From Uncertainties to Solutions: A Scenario-Based Framework for an Agriculture Protection Zone in Magic Valley Idaho
Abstract
:1. Introduction
1.1. Social Ecological Systems Solutions in Scenario Projects
1.2. The Urban–Rural Fringe in Magic Valley Idaho
2. Methods and Materials
2.1. Best Management Practices in Agroecology
2.1.1. Current Agriculture Protection Zoning
2.1.2. Agriculture Protection Zoning Effectiveness
2.2. Stakeholder Engagement through Geodesign
- (a)
- Process Model—the APZ suite of suitability models evaluated by indicators of total agricultural land;
- (b)
- Change Model—a composite APZ (including each scenario APZ boundary) to align projected agricultural land for each Alternative Future circa 2050 [7];
- (c)
- Impact Model—this model is a comparison of the current agricultural lands with the APZ Suite to determine effectiveness of the APZ under the assumptions of each scenario;
- (d)
- Decision Model—the decision model, as a ‘low to high’ suitability gradient of feasible APZ areas, provides a synthesis of the process to demonstrate a range of the composite APZ along with the agriculture projection zoning.
2.3. Suitability Analysis for the APZ
2.4. Materials and Data Sources
2.5. APZ Suitability Criteria per Each INFEWS Scenario
3. Results
3.1. Composite APZ Analysis Outputs
3.2. APZ Suite and Composite APZ Output Comparison
4. Discussion
4.1. Solutions for Agroecological Systems in Magic Valley
4.2. Magic Valley INFEWS Agricultural Protection Zone Gradient
4.3. Planning and Zoning Impact within the Rural–Urban Interface
5. Conclusions
5.1. Lessons Learned
5.2. Broader Impacts
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, S.; Dou, S.; Li, C. Land-Use Conflict Identification in Urban Fringe Areas Using the Theory of Leading Functional Space Partition. Soc. Sci. J. 2020, 1, 1–16. [Google Scholar] [CrossRef]
- McCarthy, J.J. Climate Change 2001: Impacts, Adaptation, and Vulnerability: Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Steinitz, C.; Anderson, R.; Arias, H.; Bassett, S.; Flaxman, M.; Goode, T.; Maddock, T. Alternative Futures for Landscapes in the Upper San Pedro River Basin of Arizona and Sonora. In Proceedings of the Bird Conservation Implementation and Integration in the Americas: Proceedings of the Third International Partners in Flight Conference, Asilomar, CA, USA, 20–24 March 2002; John, R.C., Terrell, D.R., Eds.; U.S. Dept. of Agriculture, Forest Service, Pacific Southwest Research Station: Albany, CA, USA, 2005; Volume 1, pp. 93–191, General Technical Report. PSW-GTR-191. Available online: http://www.fs.usda.gov/treesearch/pubs/31642 (accessed on 10 May 2022).
- Baker, J.P.; Hulse, D.W.; Gregory, S.V.; White, D.; Van Sickle, J.; Berger, P.A.; Dole, D.; Schumaker, N.H. Alternative Futures for the Willamette River Basin, Oregon. Ecol. Appl. 2004, 14, 313–324. [Google Scholar] [CrossRef] [Green Version]
- Hulse, D.; Branscomb, A.; Enright, C.; Bolte, J. Anticipating Floodplain Trajectories: A Comparison of Two Alternative Futures Approaches. Landsc. Ecol. 2009, 24, 1067–1090. [Google Scholar] [CrossRef]
- Kliskey, A.; Williams, P.; Trammell, E.J.; Cronan, D.; Griffith, D.; Alessa, L.; Lammers, R.; de Haro-Martí, M.E.; Oxarango-Ingram, J. Building trust, building futures: Knowledge co-production as relationship, design, and process in transdisciplinary science. Front. Environ. Sci. 2023, 11, 1007105. [Google Scholar] [CrossRef]
- Cronan, D.; Trammell, E.J.; Kliskey, A.; Williams, P.; Alessa, L. Socio-Ecological Futures: Embedded Solutions for Stakeholder-Driven Alternative Futures. Sustainability 2022, 14, 3732. [Google Scholar] [CrossRef]
- Shearer, A.W.; Mouat, D.A.; Bassett, S.D.; Binford, M.W.; Johnson, C.W.; Saarinen, J.A. Examining Development-Related Uncertainties for Environmental Management: Strategic Planning Scenarios in Southern California. Landsc. Urban Plan. 2006, 77, 359–381. [Google Scholar] [CrossRef]
- Trammell, E.J.; Thomas, J.S.; Mouat, D.; Korbulic, Q.; Bassett, S. Developing Alternative Land-Use Scenarios to Facilitate Natural Resource Management across Jurisdictional Boundaries. J. Environ. Plan. Manag. 2018, 61, 64–85. [Google Scholar] [CrossRef]
- Avin, U.; Goodspeed, R. Using Exploratory Scenarios in Planning Practice. J. Am. Plan. Assoc. 2020, 86, 15. [Google Scholar] [CrossRef]
- Iwaniec, D.M.; Cook, E.M.; Davidson, M.J.; Berbés-Blázquez, M.; Georgescu, M.; Krayenhoff, E.S.; Middel, A.; Sampson, D.A.; Grimm, N.B. The Co-Production of Sustainable Future Scenarios. Landsc. Urban Plan. 2020, 197, 103744. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Bennett, E.M.; Peterson, G. Scenarios for Ecosystem Services: An Overview. Ecol. Soc. 2006, 11, art29. [Google Scholar] [CrossRef]
- Adger, W.N. Vulnerability. Glob. Environ. Change 2006, 16, 268–281. [Google Scholar] [CrossRef]
- Ostrom, E. A General Framework for Analyzing Sustainability of Social-Ecological Systems. Science 2009, 325, 419–422. [Google Scholar] [CrossRef]
- Hulse, D.; Branscomb, A.; Enright, C.; Johnson, B.; Evers, C.; Bolte, J.; Ager, A. Anticipating Surprise: Using Agent-Based Alternative Futures Simulation Modeling to Identify and Map Surprising Fires in the Willamette Valley, Oregon USA. Landsc. Urban Plan. Geod.—Change World Change Des. 2016, 156, 26–43. [Google Scholar] [CrossRef]
- Ferguson, L.; Chan, S.; Santelmann, M.; Tilt, B. Exploring Participant Motivations and Expectations in a Researcher-Stakeholder Engagement Process: Willamette Water 2100. Landsc. Urban Plan. 2017, 157, 447–456. [Google Scholar] [CrossRef]
- Armitage, D.R.; Plummer, R.; Berkes, F.; I Arthur, R.; Charles, A.T.; Davidson-Hunt, I.J.; Diduck, A.P.; Doubleday, N.C.; Johnson, D.S.; Marschke, M.; et al. Adaptive Co-Management for Social-Ecological Complexity. Front. Ecol. Environ. 2009, 7, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Cronan, D.; Trammell, E.J.; Kliskey, A. Images to Evoke Decision-Making: Building Compelling Representations for Stakeholder-Driven Futures. Sustainability 2022, 14, 2980. [Google Scholar] [CrossRef]
- Hulse, D.W.; Branscomb, A.; Payne, S.G. Envisioning alternatives: Using citizen guidance to map future land and water use. Ecol. Appl. 2004, 14, 325–341. [Google Scholar] [CrossRef]
- Arnstein, S.R. A Ladder of Citizen Participation. J. Am. Inst. Plan. 1969, 35, 216–224. [Google Scholar] [CrossRef] [Green Version]
- Steinitz, C. A Framework for Geodesign: Changing Geography by Design, 1st ed.; ESRI: Redlands, CA, USA, 2012. [Google Scholar]
- Kliskey, A.; Alessa, L.; Griffith, D.; Olsen, S.; Williams, P.; Matsaw, S.; Cenek, M.; Gosz, J.; Dengler, S. Transforming Sustainability Science for Practice: A Social–Ecological Systems Framework for Training Sustainability Professionals. Sustain. Sci. 2021, 16, 283–294. [Google Scholar] [CrossRef]
- Villamor, G.B.; Griffith, D.L.; Kliskey, A.; Alessa, L. Contrasting Stakeholder and Scientist Conceptual Models of Food-Energy-Water Systems: A Case Study in Magic Valley, Southern Idaho. Socio-Environ. Syst. Model. 2020, 2, 16312. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Tan, Z.; Chen, Y. Zoning Farmland Protection under Spatial Constraints by Integrating Remote Sensing, GIS and Artificial Immune Systems. Int. J. Geogr. Inf. Sci. 2011, 25, 1829–1848. [Google Scholar] [CrossRef]
- Lichter, D.T.; Brown, D.L.; Parisi, D. The Rural–Urban Interface: Rural and Small Town Growth at the Metropolitan Fringe. Popul. Space Place 2021, 27, e2415. [Google Scholar] [CrossRef]
- López-Goyburu, P.; García-Montero, L.G. The Urban-Rural Interface as an Area with Characteristics of Its Own in Urban Planning: A Review. Sustain. Cities Soc. 2018, 43, 157–165. [Google Scholar] [CrossRef]
- Feng, H.; Squires, V.; Wu, J. Ecosystem Services Provisioning, Urban Growth and the Rural–Urban Interface: A Case Study from China. Land 2021, 10, 337. [Google Scholar] [CrossRef]
- Li, Y.; Huang, H.; Ju, H.; Lin, E.; Xiong, W.; Han, X.; Wang, H.; Peng, Z.; Wang, Y.; Xu, J.; et al. Assessing Vulnerability and Adaptive Capacity to Potential Drought for Winter-Wheat under the RCP 8.5 Scenario in the Huang-Huai-Hai Plain. Agric. Ecosyst. Environ. 2015, 209, 125–131. [Google Scholar] [CrossRef]
- Hinkel, J. ‘Indicators of Vulnerability and Adaptive Capacity’: Towards a Clarification of the Science–Policy Interface. Glob. Environ. Change 2011, 21, 198–208. [Google Scholar] [CrossRef]
- Allen, C.R.; Gunderson, L.H. Pathology and Failure in the Design and Implementation of Adaptive Management. J. Environ. Manag. Adapt. Manag. Nat. Resour. 2011, 92, 1379–1384. [Google Scholar] [CrossRef] [Green Version]
- Salvia, R.; Quaranta, G. Adaptive Cycle as a Tool to Select Resilient Patterns of Rural Development. Sustainability 2015, 7, 11114. [Google Scholar] [CrossRef] [Green Version]
- US Census Bureau. US Census 2020. 2020. Available online: https://data.census.gov/cedsci/ (accessed on 10 January 2023).
- Baba, K.; Naoki, M.; Michinori, K. Scenario-Based Approach to Local Water-Energy-Food Nexus Issues with Experts and Stakeholders. In The Water-Energy-Food Nexus, Edited by Aiko Endo and Tomohiro Oh, 321–333; Springer: Singapore, 2018. [Google Scholar] [CrossRef]
- Bolte, J.P.; Hulse, D.W.; Gregory, S.V.; Smith, C. Modeling Biocomplexity—Actors, Landscapes and Alternative Futures. Environ. Model. Softw. 2007, 22, 570–579. [Google Scholar] [CrossRef] [Green Version]
- Fontana, V.; Radtke, A.; Fedrigotti, V.B.; Tappeiner, U.; Tasser, E.; Zerbe, S.; Buchholz, T. Comparing Land-Use Alternatives: Using the Ecosystem Services Concept to Define a Multi-Criteria Decision Analysis. Ecol. Econ. 2013, 93, 128–136. [Google Scholar] [CrossRef]
- Walsh, C.J.; Roy, A.H.; Feminella, J.W.; Cottingham, P.D.; Groffman, P.M.; Morgan, R.P. The Urban Stream Syndrome: Current Knowledge and the Search for a Cure. J. N. Am. Benthol. Soc. 2005, 24, 706–723. [Google Scholar] [CrossRef]
- Oberholtzer, L.; Clancy, K.; Esseks, J.D. The Future of Farming on the Urban Edge: Insights from Fifteen U.S. Counties about Farmland Protection and Farm Viability. J. Agric. Food Syst. Community Dev. 2010, 1, 49–75. [Google Scholar] [CrossRef] [Green Version]
- Hartzell, J. Agricultural and Rural Zoning in Pennsylvania: Can You Get There from Here. Villanova Environ. Law J. 1999, 10, 245. [Google Scholar]
- Liu, X.; Lynch, L. Do Zoning Regulations Rob Rural Landowners’ Equity? Am. J. Agric. Econ. 2011, 93, 1–25. [Google Scholar] [CrossRef]
- Vyn, R.J. Examining for Evidence of the Leapfrog Effect in the Context of Strict Agricultural Zoning. Land Econ. 2012, 88, 457–477. [Google Scholar] [CrossRef]
- Eagle, A.J.; Eagle, D.E.; Stobbe, T.E.; Kooten, G.C. Farmland Protection and Agricultural Land Values at the Urban-Rural Fringe: British Columbia’s Agricultural Land Reserve. Am. J. Agric. Econ. 2015, 97, 282–298. [Google Scholar] [CrossRef] [Green Version]
- Macary, F.; Dias, J.A.; Figueira, J.R.; Roy, B. A Multiple Criteria Decision Analysis Model Based on ELECTRE TRI-C for Erosion Risk Assessment in Agricultural Areas. Environ. Model. Assess. 2014, 19, 221–242. [Google Scholar] [CrossRef]
- USDA-NRCS. Available online: https://nrcs.app.box.com/v/gateway/folder/22218925171 (accessed on 10 May 2022).
- ESRI. Weighted Overlay. 2021. Available online: https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/weighted-overlay.htm (accessed on 10 May 2022).
- USDA Cropscape. Cropland Data Layes. 2020. Available online: https://cropcros.azurewebsites.net/ (accessed on 10 May 2022).
- Felt, C.; Fragkias, M.; Larson, D.; Liao, H.; Lohse, K.A.; Lybecker, D. A Comparative Study of Urban Fragmentation Patterns in Small and Mid-Sized Cities of Idaho. Urban Ecosyst. 2018, 21, 805–816. [Google Scholar] [CrossRef]
- Xu, W.; Lowe, S.E.; Adams, R.M. Climate Change, Water Rights, and Water Supply: The Case of Irrigated Agriculture in Idaho. Water Resour. Res. 2014, 50, 9675–9695. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, F.; Goparaju, L. A Geospatial Analysis of Climate Variability and Its Impact on Forest Fire: A Case Study in Orissa State of India. Spat. Inf. Res. 2018, 26, 587–598. [Google Scholar] [CrossRef]
- Nurda, N.; Noguchi, R.; Ahamed, T. Change Detection and Land Suitability Analysis for Extension of Potential Forest Areas in Indonesia Using Satellite Remote Sensing and GIS. Forests 2020, 11, 398. [Google Scholar] [CrossRef] [Green Version]
- Putra, F.M.; Sitanggang, I.S.; Sobir; Gusmendasari, R. Visualization of Agroecological Suitability of Peatland to Pineapple Productivity in Kampar District with Fuzzy Approach. IOP Conf. Ser. Earth Environ. Sci. 2021, 771, 012019. [Google Scholar] [CrossRef]
- Jeanneret, P.; Aviron, S.; Alignier, A.; Lavigne, C.; Helfenstein, J.; Herzog, F.; Kay, S.; Petit, S. Agroecology Landscapes. Landsc. Ecol. 2021, 36, 2235–2257. [Google Scholar] [CrossRef] [PubMed]
- Richardson, J.J.; Bernard, A.C. Zoning for conservation easements. Law Contemp. Probl. 2011, 74, 83–108. [Google Scholar] [CrossRef] [Green Version]
- Arendt, R. Growing Greener: Putting Conservation into Local Plans and Ordinances; Island Press: Washington, DC, USA, 1999. [Google Scholar]
- Halbert, C.L. How Adaptive Is Adaptive Management? Implementing Adaptive Management in Washington State and British Columbia. Rev. Fish. Sci. 1993, 1, 261–283. [Google Scholar] [CrossRef]
- Linkov, I.; Satterstrom, F.K.; A Kiker, G.; Bridges, T.S.; Benjamin, S.L.; A Belluck, D. From Optimization to Adaptation: Shifting Paradigms in Environmental Management and Their Application to Remedial Decisions. Integr. Environ. Assess. Manag. 2006, 2, 92–98. [Google Scholar] [CrossRef]
- Kliskey, A.; Williams, P.; Griffith, D.; Dale, V.; Schelly, C.; Marshall, A.-M.; Gagnon, V.; Eaton, W.; Floress, K. Thinking Big and Thinking Small: A Conceptual Framework for Best Practices in Community and Stakeholder Engagement in Food, Energy, and Water Systems. Sustainability 2021, 13, 2160. [Google Scholar] [CrossRef]
Scenario | Crops Allocated | Minimum Acreage | Soils of Importance | Land Capability Classes |
---|---|---|---|---|
Scenario 1: Business as Usual | Top Commodity Crops | Greater than 40 Acres | Soils of Statewide Importance | Classes I–IV |
Scenario 2: The Courts Call | No APZ | |||
Scenario 3: Locavore | Top commodity crops and community importance | Greater than 25 Acres | Prime Agricultural Soils | Classes I–IV |
Scenario 4: Population Boom | No APZ | |||
Scenario 5: Megadrought | Top commodity crops and dairy agriculture | Greater than 40 acres | Prime Agriculture Soils | Classes I–IV |
Scenario 6: Happy Valley | Top commodity crops and dairy agriculture | Greater than 40 acres | Prime Agriculture and Transitional Soils | Classes I–IV |
Weights | Crops Allocated | Minimum Acreage | Soils of Importance | Land Capability Classification |
---|---|---|---|---|
1 | Top Commodity Crops | - | Soils of Statewide Importance | - |
2 | - | - | - | Class IV |
3 | Top commodity crops and community importance | Greater than 25 Acres | Prime Agricultural Soils | Class III |
4 | - | - | - | Class II |
5 | Top commodity crops and dairy agriculture | Greater than 40 Aces | Prime Agriculture and Transitional Soils | Class I |
APZ Agreement | Acres (Area) | Hectares (Area) |
---|---|---|
Low | 201,629.23 | 81,596.45 |
Low to Medium | 819,833.96 | 331,775.03 |
Medium | 183,586.32 | 74,294.75 |
High | 1,362,596.23 | 551,423.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cronan, D.; Trammell, E.J.; Kliskey, A. From Uncertainties to Solutions: A Scenario-Based Framework for an Agriculture Protection Zone in Magic Valley Idaho. Land 2023, 12, 862. https://doi.org/10.3390/land12040862
Cronan D, Trammell EJ, Kliskey A. From Uncertainties to Solutions: A Scenario-Based Framework for an Agriculture Protection Zone in Magic Valley Idaho. Land. 2023; 12(4):862. https://doi.org/10.3390/land12040862
Chicago/Turabian StyleCronan, Daniel, E. Jamie Trammell, and Andrew Kliskey. 2023. "From Uncertainties to Solutions: A Scenario-Based Framework for an Agriculture Protection Zone in Magic Valley Idaho" Land 12, no. 4: 862. https://doi.org/10.3390/land12040862
APA StyleCronan, D., Trammell, E. J., & Kliskey, A. (2023). From Uncertainties to Solutions: A Scenario-Based Framework for an Agriculture Protection Zone in Magic Valley Idaho. Land, 12(4), 862. https://doi.org/10.3390/land12040862