Research on the Slope Gradient Effect and Driving Factors of Construction Land in Urban Agglomerations in the Upper Yellow River: A Case Study of the Lanzhou–Xining Urban Agglomerations
Abstract
:1. Introduction
2. Data Sources and Methodology
2.1. Study Area
2.2. Data Source and Processing
2.3. Methodology
2.3.1. Construction Land Level Expansion Measure
2.3.2. Terrain and Construction Land Slope Spectra
2.3.3. Comparative Advantage Index of the Construction Land Distribution
2.3.4. Average Construction Land Climbing Index and Upper-Limit Slope
2.3.5. Construction Land Climbing Heat
2.3.6. Spearman’s Rank Correlation Analysis
3. Results and Analysis
3.1. Analysis of the Multiscale Horizontal Expansion Characteristics of Construction Land
3.1.1. Horizontal Expansion Characteristics of Urban-Agglomeration-Scale Construction Land
3.1.2. Provincial-Tract-Scale Construction Land Level Expansion Characteristics
3.1.3. Typical City Construction Land Horizontal Expansion Characteristics
3.1.4. County (District)-Scale Construction Land Level Expansion Characteristics
3.2. Analysis of the Spatial Transfer Characteristics of Construction Land
3.2.1. Land for Urban Construction
3.2.2. Rural Settlement Land
3.2.3. Other Construction Land
3.3. Analysis of the Evolutionary Characteristics of the Multiscale Slope Spectrum of Construction Land
3.3.1. Characteristics of the Urban Agglomeration Construction Land Slope Spectrum
3.3.2. Slope Spectrum Characteristics of Construction Land at the Provincial Tract Scale
3.3.3. Characteristics of the Construction Land Slope Spectra of Typical Cities
3.3.4. Characteristics of the Slope Spectrum of Construction Land at the County (District) Scale
3.4. Analysis of the Construction Land Climbing Gradient Effect
3.5. Correlation Analysis of the Driving Forces of Slope-Climbing Construction Land
4. Discussion and Conclusions
4.1. Discussion
4.2. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ning, J.; Liu, J.; Kuang, W.; Xu, X.; Zhang, S.; Yan, C.; Li, R.; Wu, S.; Hu, Y.; Du, G.; et al. Spatiotemporal patterns and characteristics of land-use change in China during 2010–2015. J. Geogr. Sci. 2018, 28, 547–562. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Ren, J.; Zhou, W.; Guo, J.; Huang, Y.; Hai, W. Analysis on Spatial-Temporal Characteristics and Influencing Factors of Multi-functionality of Land Use in Qinghai-Tibet Alpine Mountain Areas: A Case Study of Haidong City in Qinghai Province, China. China Land Sci. 2021, 35, 90–100. [Google Scholar]
- Li, X.B. Explanation of land use changes. Prog. Geogr. 2002, 21, 195–203. [Google Scholar] [CrossRef]
- Kuang, W. 70 years of urban expansion across China: Trajectory, pattern, and national policies. Sci. Bull. 2020, 65, 1970–1974. [Google Scholar] [CrossRef] [PubMed]
- Angel, S.; Parent, J.; Civco, D.L.; Blei, A.; Potere, D. The dimensions of global urban expansion: Estimates and projections for all countries, 2000–2050. Prog. Plan. 2011, 75, 53–107. [Google Scholar] [CrossRef]
- United Nations. World Cities Report 2020: The Value of Sustainable Urbanization.UN-HABITAT. 2020. Available online: https://unhabitat.org/world-cities-report-2020-the-value-of-sustainable-urbanization (accessed on 5 November 2022).
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiao, W.; Liu, Y.; Wang, Y.; Fang, B.; Zhao, Y. The relationship of evolution between urban land use types and intensity in Nanjing since the early 21st century. Acta Geogr. Sin. 2015, 70, 1800–1810. [Google Scholar] [CrossRef]
- Zhou, L.; Dang, X.; Zhou, C.; Wang, B.; Wei, W. Evolution characteristics of slope spectrum and lope-climbing effects of built-up land in China. Acta Geogr. Sin. 2021, 76, 1747–1762. [Google Scholar] [CrossRef]
- Xu, Y.; Zhao, S.; Fan, J. Urban planning construction land standard and its revision based on climate and topography in China. J. Geogr. Sci. 2020, 31, 603–620. [Google Scholar] [CrossRef]
- Lv, X.; Huang, X.J.; Zhang, J.Q. A literature review on urban-rural construction land transition. City Plan. Rev. 2015, 39, 105–112. [Google Scholar] [CrossRef]
- Ren, J.; Zhou, W.; Liu, X.; Zhou, L.; Guo, J.; Wang, Y.; Guan, Y.; Mao, J.; Huang, Y.; Ma, R. Urban Expansion and Growth Boundaries in an Oasis City in an Arid Region: A Case Study of Jiayuguan City, China. Sustainability 2019, 12, 210. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Liu, Y.; Yue, W.; Huang, J. Evolution of urban spatial structure in a mountainous city: Transforming from linear expansion along valleys to polycentric urban development. Econ. Geogr. 2013, 33, 61–67. [Google Scholar]
- Qiao, W.F.; Mao, G.X.; Wang, Y.H.; Chen, Y.J. Research on urban expansion and land use change in Nanjing over the past 32 years. J. Geo-Inf. Sci. 2016, 18, 200–209. [Google Scholar] [CrossRef]
- Wang, D.Y.; Ji, X.P.; Huang, X.J. Spatial and temporal pattern analysis of construction land in Yangtze River Economic Zone since 1990s. Mod. Urban Res. 2018, 4, 30–36. [Google Scholar] [CrossRef]
- Gao, Q.; Fang, C.; Zhang, X.; Lui, H.; Ren, Y. Spatio-temporal evolution characteristics and mechanisms of influence of urban construction land expansion in Xinjiang, the Core Area of the Silk Road Economic Belt. Acta Ecol. Sin. 2019, 39, 1263–1277. [Google Scholar] [CrossRef]
- Deng, Y.W.; Zhen, J.H.; Ma, C.Y. Multi-scenario simulation of the impact of urban expansion on ecological risk: A case study of Hohhot City, Inner Mongolia. Acta Ecol. Sin. 2021, 41, 1199–1208. [Google Scholar] [CrossRef]
- Sun, P.L.; Xu, Y.Q.; Wang, S. Terrain gradient effect analysis of land use change in poverty area around Beijing and Tianjin. Trans. Chin. Soc. Agric. Eng. 2014, 30, 277–288. [Google Scholar] [CrossRef]
- Zang, Y.Z.; Liu, Y.S.; Yang, Y.Y. Land use pattern change and its topographic gradient effect in the mountainous areas: A case study of Jinggangshan city. J. Nat. Resour. 2019, 34, 1391–1404. [Google Scholar]
- Zhu, C.L.; Zhang, J.F.; Zhao, Y.L.; Liu, C. Topographic gradient effects of typical watershed ecosystem services in the eastern Tibetan plateau: A case study of the upper reaches of Minjiang Rive. Resour. Environ. Yangtze Basin 2017, 26, 1687–1699. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, W.; Zhao, F.; Zhu, L.; Li, M.; Zhu, M.; Zhang, X. Spatial variations of terrain and their impacts on landscape patterns in the transition zone from mountains to plains—A case study of Qihe River Basin in the Taihang Mountains. Sci. China Earth Sci. 2018, 61, 450–461. [Google Scholar] [CrossRef]
- Peng, Q.Z.; Ma, S.H.; Deng, Q.H.; Ma, J.W. Relationship between construction land and slope in rapidlyexpanding mountain cities: A case study in Guiyang, China. J. Nat. Resour. 2022, 37, 1865–1875. [Google Scholar]
- Guo, H.F.; Xu, Y.Q.; Wu, Y.F. Analysis of the Land Use Spatial Pattern and Spatio-Temporal Changes Based on Terrain Gradient: A Case Study of Pinggu District in Beijing. Econ. Geogr. 2013, 33, 160–166, 186. [Google Scholar]
- Fang, C.L.; Zhang, G.Y.; Xue, D.S. High-quality development of urban agglomerations in China and construction of science and technology collaborative innovation community. Acta Geogr. Sin. 2021, 76, 2898–2908. [Google Scholar] [CrossRef]
- Luo, J.; Shi, P.J.; Zhang, X.B. Relationship between Topographic Factors and Population Distribution in Lanzhou-Xining Urban Agglomeration. Econ. Geogr. 2020, 40, 106–115. [Google Scholar]
- Li, G.P. Multiple measures to promote the high-quality development of urban agglomerations in China. Acad. Front. People’s Forum 2022, 18–28. [Google Scholar] [CrossRef]
- Yang, X.; Chen, X.; Qiao, F.; Che, L.; Pu, L. Layout optimization and multi-scenarios for land use: An empirical study of production-living-ecological space in the Lanzhou-Xining City Cluster, China. Ecol. Indic. 2022, 145, 109577. [Google Scholar] [CrossRef]
- Qu, S.J.; Hu, S.G.; Tong, L.Y.; Li, Q.F. Spatiotemporal patterns of urban land use transition in the middle Yangtze River Economic Belt. Resour. Sci. 2017, 39, 240–251. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Liu, X.L.; Yue, J.Y.; Wang, Y.H.; Zhang, T.Z. Delimiting the urban development boundary of Jiayuguan City based on MCE-CA model. Arid Land Geogr. 2016, 39, 1111–1119. [Google Scholar]
- Wang, C.; Tang, G.; Li, F. Fundamental conditions of slope spectrum abstraction and application. Sci. Geogr. Sin. 2007, 27, 587–592. [Google Scholar] [CrossRef]
- Yu, R.; Cai, J.; Leung, P. The normalized revealed comparative advantage index. Ann. Reg. Sci. 2009, 43, 267–282. [Google Scholar] [CrossRef]
- Liu, H.; Shi, P.; Tong, H.; Zhu, G.; Liu, H.; Zhang, X.; Wei, W.; Wang, X. Characteristics and driving forces of spatial expansion of oasis cities and towns in Hexi Corridor, Gansu Province, China. Chin. Geogr. Sci. 2015, 25, 250–262. [Google Scholar] [CrossRef]
- Liu, Y.; Song, W.; Deng, X. Understanding the spatiotemporal variation of urban land expansion in oasis cities by integrating remote sensing and multi-dimensional DPSIR-based indicators. Ecol. Indic. 2019, 96, 23–37. [Google Scholar] [CrossRef]
- Gauthier, T. Detecting Trends Using Spearman’s Rank Correlation Coefficient. Environ. Forensics 2001, 2, 359–362. [Google Scholar] [CrossRef]
- Mahtta, R.; Mahendra, A.; Seto, K.C. Building up or spreading out? Typologies of urban growth across 478 cities of 1 million+. Environ. Res. Lett. 2019, 14, 124077. [Google Scholar] [CrossRef] [Green Version]
- Zambon, I.; Colantoni, A.; Salvati, L. Horizontal vs vertical growth: Understanding latent patterns of urban expansion in large metropolitan regions. Sci. Total. Environ. 2018, 654, 778–785. [Google Scholar] [CrossRef]
- Li, X.; Chen, G.; Zhang, Y.; Yu, L.; Du, Z.; Hu, G.; Liu, X. The impacts of spatial resolutions on global urban-related change analyses and modeling. iScience 2022, 25, 105660. [Google Scholar] [CrossRef]
- Shi, K.; Wu, Y.; Liu, S. Slope climbing of urban expansion worldwide: Spatiotemporal characteristics, driving factors and implications for food security. J. Environ. Manag. 2022, 324, 116337. [Google Scholar] [CrossRef]
- Zhou, L.; Dang, X.; Mu, H.; Wang, B.; Wang, S. Cities are going uphill: Slope gradient analysis of urban expansion and its driving factors in China. Sci. Total. Environ. 2021, 775, 145836. [Google Scholar] [CrossRef]
- Dong, T.; Jiao, L.; Xu, G.; Yang, L.; Liu, J. Towards sustainability? Analyzing changing urban form patterns in the United States, Europe, and China. Sci. Total. Environ. 2019, 671, 632–643. [Google Scholar] [CrossRef]
Agglomerations | Provincial Area | Typical Cities | Counties (Districts) | |||
---|---|---|---|---|---|---|
Lanzhou–Xining Urban Agglomerations (LXUA) | Gansu (GS) | Lanzhou (LZ) | Chengguan (CG) | Qilihe (QLH) | Xigu (XG) | Anning (AN) |
Honggu (HG) | Yongdeng (YD) | Gaolan (GL) | Yuzhong (YZ) | |||
Baiyin (BY) | Pingchaun (PC) | Jingyuan (JY) | Jingtai (JT) | |||
Anding (AD) | Longxi (LXX) | Weiyuan (WY) | Lintao (LT) | |||
Linxia (LX) | Yongjing (YJ) | Dongxiangzu (DXZ) | Jishishan (JSS) | |||
Qinghai (QH) | Xining (XN) | Chengdong (CD) | Chengxi (CX) | Chengzhong (CZ) | Chengbei (CB) | |
Datong (DT) | Huangzhong (HZ) | Huangyaun (HY) | ||||
Haidong (HD) | Ledu (LD) | Pingan (PA) | Minhe (MH) | Huzhu (HZX) | ||
Hualong (HL) | Xunhua (XH) | |||||
Haiyan (HYX) | Tongren (TR) | Jianzha (JZ) | Gonghe (GH) | |||
Guide (GD) | Guinan (GN) |
Data Name | Data Source | Data Type | Data Description |
---|---|---|---|
Meteorological data | http://data.cma.cn/ accessed on 5 November 2022 | excel | Precipitation and relative humidity data obtained by interpolation |
Spatial population (Nighttime light data) | http://www.geodata.cn/ accessed on 5 November 2022 | 500 m × 500 m raster data | SNPP-VIIRS-like data (2000–2021) |
Road data | Openstreetmap | 30 m × 30 m raster data | Preprocessing of Arcgis Euclidean distance tool |
GDP | https://www.resdc.cn/ accessed on 5 November 2022 | 1 km × 1 km raster data | Preprocessing of Arcgis Euclidean distance tool |
Distance from the county government | —— | 30 m × 30 m raster data | Preprocessing of Arcgis Euclidean distance tool |
Distance from an ecological reserve | https://data.tpdc.ac.cn/ accessed on 5 November 2022 | 30 m × 30 m raster data | Preprocessing of Arcgis Euclidean distance tool |
Level of urbanization | Statistical Yearbook | excel | Arcgis spatial analysis tool |
Variable | Environmental Limitation | Geographical Location | Economic Development | Policy | ||||||
---|---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | |
Urban | −0.06 | −0.30 ** | −0.32 ** | −0.279 ** | −0.15 ** | −0.16 ** | 0.49 ** | −0.03 | 0.35 ** | −0.04 |
Rural | 0.10 ** | 0.13 ** | 0.18 ** | 0.138 ** | −0.01 | −0.08 ** | 0.10 ** | 0.01 | 0.12 ** | 0.09 ** |
Other | 0.17 ** | −0.07 * | −0.20 ** | −0.120 ** | 0.19 ** | −0.01 | 0.21 ** | 0.02 | 0.13 ** | −0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Zhao, X.; Ren, J.; Hai, W.; Guo, J.; Li, C.; Gao, Y. Research on the Slope Gradient Effect and Driving Factors of Construction Land in Urban Agglomerations in the Upper Yellow River: A Case Study of the Lanzhou–Xining Urban Agglomerations. Land 2023, 12, 745. https://doi.org/10.3390/land12040745
Zhang H, Zhao X, Ren J, Hai W, Guo J, Li C, Gao Y. Research on the Slope Gradient Effect and Driving Factors of Construction Land in Urban Agglomerations in the Upper Yellow River: A Case Study of the Lanzhou–Xining Urban Agglomerations. Land. 2023; 12(4):745. https://doi.org/10.3390/land12040745
Chicago/Turabian StyleZhang, Hanxuan, Xiangjuan Zhao, Jun Ren, Wenjing Hai, Jing Guo, Chengying Li, and Yapei Gao. 2023. "Research on the Slope Gradient Effect and Driving Factors of Construction Land in Urban Agglomerations in the Upper Yellow River: A Case Study of the Lanzhou–Xining Urban Agglomerations" Land 12, no. 4: 745. https://doi.org/10.3390/land12040745
APA StyleZhang, H., Zhao, X., Ren, J., Hai, W., Guo, J., Li, C., & Gao, Y. (2023). Research on the Slope Gradient Effect and Driving Factors of Construction Land in Urban Agglomerations in the Upper Yellow River: A Case Study of the Lanzhou–Xining Urban Agglomerations. Land, 12(4), 745. https://doi.org/10.3390/land12040745