A Public Participation GIS for Geodiversity and Geosystem Services Mapping in a Mountain Environment: A Case from Grayson County, Virginia, U.S.A.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
2.2.1. Deriving a Geodiversity Index Map for Grayson County, VA, USA
2.2.2. Using a PPGIS to Spatially Assess Geosystem Services
Respondents, Survey Dissemination, and Interaction with the PPGIS Map Interface
Integration of Geoservice Value Points and Geodiversity Value Map
3. Results
3.1. Geodiversity Index Map
3.2. Geosystem Services Values: Public Participatory GIS
3.3. Integrating Ecosystem Service Markers and the Geodiversity through Visualization
4. Discussion
4.1. Case Study Findings and Implications
4.2. Benefits, Challenges, and Limitations
- Widely applicable. The method we used is straightforward and can be replicated with similar, publicly available datasets for other areas; PPGIS methods are developed with open-source software making them widely accessible. Furthermore, we note that the geodiversity index has been used extensively as a framework for several studies with slight variations in the application [9,84,85]. One such variation includes applying a grid overlay system to calculate geodiversity within each grid cell. For our purposes here, we determined that individual weighting of variables allowed us to achieve greater customization of the model based on the landscape type (e.g., flat-lying vs. mountainous) [62]. However, the grid cell technique has been used successfully to compare areas of high geodiversity with concentrations of human activities, such as land degradation and urban growth [86].
- Identify priority locations for mountain geoconservation and future research priorities. As an example, geodiversity includes aspects of the abiotic realm that are rare and vulnerable, as well as those that are stable or prolific [70]. PPGIS can empower the community through engagement, discourse, and conversation to bring geodiversity and geodiversity elements into conservation decisions. Knowledge about geosystem services and associated geodiversity can also provide foresight concerning the social and natural consequences of decisions affecting abiotic diversity. For example, similar methods could help to avert threats to geodiversity, including (but not limited to) unsustainable tourism, land development, or river and coastal engineering [1].
- Uncover spatial nuances associated with geodiversity and a ‘sense of place’ that integrates culture within physical landscapes. The method we used is informed by a framework that creates knowledge about how globally important geosystem services, as provisioned by geodiversity, are perceived and valued on a local level. The spatial approach allows socio-geo-related nuances specific to geographic regions to be uncovered. For example, in this study, we noted informally that the placement of markers reflected locations referenced in the lyrics of traditional Appalachian string band, fiddle, and banjo musical stylings of Grayson County (e.g., [45]). Additionally, as reported in another study, the foraging of ramps (Allium tricoccum) as a seasonal famine food in niche microclimates and soil conditions of the Appalachian hillsides [87] reflects a locally significant human connection to abiotic diversity with implications for sustainability. This topic, or a similar one, could be explored more fully using a PPGIS.
- Support holistic science and management of mountains via the ability to integrate several data types, thematic content, and spatial analyses. Like biodiversity, mountain geodiversity is pressured by climate change, tourism impacts, intensive land use practices, and extractive industries [12,88]. The ability to integrate several reference layers (e.g., land use and land cover (LULC), climate, and biodiversity) with qualitative geographic and non-geographic survey information, enables place-based exploration of complex spatial questions at the interface of human systems, the environment, and geosystems. PPGISs can thus aid spatial decision-making for land and ecosystem management with important geodiversity components. As an example, a PPGIS could aid in the development of a management plan for protecting globally rare plant communities that are restricted to specific rock types and maintained by geomorphic processes (such as the Southern Appalachian, high-elevation rock outcrop plant communities [89]) from the impacts of tourism and climate change. It could further aid in the articulation and integration of indigenous (or other cultural) perspectives into geodiversity and geoheritage research. Many examples that demonstrate the informal linkages between geodiversity and culture have expression within everyday life, for example, within mythologies, songs, and language [90]. PPGISs could be valuable for uncovering spatial nuances of these associations.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Geosystem Services Survey
- Age ___________
- Gender _________
Male | Female | Other |
- 3.
- Ethnicity _________________
- White
- Hispanic or Latino
- Black or African American
- Native American or American Indian
- Asian/Pacific Islander
- Other ____________
- 4.
- Level of Formal Education ______________
- High School Diploma
- Technical or 2-Year Degree
- Some College
- Bachelor’s Degree
- Advanced Degree
- 5.
- What County do you live in? ______________
- 6.
- How long have you lived in that county? If you lived elsewhere, provide total years spent in the county across your lifetime ____________
- 7.
- How familiar are you with the landscape of Grayson County, VA, USA?
1 | 2 | 3 | 4 | 5 |
None | Average | Excellent |
- 8.
- PPGIS Survey ease of use
1 | 2 | 3 | 4 | 5 |
Easy | Hard |
- 9.
- Comprehension of Geosystem Service Marker Definitions
1 | 2 | 3 | 4 | 5 |
Easy | Hard |
- 10.
- Challenge of identifying geosystems services
1 | 2 | 3 | 4 | 5 |
Easy | Hard |
References
- Gray, M. Geodiversity: Valuing and Conserving Abiotic Nature, 2nd ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2013; ISBN 978-0-470-74215-0. [Google Scholar]
- Brilha, J.; Gray, M.; Pereira, D.I.; Pereira, P. Geodiversity: An Integrative Review as a Contribution to the Sustainable Management of the Whole of Nature. Environ. Sci. Policy 2018, 86, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Grover, V. Introduction and road map for global changes on high mountains. In Impact of Global Changes on Mountains: Responses and Adaptation; Grover, V.I., Borsdorf, A., Breutse, J.H., Tiwari, P.C., Frangetto, F.W., Eds.; CRC Press: Boca Raton, FL, USA, 2014; pp. 15–32. ISBN 978-1-48-220890-0. [Google Scholar]
- Price, M.F.; Kohler, T. Sustainable mountain development. In Mountain Geography: Physical and Human Dimensions; Price, M.F., Byers, A.C., Friend, D.A., Kohler, T., Price, L.W., Eds.; University of California Press: Berkeley, CA, USA, 2013; pp. 333–366. ISBN 978-0-52-025431-2. [Google Scholar]
- Hjort, J.; Gordon, J.E.; Gray, M.; Hunter, M.L. Why Geodiversity Matters in Valuing Nature’s Stage: Why Geodiversity Matters. Conserv. Biol. 2015, 29, 630–639. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Lü, Y.; Hu, J.; Yin, L. Geodiversity Underpins Biodiversity but the Relations Can Be Complex: Implications from Two Biodiversity Proxies. Glob. Ecol. Conserv. 2021, 31, e01830. [Google Scholar] [CrossRef]
- Fox, N.; Graham, L.J.; Eigenbrod, F.; Bullock, J.M.; Parks, K.E. Geodiversity Supports Cultural Ecosystem Services: An Assessment Using Social Media. Geoheritage 2022, 14, 27. [Google Scholar] [CrossRef]
- Jonasson, C.; Gordon, J.E.; Kociánová, M.; Josefsson, M.; Dvŏrák, I.J.; Thompson, D.B.A. Links between geodiversity and biodiversity in European mountains: Case studies from Sweden, Scotland and the Czech Republic. In Mountains of Northern Europe: Conservation, Management, People and Nature; Thompson, D.B.A., Price, M.F., Galbraith, C.A., Eds.; The Stationery Office: Edinburgh, UK, 2005; pp. 55–70. [Google Scholar]
- Pereira, D.I.; Pereira, P.; Brilha, J.; Santos, L. Geodiversity Assessment of Paraná State (Brazil): An Innovative Approach. Environ. Manag. 2013, 52, 541–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muellner-Riehl, A.N.; Schnitzler, J.; Kissling, W.D.; Mosbrugger, V.; Rijsdijk, K.F.; Seijmonsbergen, A.C.; Versteegh, H.; Favre, A. Origins of Global Mountain Plant Biodiversity: Testing the ‘Mountain-geobiodiversity Hypothesis. J. Biogeogr. 2019, 46, 2826–2838. [Google Scholar] [CrossRef] [Green Version]
- Gray, M. Geodiversity: The Origin and Evolution of a Paradigm. Geol. Soc. Lond. Spec. Publ. 2008, 300, 31–36. [Google Scholar] [CrossRef]
- Gordon, J.E. Mountain geodiversity: Characteristics, values and climate change. In Mountains, Climate and Biodiversity; John Wiley & Sons: Hoboken, NJ, USA, 2018; pp. 137–154. [Google Scholar]
- Verschuuren, B.; Mallarach, J.-M.; Bernbaum, E.; Spoon, J.; Brown, S.; Borde, R.; Brown, J.; Calamia, M.; Mitchell, N.; Infield, M.; et al. Cultural and Spiritual Significance of Nature: Guidance for Protected and Conserved Area Governance and Management; IUCN, International Union for Conservation of Nature: Gland, Switzerland, 2021; ISBN 978-2-8317-2089-0. [Google Scholar]
- Bernbaum, E. Sacred mountains: Themes and teachings. Mt. Res. Dev. 2006, 26, 304–309. [Google Scholar] [CrossRef]
- Chrobak, A.; Novotný, J.; Struś, P. Geodiversity Assessment as a First Step in Designating Areas of Geotourism Potential. Case Study: Western Carpathians. Front. Earth Sci. 2021, 9, 752669. [Google Scholar] [CrossRef]
- Schrodt, F.; Bailey, J.J.; Kissling, W.D.; Rijsdijk, K.F.; Seijmonsbergen, A.C.; van Ree, D.; Hjort, J.; Lawley, R.S.; Williams, C.N.; Anderson, M.G.; et al. To Advance Sustainable Stewardship, We Must Document Not Only Biodiversity but Geodiversity. Proc. Natl. Acad. Sci. USA 2019, 116, 16155–16158. [Google Scholar] [CrossRef] [Green Version]
- Browne, M.A.E. Geodiversity and the Role of the Planning System in Scotland. Scott. Geogr. J. 2012, 128, 266–277. [Google Scholar] [CrossRef]
- Zwoliński, Z.; Najwer, A.; Giardino, M. Methods for Assessing Geodiversity. In Geoheritage; Elsevier: Amsterdam, The Netherlands, 2018; pp. 27–52. ISBN 978-0-12-809531-7. [Google Scholar]
- Santos, D.S.; Mansur, K.L.; Gonçalves, J.B.; Arruda, E.R.; Manosso, F.C. Quantitative Assessment of Geodiversity and Urban Growth Impacts in Armação Dos Búzios, Rio de Janeiro, Brazil. Appl. Geogr. 2017, 85, 184–195. [Google Scholar] [CrossRef]
- Knudson, C.; Kay, K.; Fisher, S. Appraising Geodiversity and Cultural Diversity Approaches to Building Resilience through Conservation. Nat. Clim. Chang. 2018, 8, 678–685. [Google Scholar] [CrossRef]
- Gonçalves, J.; Mansur, K.; Santos, D.; Henriques, R.; Pereira, P. Is It Worth Assessing Geodiversity Numerically? A Comparative Analysis between Quantitative and Qualitative Approaches in Miguel Pereira Municipality, Rio de Janeiro, Brazil. Geosciences 2022, 12, 347. [Google Scholar] [CrossRef]
- Gordon, J.E. Rediscovering a Sense of Wonder: Geoheritage, Geotourism and Cultural Landscape Experiences. Geoheritage 2012, 4, 65–77. [Google Scholar] [CrossRef]
- Gray, M. Geodiversity. In Geoheritage; Elsevier: Amsterdam, The Netherlands, 2018; pp. 13–25. ISBN 978-0-12-809531-7. [Google Scholar]
- Jankowski, P.; Najwer, A.; Zwoliński, Z.; Niesterowicz, J. Geodiversity assessment with crowdsourced data and spatial multicriteria analysis. ISPRS Int. J. Geo-Inf. 2020, 9, 716. [Google Scholar] [CrossRef]
- Williams, D.R.; Patterson, M.E.; Roggenbuck, J.W.; Watson, A.E. Beyond the Commodity Metaphor: Examining Emotional and Symbolic Attachment to Place. Leis. Sci. 1992, 14, 29–46. [Google Scholar] [CrossRef]
- Brown, G. Mapping Spatial Attributes in Survey Research for Natural Resource Management: Methods and Applications. Soc. Nat. Resour. 2004, 18, 17–39. [Google Scholar] [CrossRef]
- Sherrouse, B.C.; Clement, J.M.; Semmens, D.J. A GIS Application for Assessing, Mapping, and Quantifying the Social Values of Ecosystem Services. Appl. Geogr. 2011, 31, 748–760. [Google Scholar] [CrossRef]
- Brown, G.; Brabyn, L. An Analysis of the Relationships between Multiple Values and Physical Landscapes at a Regional Scale Using Public Participation GIS and Landscape Character Classification. Landsc. Urban Plan. 2012, 107, 317–331. [Google Scholar] [CrossRef]
- Fagerholm, N.; Käyhkö, N.; Ndumbaro, F.; Khamis, M. Community Stakeholders’ Knowledge in Landscape Assessments—Mapping Indicators for Landscape Services. Ecol. Indic. 2012, 18, 421–433. [Google Scholar] [CrossRef]
- Fagerholm, N.; Torralba, M.; Moreno, G.; Girardello, M.; Herzog, F.; Aviron, S.; Burgess, P.; Crous-Duran, J.; Ferreiro-Domínguez, N.; Graves, A.; et al. Cross-Site Analysis of Perceived Ecosystem Service Benefits in Multifunctional Landscapes. Glob. Environ. Chang. 2019, 56, 134–147. [Google Scholar] [CrossRef] [Green Version]
- van Riper, C.J.; Kyle, G.T.; Sutton, S.G.; Barnes, M.; Sherrouse, B.C. Mapping Outdoor Recreationists’ Perceived Social Values for Ecosystem Services at Hinchinbrook Island National Park, Australia. Appl. Geogr. 2012, 35, 164–173. [Google Scholar] [CrossRef]
- Tuan, Y.-F. Space and Place: The Perspective of Experience; U of Minnesota Press: Minneapolis, MN, USA, 1977; ISBN 978-1-4529-0553-2. [Google Scholar]
- Relph, E. Place and Placelessness; Pion: London, UK, 1976; ISBN 0850860555. [Google Scholar]
- Stedman, R.C. Subjectivity and Social-Ecological Systems: A Rigidity Trap (and Sense of Place as a Way Out). Sustain. Sci. 2016, 11, 891–901. [Google Scholar] [CrossRef]
- Tulloch, D. Public participation GIS (PPGIS). Encycl. Geogr. Inf. Sci. 2008, 1, 352–355. [Google Scholar]
- Brown, G.; Kyttä, M. Key Issues and Research Priorities for Public Participation GIS (PPGIS): A Synthesis Based on Empirical Research. Appl. Geogr. 2014, 46, 122–136. [Google Scholar] [CrossRef]
- Fagerholm, N.; Raymond, C.M.; Olafsson, A.S.; Brown, G.; Rinne, T.; Hasanzadeh, K.; Broberg, A.; Kyttä, M. A Methodological Framework for Analysis of Participatory Mapping Data in Research, Planning, and Management. Int. J. Geogr. Inf. Sci. 2021, 35, 1848–1875. [Google Scholar] [CrossRef]
- Gray, M. Valuing Geodiversity in an ‘Ecosystem Services’ Context. Scott. Geogr. J. 2012, 128, 177–194. [Google Scholar] [CrossRef]
- Reynard, E.; Giusti, C. The Landscape and the Cultural Value of Geoheritage. In Geoheritage; Elsevier: Amsterdam, The Netherlands, 2018; pp. 147–166. ISBN 978-0-12-809531-7. [Google Scholar]
- Geologic Units in Grayson County, Virginia. Available online: https://mrdata.usgs.gov/geology/state/fips-unit.php?code=f51077 (accessed on 28 November 2020).
- New River. Available online: https://dwr.virginia.gov/waterbody/new-river/ (accessed on 12 December 2021).
- Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. Available online: https://catalog.data.gov/dataset/soil-survey-geographic-ssurgo-database-for-grayson-county-virginia1 (accessed on 22 December 2020).
- Grayson County, Virginia—Census Bureau Profile. Available online: https://data.census.gov/profile?g=0500000US51077 (accessed on 2 December 2020).
- Conservation Lands Database. Available online: https://www.dcr.virginia.gov/natural-heritage/clinfo#his (accessed on 22 March 2021).
- Beckworth, J. Always Been a Rambler: G.B. Grayson and Henry Whitter, Country Music Pioneers of Southern Appalachia; McFarland: Jefferson, NC, USA, 2018; ISBN 978-1-4766-3186-8. [Google Scholar]
- Donleavy, K. Strings of Life: Conversations with Old-Time Musicians from Virginia and North Carolina; Pocahontas Press: Dublin, VA, USA, 2004; ISBN 978-0-936015-49-1. [Google Scholar]
- Titon, J.T. Old-Time Kentucky Fiddle Tunes; University Press of Kentucky: Lexington, KY, USA, 2001; ISBN 978-0-8131-2200-7. [Google Scholar]
- Worsham, G. A Survey of Historic Architecture in Grayson County, Virginia Including the Towns of Independence and Fries; Va Dept of Historic Resources: Richmond, VA, USA, 2002. [Google Scholar]
- NPS Annual Park Ranking Report for Recreation Visits in 2021. Available online: https://irma.nps.gov/Stats/SSRSReports/National%20Reports/Annual%20Park%20Ranking%20Report%20(1979%20-%20Last%20Calendar%20Year) (accessed on 3 October 2022).
- Kori, E.; Onyango Odhiambo, B.D.; Chikoore, H. A Geomorphodiversity Map of the Soutpansberg Range, South Africa. Landf. Anal. 2019, 38, 13–24. [Google Scholar] [CrossRef]
- Jenks, G.F. The Data Model Concept in Statistical Mapping. Int. Yearb. Cartogr. 1967, 7, 186–190. [Google Scholar]
- Melelli, L.; Vergari, F.; Liucci, L.; Del Monte, M. Geomorphodiversity Index: Quantifying the Diversity of Landforms and Physical Landscape. Sci. Total Environ. 2017, 584–585, 701–714. [Google Scholar] [CrossRef]
- Preliminary Integrated Geologic Map Databases of the United States: Delaware, Maryland, New York, Pennsylvania, and Virginia (OFR 2005-1325). Available online: https://pubs.usgs.gov/of/2005/1325/#VA (accessed on 3 December 2021).
- Chesterman, C.W. National Audubon Society Field Guide to Rocks and Minerals: North America; Knopf Doubleday Publishing Group: New York, NY, USA, 1978; ISBN 978-0-394-50269-4. [Google Scholar]
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. Discuss. 2015, 8, 2271–2312. [Google Scholar] [CrossRef] [Green Version]
- U.S. Geological Survey. 20220512, USGS 1/3 Arc Second n37w082 20220512: U.S. Geological Survey. Available online: https://www.sciencebase.gov/catalog/item/627f3792d34e3bef0c9a3191 (accessed on 28 November 2021).
- Zwoliński, Z. The Routine of Landform Geodiversity Map Design for the Polish Carpathian Mts. Landf. Anal. 2009, 11, 77–85. [Google Scholar]
- Manosso, F.C.; de Nóbrega, M.T. Calculation of Geodiversity from Landscape Units of the Cadeado Range Region in Paraná, Brazil. Geoheritage 2016, 8, 189–199. [Google Scholar] [CrossRef]
- Jenness, J. Topographic Position Index (tpi_jen.avx) Extension for ArcView 3.x, v. 1.3a. Jenness Enterprises. 2006. Available online: http://www.jennessent.com/arcview/tpi.htm (accessed on 22 December 2020).
- Riley, S.; Degloria, S.; Elliot, S.D. A Terrain Ruggedness Index That Quantifies Topographic Heterogeneity. Int. J. Sci. 1999, 5, 23–27. [Google Scholar]
- Bouyoucos, G.J. The Clay Ratio as a Criterion of Susceptibility of Soils to Erosion. Agron. J. 1935, 27, 738–741. [Google Scholar] [CrossRef] [Green Version]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning; Department of Agriculture, Science and Education Administration: Washington, DC, USA, 1978. [Google Scholar]
- Karydas, C.; Petriolis, M.; Manakos, I. Evaluating Alternative Methods of Soil Erodibility Mapping in the Mediterranean Island of Crete. Agriculture 2013, 3, 362–380. [Google Scholar] [CrossRef] [Green Version]
- USGS 3D Elevation Program Digital Elevation Service. Available online: https://hydro.nationalmap.gov/arcgis/rest/services/nhd/MapServer (accessed on 2 December 2021).
- Najwer, A.; Borysiak, J.; Gudowicz, J.; Mazurek, M.; Zwoliński, Z. Geodiversity and Biodiversity of the Postglacial Landscape (Dębnica River Catchment, Poland). Quaest. Geogr. 2016, 35, 5–28. [Google Scholar] [CrossRef] [Green Version]
- Hall, K.; Hall, A. Thermal Gradients and Rock Weathering at Low Temperatures: Some Simulation Data. Permafr. Periglac. Process. 1991, 2, 103–112. [Google Scholar] [CrossRef]
- Gray, M. Geodiversity, Geoheritage and Geoconservation for Society. Int. J. Geoheritage Park. 2019, 7, 226–236. [Google Scholar] [CrossRef]
- Schumm, S.A. To Interpret the Earth: Ten Ways to Be Wrong; Cambridge University Press: Cambridge, UK, 1998; ISBN 978-0-521-64602-4. [Google Scholar]
- Brown, G.; Montag, J.M.; Lyon, K. Public Participation GIS: A Method for Identifying Ecosystem Services. Soc. Nat. Resour. 2012, 25, 633–651. [Google Scholar] [CrossRef]
- Gray, M. Other Nature: Geodiversity and Geosystem Services. Environ. Conserv. 2011, 38, 271–274. [Google Scholar] [CrossRef] [Green Version]
- de Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in Integrating the Concept of Ecosystem Services and Values in Landscape Planning, Management and Decision Making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Brown, G.; Fagerholm, N. Empirical PPGIS/PGIS Mapping of Ecosystem Services: A Review and Evaluation. Ecosyst. Serv. 2015, 13, 119–133. [Google Scholar] [CrossRef]
- Alessa, L.N.; Kliskey, A.A.; Brown, G. Social–Ecological Hotspots Mapping: A Spatial Approach for Identifying Coupled Social–Ecological Space. Landsc. Urban Plan. 2008, 85, 27–39. [Google Scholar] [CrossRef]
- Grayson Highlands State Park. Available online: https://www.dcr.virginia.gov/state-parks/grayson-highlands#general_information (accessed on 5 December 2022).
- Raymond, C.M.; Gottwald, S.; Kuoppa, J.; Kyttä, M. Integrating Multiple Elements of Environmental Justice into Urban Blue Space Planning Using Public Participation Geographic Information Systems. Landsc. Urban Plan. 2016, 153, 198–208. [Google Scholar] [CrossRef]
- Brown, G.; Reed, P. Public Participation GIS: A New Method for Use in National Forest Planning. For. Sci. 2009, 55, 166–182. [Google Scholar]
- Brown, G.; Weber, D. A Place-Based Approach to Conservation Management Using Public Participation GIS (PPGIS). J. Environ. Plan. Manag. 2013, 56, 455–473. [Google Scholar] [CrossRef] [Green Version]
- Brown, G.; Reed, P.; Raymond, C.M. Mapping Place Values: 10 Lessons from Two Decades of Public Participation GIS Empirical Research. Appl. Geogr. 2020, 116, 102156. [Google Scholar] [CrossRef]
- Hannon, B. Sense of Place: Geographic Discounting by People, Animals and Plants. Ecol. Econ. 1994, 10, 157–174. [Google Scholar] [CrossRef]
- Mazurczyk, T.J.; Murtha, T.M.; Goldberg, L.K.; Orland, B. Integrating Visual and Cultural Resource Evaluation and Impact Assessment for Landscape Conservation Design and Planning. In Visual Resource Stewardship Conference Proceedings: Landscape and Seascape Management in a Time of Change. Gen. Tech. Rep. NRS-P-183; Gobster, P.H., Smardon, R.C., Eds.; Department of Agriculture, Forest Service, Northern Research Station: Newtown Square, PA, USA, 2018; pp. 149–160. [Google Scholar]
- Norton, B.G.; Hannon, B. Environmental Values: A Place-Based Approach. Environ. Ethics 1997, 19, 227–245. [Google Scholar] [CrossRef]
- Perotti, L.; Carraro, G.; Giardino, M.; De Luca, D.A.; Lasagna, M. Geodiversity Evaluation and Water Resources in the Sesia Val Grande UNESCO Geopark (Italy). Water 2019, 11, 2102. [Google Scholar] [CrossRef] [Green Version]
- Tognetto, F.; Perotti, L.; Viani, C.; Colombo, N.; Giardino, M. Geomorphology and Geosystem Services of the Indren-Cimalegna Area (Monte Rosa Massif—Western Italian Alps). J. Maps 2021, 17, 161–172. [Google Scholar] [CrossRef]
- Serrano, E.; Ruiz-Flaño, P. Geodiversity: A theoretical and applied concept. Geogr. Helv. 2007, 62, 140–147. [Google Scholar] [CrossRef]
- Silva, J.P.; Rodrigues, C.; Pereira, D.I. Mapping and Analysis of Geodiversity Indices in the Xingu River Basin, Amazonia, Brazil. Geoheritage 2015, 7, 337–350. [Google Scholar] [CrossRef] [Green Version]
- Bétard, F.; Peulvast, J.-P. Geodiversity Hotspots: Concept, Method and Cartographic Application for Geoconservation Purposes at a Regional Scale. Environ. Manag. 2019, 63, 822–834. [Google Scholar] [CrossRef]
- Rivers, B.; Oliver, R.; Resler, L. Pungent Provisions: The Ramp and Appalachian Identity. Mater. Cult. 2014, 46, 1–24. [Google Scholar]
- Chakraborty, A. Mountains as Vulnerable Places: A Global Synthesis of Changing Mountain Systems in the Anthropocene. GeoJournal 2021, 86, 585–604. [Google Scholar] [CrossRef]
- Wiser, S.K.; Peet, R.K.; White, P.S. High-Elevation Rock Outcrop Vegetation of the Southern Appalachian Mountains. J. Veg. Sci. 1996, 7, 703–722. [Google Scholar] [CrossRef] [Green Version]
- Kubalíková, L.; Coratza, P. Reflections of Geodiversity—Culture Relationships within the Concept of Abiotic Ecosystem Services. Geol. Soc. Lond. Spec. Publ. 2023, 530, SP530-2022-2155. [Google Scholar] [CrossRef]
- Brilha, J. Geoheritage. In Geoheritage; Elsevier: Amsterdam, The Netherlands, 2018; pp. 69–85. ISBN 978-0-12-809531-7. [Google Scholar]
- Brown, G.; Raymond, C. The Relationship between Place Attachment and Landscape Values: Toward Mapping Place Attachment. Appl. Geogr. 2007, 27, 89–111. [Google Scholar] [CrossRef]
- Raymond, C.M.; Bryan, B.A.; MacDonald, D.H.; Cast, A.; Strathearn, S.; Grandgirard, A.; Kalivas, T. Mapping Community Values for Natural Capital and Ecosystem Services. Ecol. Econ. 2009, 68, 1301–1315. [Google Scholar] [CrossRef]
- Hjort, J.; Luoto, M. Geodiversity of High-Latitude Landscapes in Northern Finland. Geomorphology 2010, 115, 109–116. [Google Scholar] [CrossRef]
- Ibáñez, J.-J.; Brevik, E.C. Divergence in Natural Diversity Studies: The Need to Standardize Methods and Goals. CATENA 2019, 182, 104110. [Google Scholar] [CrossRef]
- Garcia-Martin, M.; Fagerholm, N.; Bieling, C.; Gounaridis, D.; Kizos, T.; Printsmann, A.; Müller, M.; Lieskovský, J.; Plieninger, T. Participatory Mapping of Landscape Values in a Pan-European Perspective. Landsc. Ecol. 2017, 32, 2133–2150. [Google Scholar] [CrossRef]
- Ridding, L.E.; Redhead, J.W.; Oliver, T.H.; Schmucki, R.; McGinlay, J.; Graves, A.R.; Morris, J.; Bradbury, R.B.; King, H.; Bullock, J.M. The Importance of Landscape Characteristics for the Delivery of Cultural Ecosystem Services. J. Environ. Manag. 2018, 206, 1145–1154. [Google Scholar] [CrossRef] [Green Version]
- Germino, M.J.; Reiners, W.A.; Blasko, B.J.; McLeod, D.; Bastian, C.T. Estimating Visual Properties of Rocky Mountain Landscapes Using GIS. Landsc. Urban Plan. 2001, 53, 71–83. [Google Scholar] [CrossRef]
- Forte, J.P.; Brilha, J.; Pereira, D.I.; Nolasco, M. Kernel Density Applied to the Quantitative Assessment of Geodiversity. Geoheritage 2018, 10, 205–217. [Google Scholar] [CrossRef] [Green Version]
- Brilha, J. Inventory and Quantitative Assessment of Geosites and Geodiversity Sites: A Review. Geoheritage 2016, 8, 119–134. [Google Scholar] [CrossRef] [Green Version]
Geodiversity Category and Score | Slope Position | Ruggedness | Landform Taxa | Local Relief (m) | Geological Diversity | Soil Erodibility (K-Factor) | Insolation (kW/m2) | TWI | Hydrography (m/km2) |
---|---|---|---|---|---|---|---|---|---|
Very Low (1) | Flat Slope | 0–2.98 | Plains | 0–9.01 | Ultramafic rock variety | 0.06–0.22 | 0.74–1.97 | 2.86–6.15 | 0–0.53 |
Low (2) | Middle Slope | 2.99–5.03 | Valley | 9.01–16.00 | Conglomerate variety | 0.22–0.28 | 1.97–3.56 | 6.15–8.08 | 0.53–1.33 |
Medium (3) | Upper/Lower Slope | 5.04–7.26 | Open/Upper Slopes, Mid-slope/Upper Drain | 16.01–23.00 | Sandstone | 0.28–0.34 | 3.56–5.04 | 8.08–11.05 | 1.33–1.53 |
High (4) | Valley | 7.27–10.25 | Local/Mid-slope Ridges | 23.01–32.00 | Amphibolite, greenstone, meta-argillite, mica schist, quartz monzonite, rhyolite, sedimentary breccia | 0.34–0.43 | 5.04–6.66 | 11.05–15.46 | 1.53–1.66 |
Very High (5) | Ridge | 10.26–47.53 | High Ridges | 32.01–91.00 | Augen gneiss, biotite gneiss, felsic volcanic rock, granite | 0.44–0.52 | 6.66–8.49 | 15.46–23.33 | 1.66–1.86 |
Geosystem Service (GS) Category | GS | GS Benefits | Operational Definition |
---|---|---|---|
Cultural | Aesthetic | Appreciation of landscape or landmark | I appreciate the scenery or landmark. |
Geotourism and leisure | Provides recreation opportunity | I find this location useful to participate in outdoor sports, walking, hiking, biking, dog walking, rock climbing, etc. | |
Spiritual, historic, and cultural Associations | Significant area that represents spirituality, local culture, heritage, or history. | This location plays a significant role in my spirituality, local culture, heritage, and/or history. | |
Artistic inspiration | Provides materials or inspiration for art/music. | I find this place useful for my creativity (drawing, music, writing, and woodworking). | |
Social | Significance to social interactions. | I find this location to be beneficial to social groups that I am a part of because of its terrain or non-living benefits. | |
Provisioning | Food and drink | Useful for subsidence | I collect/harvest non-living food or drink from this location. (e.g., freshwater and mineral water). |
Energy products | Signifies important areas for abiotic energy resources | This location is important for my energy needs (e.g., coal, gas, oil, hydroelectric, and wind power). | |
Ornamental/construction products | I utilize the non-living materials in this location (e.g., gemstones, metals, stone, and brick). | ||
Knowledge | Important geological landmarks | Signifies important geological landmarks/area. | I find this location of geologic importance. |
Educational areas | Signifies influential areas to educational/local knowledge about the Earth. | This area is influential to what I have learned about the Earth or can teach people about the Earth. |
Score | Category | Area (km2) | Area (%) |
---|---|---|---|
1 | Very Low | 273.81 | 14.94 |
2 | Low | 526.57 | 28.73 |
3 | Medium | 529.83 | 28.91 |
4 | High | 362.27 | 19.77 |
5 | Very High | 140.19 | 7.65 |
Very Low (1) | (%) | Low (2) | (%) | Medium (3) | (%) | High (4) | (%) | Very High (5) | (%) | Total Mapped Attributes | |
---|---|---|---|---|---|---|---|---|---|---|---|
Aesthetic | 21 | 21.00 | 30 | 30.00 | 19 | 19.00 | 16 | 16.00 | 14 | 14.00 | 100 |
Artistic inspiration | 20 | 28.57 | 19 | 27.14 | 15 | 21.43 | 12 | 17.14 | 4 | 5.71 | 70 |
Educational areas | 10 | 20.00 | 14 | 28.00 | 16 | 32.00 | 7 | 14.00 | 3 | 6.00 | 50 |
Geotourism and leisure | 7 | 25.93 | 11 | 40.74 | 6 | 22.22 | 2 | 7.41 | 1 | 3.70 | 27 |
Social | 3 | 14.29 | 8 | 38.10 | 7 | 33.33 | 2 | 9.52 | 1 | 4.76 | 21 |
Spiritual, historic, and cultural | 9 | 42.86 | 5 | 23.81 | 4 | 19.05 | 3 | 14.29 | 0 | 0.00 | 21 |
Important geological landmarks | 2 | 12.50 | 5 | 31.25 | 5 | 31.25 | 4 | 25.00 | 0 | 0.00 | 16 |
Food and drink | 0 | 0.00 | 0 | 0.00 | 5 | 100.00 | 0 | 0.00 | 0 | 0.00 | 5 |
Ornamental/construction products | 0 | 0.00 | 0 | 0.00 | 3 | 75.00 | 0 | 0.00 | 1 | 25.00 | 4 |
Energy products | 1 | 25.00 | 1 | 25.00 | 2 | 50.00 | 0 | 0.00 | 0 | 0.00 | 4 |
Total mapped attributes | 73 | 22.96 | 93 | 29.25 | 82 | 25.79 | 46 | 14.47 | 24 | 7.55 | 318 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanley, K.B.; Resler, L.M.; Carstensen, L.W. A Public Participation GIS for Geodiversity and Geosystem Services Mapping in a Mountain Environment: A Case from Grayson County, Virginia, U.S.A. Land 2023, 12, 835. https://doi.org/10.3390/land12040835
Stanley KB, Resler LM, Carstensen LW. A Public Participation GIS for Geodiversity and Geosystem Services Mapping in a Mountain Environment: A Case from Grayson County, Virginia, U.S.A. Land. 2023; 12(4):835. https://doi.org/10.3390/land12040835
Chicago/Turabian StyleStanley, Kyler B., Lynn M. Resler, and Lawrence W. Carstensen. 2023. "A Public Participation GIS for Geodiversity and Geosystem Services Mapping in a Mountain Environment: A Case from Grayson County, Virginia, U.S.A." Land 12, no. 4: 835. https://doi.org/10.3390/land12040835
APA StyleStanley, K. B., Resler, L. M., & Carstensen, L. W. (2023). A Public Participation GIS for Geodiversity and Geosystem Services Mapping in a Mountain Environment: A Case from Grayson County, Virginia, U.S.A. Land, 12(4), 835. https://doi.org/10.3390/land12040835