.80) | (−2.52) | (2.68) | (−3.20) | (2.50) | |
N | 270 | 270 | 270 | 270 | 270 |
R2 | 0.267 | 0.824 | 0.269 | 0.813 | 0.259 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Sun, Z.; Zhou, J.; Sow, Y.; Cui, X.; Chen, H.; Shen, Q. The Impact of the Digital Economy on Carbon Emissions from Cultivated Land Use. Land 2023, 12, 665. https://doi.org/10.3390/land12030665
Li J, Sun Z, Zhou J, Sow Y, Cui X, Chen H, Shen Q. The Impact of the Digital Economy on Carbon Emissions from Cultivated Land Use. Land. 2023; 12(3):665. https://doi.org/10.3390/land12030665
Chicago/Turabian StyleLi, Jie, Zhengchuan Sun, Jie Zhou, Yaya Sow, Xufeng Cui, Haipeng Chen, and Qianling Shen. 2023. "The Impact of the Digital Economy on Carbon Emissions from Cultivated Land Use" Land 12, no. 3: 665. https://doi.org/10.3390/land12030665
APA StyleLi, J., Sun, Z., Zhou, J., Sow, Y., Cui, X., Chen, H., & Shen, Q. (2023). The Impact of the Digital Economy on Carbon Emissions from Cultivated Land Use. Land, 12(3), 665. https://doi.org/10.3390/land12030665