Attribution and Causality Analyses of Regional Climate Variability
Abstract
:1. Introduction
2. Methods: Attribution and Causality Analysis in Ecohydrological State Space
2.1. Attribution Analysis: Climate and Land Cover Forcing
2.2. Causality: Major Climate Modes
3. Results: Application to the Southern Intermountain Dry Region of North America
3.1. Climatological Setting and Data
- (i)
- The decadal scale with non-overlapping 20 years’ state space of change (see Section 3.1) provides the basis for attribution and for causality analysis on very long time scales;
- (ii)
- the annual scale with overlapping m = 2 inter-annual attributed forcings; and
- (iii)
- the monthly scale with overlapping m = 13 months climate parameter time series (see Section 3.2) for causality analysis.
3.2. Attribution Analysis: Internal and External Forcings
- (i)
- The area-averaged annual mean values of dryness (and precipitation) from the past 100 years reveal droughts before the 1910s, in the 1930s, from 1950 to 1970, and at the beginning of the twenty-first century (Figure 3a,b). Three changes between subsequent 20-year periods were observed: 1931–1950 and 1951–1970 (from wet to dry), 1951–1970 and 1971–1990 (from dry to wet), and 1971–1990 and 1991–2010 (from wet to dry).
- (ii)
- The external climate- and internal land cover-induced forcing of observed quasi-stationary changes on the regional scale were separated, as described in Section 2.1. Changes in the geographical and ecohydrological state space for all grid points are demonstrated in Figure 4 and summarized as southern Intermountain averages (see statistics in Figure 4).
3.3. Causality and Climate Modes
4. Discussion
5. Conclusions: Upscaling by Attribution and Subsequent Causality Analyses
- (i)
- The distinction between external climate changes caused by climate change (manifested by changes in precipitation and net radiation) and internal changes caused by human activities (which affect the partitioning of heat and water into latent and sensible heat fluxes and runoff); and
- (ii)
- The cause of external climate changes in the rainfall–runoff chain variables (changes in climate and water and energy sources) that are driven by larger scale climate shifts such as oceanic and atmospheric patterns or the solar cycle.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bordi, I.; Fraedrich, K.; Sutera, A.; Zhu, X. Transient response to well-mixed greenhouse gas changes. Theor. Appl. Climatol. 2012, 109, 245–252. [Google Scholar] [CrossRef]
- Bordi, I.; Fraedrich, K.; Sutera, A.; Zhu, X. On the effect of decreasing CO2 concentration in the atmosphere. Clim. Dyn. 2013, 40, 651–662. [Google Scholar] [CrossRef]
- Zhu, X.; Bye, J.; Fraedrich, K.; Bordi, I. Statistical structure of intrinsic climate variability under global warming. J. Clim. 2016, 29, 5935–5947. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Remedio, A.R.C.; Sein, D.V.; Sielmann, F.; Ge, F.; Xu, J.; Peng, T.; Jacob, D.; Fraedrich, K.; Zhi, X. Added value of the regionally coupled model ROM in the East Asian summer monsoon modeling. Theor. Appl. Climatol. 2020, 140, 375–387. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z. Dynamics of interdecadal climate variability: A historical perspective. J. Clim. 2012, 25, 1963–1995. [Google Scholar] [CrossRef]
- Zhang, F.; Lei, Y.; Yu, Q.-R.; Fraedrich, K.; Iwabuchi, H. Causality of the Drought in the Southwestern United States Based on Observations. J. Clim. 2017, 30, 4891–4896. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, P.; Fraedrich, K.; Zhou, X.; Wang, G.; Li, J. Reconstruction of driving forces from nonstationary time series including stationary regions and application to climate change. Phys. A Stat. Mech. Its Appl. 2017, 473, 337–343. [Google Scholar] [CrossRef]
- Tomer, M.D.; Schilling, K.E. A simple approach to distinguish land-use and climate-change effects on watershed hydrology. J. Hydrol. 2009, 376, 24–33. [Google Scholar] [CrossRef]
- Renner, M.; Seppelt, R.; Bernhofer, C.; Schymanski, S. Evaluation of water-energy balance frameworks to predict the sensitivity of streamflow to climate change. Hydrol. Earth Syst. Sci. 2012, 16, 1419–1433. [Google Scholar] [CrossRef] [Green Version]
- Cai, D.; Fraedrich, K.; Guan, Y.; Guo, S.; Zhang, C.; Zhu, X. Urbanization and climate change: Insights from eco-hydrological diagnostics. Sci. Total Environ. 2019, 647, 29–36. [Google Scholar] [CrossRef]
- Cai, D.; Fraedrich, K.; Sielmann, F.; Guan, Y.; Guo, S. Land-cover characterization and aridity changes of South America (1982–2006): An attribution by ecohydrological diagnostics. J. Clim. 2016, 29, 8175–8189. [Google Scholar] [CrossRef]
- Cai, D.; Fraedrich, K.; Sielmann, F.; Zhang, L.; Zhu, X.; Guo, S.; Guan, Y. Vegetation dynamics on the Tibetan Plateau (1982 to 2006): An attribution by eco-hydrological diagnostics. J. Clim. 2015, 28, 4576–4584. [Google Scholar] [CrossRef]
- Maraun, D.; Kurths, J.; Holschneider, M. Nonstationary Gaussian processes in wavelet domain: Synthesis, estimation, and significance testing. Phys. Rev. E 2007, 75, 016707. [Google Scholar] [CrossRef] [Green Version]
- Schulte, J.A. Wavelet analysis for non-stationary, nonlinear time series. Nonlinear Process. Geophys. 2016, 23, 257–267. [Google Scholar] [CrossRef] [Green Version]
- Schreiber, P. Über die Beziehungen zwischen dem Niederschlag und der Wasserführung der Flüsse in Mitteleuropa. Meteorolog. Z. 1904, 21, 441–452. [Google Scholar]
- Ol’Dekop, E. On evaporation from the surface of river basins. Trans. Meteorol. Obs. 1911, 4, 200. [Google Scholar]
- Fraedrich, K. A parsimonious stochastic water reservoir: Schreiber’s 1904 equation. J. Hydrometeorol. 2010, 11, 575–578. [Google Scholar] [CrossRef]
- Andréassian, V.; Mander, Ü.; Pae, T. The Budyko hypothesis before Budyko: The hydrological legacy of Evald Oldekop. J. Hydrol. 2016, 535, 386–391. [Google Scholar] [CrossRef]
- Budyko, M. Climate and Life. Academic Press: Cambridge, MA, USA, 1974; Volume 18. [Google Scholar]
- Milne, B.T.; Gupta, V.K.; Restrepo, C. A scale invariant coupling of plants, water, energy, and terrain. Ecoscience 2002, 9, 191–199. [Google Scholar] [CrossRef]
- Fraedrich, K.; Sielmann, F.; Cai, D.; Zhu, X. Climate dynamics on watershed scale: Along the rainfall-runoff chain. In The Fluid Dynamics of Climate; Springer: Vienna, Austria, 2016; pp. 183–209. [Google Scholar]
- Gedney, N.; Cox, P.M.; Betts, R.A.; Boucher, O.; Huntingford, C.; Stott, P. Detection of a direct carbon dioxide effect in continental river runoff records. Nature 2006, 439, 835–838. [Google Scholar] [CrossRef]
- Peña-Arancibia, J.L.; van Dijk, A.I.; Guerschman, J.P.; Mulligan, M.; Bruijnzeel, L.A.S.; McVicar, T.R. Detecting changes in streamflow after partial woodland clearing in two large catchments in the seasonal tropics. J. Hydrol. 2012, 416, 60–71. [Google Scholar] [CrossRef]
- Wiskott, L. Slow Feature Analysis. In Encyclopedia of Computational Neuroscience; Jaeger, D., Jung, R., Eds.; Springer New York: New York, NY, USA, 2015; pp. 2715–2717. [Google Scholar]
- De Klerk, J. Adapting the singular spectrum analysis trajectory matrix technique to identify multiple additive time-series outliers. Stud. Econ. Econom. 2015, 39, 25–47. [Google Scholar] [CrossRef]
- Wang, G.; Yang, P.; Zhou, X. Extracting the driving force from ozone data using slow feature analysis. Theor. Appl. Climatol. 2016, 124, 985–989. [Google Scholar] [CrossRef]
- Yang, P.; Wang, G.; Zhang, F.; Zhou, X. Causality of global warming seen from observations: A scale analysis of driving force of the surface air temperature time series in the Northern Hemisphere. Clim. Dyn. 2016, 46, 3197–3204. [Google Scholar] [CrossRef]
- Fraedrich, K. Estimating the dimensions of weather and climate attractors. J. Atmos. Sci. 1986, 43, 419–432. [Google Scholar] [CrossRef]
- Fraedrich, K.; Wang, R. Estimating the correlation dimension of an attractor from noisy and small datasets based on re-embedding. Phys. D Nonlinear Phenom. 1993, 65, 373–398. [Google Scholar] [CrossRef]
- Vautard, R.; Yiou, P.; Ghil, M. Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Phys. D Nonlinear Phenom. 1992, 58, 95–126. [Google Scholar] [CrossRef]
- Pursell, L.; Trimble, S.Y. Gram-Schmidt Orthogonalization by Gauss Elimination. Am. Math. Mon. 1991, 98, 544–549. [Google Scholar] [CrossRef]
- Tsonis, A.A.; Pan, X.; Wang, G.; Nicolis, C. On the min–max estimation of mean daily temperatures. Clim. Dyn. 2019, 53, 1981–1989. [Google Scholar] [CrossRef]
- Alig, R.J. Land Use Changes Involving Forestry in the United States, 1952 to 1997, with Projections to 2050; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2003; Volume 587. [Google Scholar]
- Nogueira, M. Exploring the Links in Monthly to Decadal Variability of the Atmospheric Water Balance Over the Wettest Regions in ERA-20C. J. Geophys. Res. Atmos. 2017, 122, 10,560–510,577. [Google Scholar] [CrossRef]
- Bordi, I.; De Bonis, R.; Fraedrich, K.; Sutera, A. Interannual variability patterns of the world’s total column water content: Amazon River basin. Theor. Appl. Climatol. 2015, 122, 441–455. [Google Scholar] [CrossRef]
- Xiong, J.; Guo, S.; Chen, J.; Yin, J. A reexamination of the dry gets drier and wet gets wetter paradigm over global land: Insight from terrestrial water storage changes. Hydrol. Earth Syst. Sci. Discuss. 2022, 1–20. [Google Scholar]
- Chen, J.; Tapley, B.; Rodell, M.; Seo, K.W.; Wilson, C.; Scanlon, B.R.; Pokhrel, Y. Basin-scale river runoff estimation from GRACE gravity satellites, climate models, and in situ observations: A case study in the Amazon basin. Water Resour. Res. 2020, 56, e2020WR028032. [Google Scholar] [CrossRef]
- McCabe, G.J.; Palecki, M.A.; Betancourt, J.L. Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc. Natl. Acad. Sci. 2004, 101, 4136–4141. [Google Scholar] [CrossRef] [Green Version]
- Mo, K.C.; Schemm, J.-K.E.; Yoo, S.-H. Influence of ENSO and the Atlantic multidecadal oscillation on drought over the United States. J. Clim. 2009, 22, 5962–5982. [Google Scholar] [CrossRef] [Green Version]
- Zhu, K.; Guan, X.; Huang, J.; Wang, J.; Guo, S.; Cao, C. Precipitation over semi-arid regions of North Hemisphere affected by Atlantic Multidecadal Oscillation. Atmos. Res. 2021, 262, 105801. [Google Scholar] [CrossRef]
- Vesterby, M. Major uses of land in the United States, 1997; US Department of Agriculture, Economic Research Service: Washington, DC, USA, 2001. [Google Scholar]
- Jiang, J.; Zhang, D.e.; Fraedrich, K. Historic climate variability of wetness in east China (960–1992): A wavelet analysis. Int. J. Climatol. A J. R. Meteorol. Soc. 1997, 17, 969–981. [Google Scholar] [CrossRef]
- Johnstone, J.A. A quasi-biennial signal in western US hydroclimate and its global teleconnections. Clim. Dyn. 2011, 36, 663–680. [Google Scholar] [CrossRef] [Green Version]
- Baldwin, M.; Gray, L.; Dunkerton, T.; Hamilton, K.; Haynes, P.; Randel, W.; Holton, J.; Alexander, M.; Hirota, I.; Horinouchi, T. The quasi-biennial oscillation. Rev. Geophys. 2001, 39, 179–229. [Google Scholar] [CrossRef]
- Pan, X.; Wang, G.; Yang, P.; Wang, J.; Tsonis, A.A. On the interconnections among major climate modes and their common driving factors. Earth Syst. Dyn. 2020, 11, 525–535. [Google Scholar] [CrossRef]
- Bye, J.; Fraedrich, K.; Kirk, E.; Schubert, S.; Zhu, X. Random walk lengths of about 30 years in global climate. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Wang, G. Diagnosing the equilibrium state of a coupled global biosphere-atmosphere model. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Runge, J.; Bathiany, S.; Bollt, E.; Camps-Valls, G.; Coumou, D.; Deyle, E.; Glymour, C.; Kretschmer, M.; Mahecha, M.D.; Muñoz-Marí, J. Inferring causation from time series in Earth system sciences. Nat. Commun. 2019, 10, 2553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, X.S. Unraveling the cause-effect relation between time series. Phys. Rev. E 2014, 90, 052150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Attribution | 1931–1950 to 1951–1970 | 1951–1970 to 1971–1990 | 1971–1990 to 1991–2010 |
---|---|---|---|
dw > 0 & du > 0 | 0 | 16.07% | 1.49% |
dw < 0 & du > 0 | 43.27% | 5.63% | 97.72% |
dw < 0 & du < 0 | 41.71% | 1.37% | 0.37% |
dw > 0 & du < 0 | 15.02% | 76.93% | 0.42% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, D.; Fraedrich, K.; Sielmann, F.; Zhu, S.; Yu, L. Attribution and Causality Analyses of Regional Climate Variability. Land 2023, 12, 817. https://doi.org/10.3390/land12040817
Cai D, Fraedrich K, Sielmann F, Zhu S, Yu L. Attribution and Causality Analyses of Regional Climate Variability. Land. 2023; 12(4):817. https://doi.org/10.3390/land12040817
Chicago/Turabian StyleCai, Danlu, Klaus Fraedrich, Frank Sielmann, Shoupeng Zhu, and Lijun Yu. 2023. "Attribution and Causality Analyses of Regional Climate Variability" Land 12, no. 4: 817. https://doi.org/10.3390/land12040817
APA StyleCai, D., Fraedrich, K., Sielmann, F., Zhu, S., & Yu, L. (2023). Attribution and Causality Analyses of Regional Climate Variability. Land, 12(4), 817. https://doi.org/10.3390/land12040817