Assessment of Conservation Effectiveness of the Qinghai–Tibet Plateau Nature Reserves from a Human Footprint Perspective with Global Lessons
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Land-Use Activity
2.3.2. Grazing Intensity
2.3.3. Nighttime Light Activities
2.3.4. Distance from Road
2.3.5. HP Calculation
2.4. Changes in the Values of HP
3. Results
3.1. Spatiotemporal Changes in the HP in the NRs of the Qinghai–Tibet Plateau for 2000–2020
3.2. HP Changes inside and outside the NRs of the Qinghai–Tibet Plateau
3.3. Temporal Variation in HP in Different Types of the NRs
3.4. Changes in HP in Various Functional Areas of the NRs
4. Discussion
4.1. Analyses of Differences in Conservation Effectiveness
4.2. Limitations and Future Works
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Venter, O.; Watson, J.E.M.; Maxwell, S.L.; Cazalis, V.; Dudley, N.; Hoffmann, M.; Rodrigues, A.S.L.; Stolton, S.; Visconti, P.; Woodley, S.; et al. Area-based conservation in the twenty-first century. Nature 2020, 586, 217–227. [Google Scholar]
- Jiang, M.K. Overview of research on evaluation of conservation effectiveness of natural reserves in China. J. Ecol. Rural Environ. 2015, 31, 789–790. [Google Scholar]
- Tang, X.; Jiang, Y.; Liu, Z.; Chen, J.; Liang, B.; Lin, C. Top-level Design of the Natural Protected Area System in China. For. Resour. Manag. 2019, 03, 1–7. [Google Scholar] [CrossRef]
- Mascia, M.B.; Pailler, S.; Krithivasan, R.; Roshchanka, V.; Burns, D.; Mlotha, M.J.; Murray, D.R.; Peng, N. Protected area downgrading, downsizing, and degazettement (PADDD) in Africa, Asia, and Latin America and the Caribbean, 1900–2010. Biol. Conserv. 2014, 169, 355–361. [Google Scholar] [CrossRef]
- Yang, H.; Viña, A.; Winkler, J.A.; Chung, M.G.; Dou, Y.; Wang, F.; Zhang, J.; Tang, Y.; Connor, T.; Zhao, Z.; et al. Effectiveness of China’s protected areas in reducing deforestation. Environ. Sci. Pollut. Res. 2019, 26, 18651–18661. [Google Scholar] [CrossRef]
- Butchart, S.H.M.; Walpole, M.; Collen, B.; Van Strien, A.; Scharlemann, J.P.W.; Almond, R.E.A.; Baillie, J.E.M.; Bomhard, B.; Brown, C.; Bruno, J.; et al. Global Biodiversity: Indicators of Recent Declines. Science 2010, 328, 1164–1168. [Google Scholar] [CrossRef]
- Leverington, F.; Costa, K.L.; Pavese, H.; Lisle, A.; Hockings, M. A Global Analysis of Protected Area Management Effectiveness. Environ. Manag. 2010, 46, 685–698. [Google Scholar] [CrossRef]
- Watson, J.E.M.; Dudley, N.; Segan, D.B.; Hockings, M. The performance and potential of protected areas. Nature 2014, 515, 67–73. [Google Scholar] [CrossRef]
- Coetzee, B.W.T. Evaluating the ecological performance of protected areas. Biodivers. Conserv. 2016, 26, 231–236. [Google Scholar] [CrossRef]
- Pereira, H.M.; Navarro, L.M.; Martins, I.S. Global Biodiversity Change: The Bad, the Good, and the Unknown. Annu. Rev. Environ. Resour. 2012, 37, 25–50. [Google Scholar] [CrossRef] [Green Version]
- Titeux, N.; Henle, K.; Mihoub, J.-B.; Regos, A.; Geijzendorffer, I.R.; Cramer, W.; Verburg, P.H.; Brotons, L. Biodiversity scenarios neglect future land-use changes. Glob. Chang. Biol. 2016, 22, 2505–2515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pacifici, M.; Foden, W.B.; Visconti, P.; Watson, J.E.M.; Butchart, S.H.M.; Kovacs, K.M.; Scheffers, B.R.; Hole, D.G.; Martin, T.G.; Akçakaya, H.R.; et al. Assessing species vulnerability to climate change. Nat. Clim. Chang. 2015, 5, 215–224. [Google Scholar] [CrossRef]
- Staudinger, M.D.; Carter, S.L.; Cross, M.S.; Dubois, N.; Duffy, J.E.; Enquist, C.; Griffis, R.; Hellmann, J.J.; Lawler, J.J.; O’Leary, J.; et al. Biodiversity in a changing climate: A synthesis of current and projected trends in the US. Front. Ecol. Environ. 2013, 11, 465–473. [Google Scholar] [CrossRef] [Green Version]
- Jones, K.R.; Venter, O.; Fuller, R.A.; Allan, J.R.; Maxwell, S.L.; Negret, P.J.; Watson, J.E.M. One-third of global protected land is under intense human pressure. Science 2018, 360, 788–791. [Google Scholar] [CrossRef] [Green Version]
- Mcdonald, R.I.; Kareiva, P.; Forman, R.T. The implications of current and future urbanization for global protected areas and biodiversity conservation. Biol. Conserv. 2008, 141, 1695–1703. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Ramos, M.; Ortiz-Rodríguez, I.A.; Piñero, D.; Dirzo, R.; Sarukhán, J. Anthropogenic disturbances jeopardize biodiversity conservation within tropical rainforest reserves. Proc. Natl. Acad. Sci. USA 2016, 113, 5323–5328. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.-B.; Svenning, J.-C.; Chen, G.-K.; Zhang, M.-G.; Huang, J.-H.; Chen, B.; Ordonez, A.; Ma, K.-P. Human activities have opposing effects on distributions of narrow-ranged and widespread plant species in China. Proc. Natl. Acad. Sci. USA 2019, 116, 26674–26681. [Google Scholar] [CrossRef] [Green Version]
- Wanghe, K.; Guo, X.; Hu, F.; Ahmad, S.; Jin, X.; Khan, T.U.; Xiao, Y.; Luan, X. Spatial coincidence between mining activities and protected areas of giant panda habitat: The geographic overlaps and implications for conservation. Biol. Conserv. 2020, 247, 108600. [Google Scholar] [CrossRef]
- Di Minin, E.; Slotow, R.; Fink, C.; Bauer, H.; Packer, C. A pan-African spatial assessment of human conflicts with lions and elephants. Nat. Commun. 2021, 12, 2978. [Google Scholar] [CrossRef]
- Ma, B.; Xie, Y.; Zhang, T.; Zeng, W.; Hu, G. Identification of conflict between wildlife living spaces and human activity spaces and adjustments in/around protected areas under climate change: A case study in the Three-River Source Region. J. Environ. Manag. 2020, 262, 110322. [Google Scholar] [CrossRef]
- Zhang, Z.; Xia, F.; Yang, D.; Huo, J.; Wang, G.; Chen, H. Spatiotemporal characteristics in ecosystem service value and its interaction with human activities in Xinjiang, China. Ecol. Indic. 2019, 110, 105826. [Google Scholar] [CrossRef]
- Li, Z.; Jun, X.; Deng, X.; Yan, H. Multilevel modelling of impacts of human and natural factors on ecosystem services change in an oasis, Northwest China. Resour. Conserv. Recycl. 2021, 169, 105474. [Google Scholar] [CrossRef]
- Sanderson, E.W.; Jaiteh, M.; Levy, M.A.; Redford, K.H.; Wannebo, A.V.; Woolmer, G.; Notes, A. The Human Footprint and the Last of the Wild. Bioscience 2002, 52, 891–904. [Google Scholar] [CrossRef] [Green Version]
- Venter, O.; Sanderson, E.W.; Magrach, A.; Allan, J.R.; Beher, J.; Jones, K.R.; Possingham, H.P.; Laurance, W.F.; Wood, P.; Fekete, B.M.; et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 2016, 7, 12558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Zhang, G.; Nie, Z.; Yan, M. Quantintative assessment of human activity intensity in Hutuohe catchment. J. Arid. Land Resour. Environ. 2009, 23, 41–44. [Google Scholar]
- Zhang, C.; Wang, Z. Quantitative assessment of human activity intensity in the Heihe catchment. Adv. Earth Sci. 2004, 23, 386–390. [Google Scholar]
- Anderson, E.; Mammides, C. The role of protected areas in mitigating human impact in the world’s last wilderness areas. Ambio 2019, 49, 434–441. [Google Scholar] [CrossRef]
- Liu, X.; Fu, Z.; Wen, R.; Jin, C.; Wang, X.; Wang, C.; Xiao, R.; Hou, P. Characteristics of human activities and the spatio-temporal changes of national nature reserves in China. Geogr. Res. 2020, 39, 2391–2402. [Google Scholar]
- Ren, B.; Park, K.; Shrestha, A.; Yang, J.; McHale, M.; Bai, W.; Wang, G. Impact of Human Disturbances on the Spatial Heterogeneity of Landscape Fragmentation in Qilian Mountain National Park, China. Land 2022, 11, 2087. [Google Scholar] [CrossRef]
- Li, S.; Su, S.; Liu, Y.; Zhou, X.; Luo, Q.; Paudel, B. Effectiveness of the Qilian Mountain Nature Reserve of China in Reducing Human Impacts. Land 2022, 11, 1071. [Google Scholar] [CrossRef]
- Al, M.A.; Akhtar, A.; Kamal, A.H.M.; AftabUddin, S.; Islam, S.; Sharifuzzaman, S. Assessment of benthic macroinvertebrates as potential bioindicators of anthropogenic disturbance in southeast Bangladesh coast. Mar. Pollut. Bull. 2022, 184, 114217. [Google Scholar] [CrossRef]
- Lin, C.; Chunying, R.; Zongming, W.; Bai, Z.; Kaishan, S. Remote Sensing Monitoring and Analysis on Dynamics of Land Use of Human Disturbances in Coastal Area of the Yellow River Delta. Wetland Science 2017, 15, 613–621. [Google Scholar] [CrossRef]
- Benavidez-Silva, C.; Jensen, M.; Pliscoff, P. Future Scenarios for Land Use in Chile: Identifying Drivers of Change and Impacts over Protected Area System. Land 2021, 10, 408. [Google Scholar] [CrossRef]
- Poor, E.E.; Jati, V.I.M.; Imron, M.A.; Kelly, M.J. The road to deforestation: Edge effects in an endemic ecosystem in Sumatra, Indonesia. PLoS ONE 2019, 14, e0217540. [Google Scholar] [CrossRef] [PubMed]
- Prowse, T.A.; O’Connor, P.J.; Collard, S.J.; Rogers, D.J. Eating away at protected areas: Total grazing pressure is undermining public land conservation. Glob. Ecol. Conserv. 2019, 20, e00754. [Google Scholar] [CrossRef]
- Li, G.; Gao, J.; Li, L.; Hou, P. Human pressure dynamics in protected areas of China based on nighttime light. Glob. Ecol. Conserv. 2020, 24, e01222. [Google Scholar] [CrossRef]
- Sun, H.; Zheng, D.; Yao, T.; Zhang, Y. Protection and construction of the national ecological security shelter zone on Tibetan Plateau. Acta Geogr. Sin. 2012, 67, 3–12. [Google Scholar]
- Xu, Z.R.; Zhang, Y.L.; Cheng, S.K.; Zheng, D. Scientific basis and the strategy of sustainable development in Tibetan Plateau. Sci. Technol. Rev. 2017, 35, 108–114. [Google Scholar]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, X.; Qi, W.; Li, S.; Bai, W. Characteristics and protection effectiveness of nature reserves on the Tibetan Plateau, China. Resour. Sci. 2015, 37, 1455–1464. [Google Scholar]
- Wang, W.; Xin, L.; Du, J.; Chen, B.; Liu, F.; Zhang, L.; Li, J. Evaluating conservation effectiveness of protected areas: Advances and new perspectives. Biodivers. Sci. 2016, 24, 1177–1188. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhang, H.; Zhou, X.; Yu, H.; Li, W. Enhancing protected areas for biodiversity and ecosystem services in the Qinghai–Tibet Plateau. Ecosyst. Serv. 2020, 43, 101090. [Google Scholar] [CrossRef]
- Li, G.Q.; Kan, A.K.; Wang, X.B.; Li, G.M.; Gao, Z.Y.; Wang, h.; Yong, Z. Distribution of degraded wetlands and their influence factors in Qomolangma National Nature Reserve. Wetl. Sci. 2010, 8, 110–114. [Google Scholar]
- Zhu, L.; Zhan, X.; Meng, T.; Zhang, S.; Wei, F. Landscape features influence gene flow as measured by cost-distance and genetic analyses: A case study for giant pandas in the Daxiangling and Xiaoxiangling Mountains. BMC Genet. 2010, 11, 72. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Wang, B.; Zhang, J.; Wang, L.; Pan, Y.; Wang, Q.; Jian, D.; Deng, G. Lake macroinvertebrate assemblages and relationship with natural environment and tourism stress in Jiuzhaigou Natural Reserve, China. Ecol. Indic. 2016, 62, 182–190. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Q.; Liu, C.; Xue, Q. Tourism’s Impacts on Natural Resources: A Positive Case from China. Environ. Manag. 2006, 38, 572–579. [Google Scholar] [CrossRef]
- Su, X.; Liu, S.; Dong, S.; Zhang, Y.; Wu, X.; Zhao, H.; Zhao, Z.; Sha, W. Effects of potential mining activities on migration corridors of Chiru (Pantholops hodgsonii) in the Altun National Nature Reserve, China. J. Nat. Conserv. 2015, 28, 119–126. [Google Scholar] [CrossRef]
- Gui, J.; Gao, H.; Li, Z.; Zou, H.; Yuan, R. The impacts of hydropower development in Zhangye section of Qilian Mountains on regional eco-environment. Chin. J. Ecol. 2019, 38, 2159–2166. [Google Scholar]
- Zhang, X.; Li, S.; Yu, H. Analysis on the ecosystem service protection effect of national nature reserve in Qinghai-Tibetan Plateau from weight perspective. Ecol. Indic. 2022, 142, 109225. [Google Scholar] [CrossRef]
- Yin, L.; Dai, E.; Zheng, D.; Wang, Y.; Ma, L.; Tong, M. Spatio-Temporal analysis of the human footprint in the Hengduan Mountain region: Assessing the effectiveness of nature reserves in reducing human impacts. J. Geogr. Sci. 2020, 30, 1140–1154. [Google Scholar] [CrossRef]
- Tapia-Armijos, M.F.; Homeier, J.; Munt, D.D. Spatio-temporal analysis of the human footprint in South Ecuador: Influence of human pressure on ecosystems and effectiveness of protected areas. Appl. Geogr. 2017, 78, 22–32. [Google Scholar] [CrossRef]
- Azadeh, K.; Kendall, J. Assessing national human footprint and implications for biodiversity conservation in Iran. Ambio 2020, 49, 1506–1518. [Google Scholar]
- Li, S.; Wu, J.; Gong, J.; Li, S. Human footprint in Tibet: Assessing the spatial layout and effectiveness of nature reserves. Sci. Total Environ. 2018, 621, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Bing, Z.; Jin, G. Spatially Explicit Mapping of Soil Conservation Service in Monetary Units Due to Land Use/Cover Change for the Three Gorges Reservoir Area, China. Remote Sens. 2019, 11, 468. [Google Scholar] [CrossRef] [Green Version]
- Tan, L.; Guo, G.; Li, S. The Sanjiangyuan Nature Reserve Is Partially Effective in Mitigating Human Pressures. Land 2021, 11, 43. [Google Scholar] [CrossRef]
- Wu, Y.; Shi, K.; Chen, Z.; Liu, S.; Chang, Z. Developing Improved Time-Series DMSP-OLS-Like Data (1992–2019) in China by Integrating DMSP-OLS and SNPP-VIIRS. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5333. [Google Scholar] [CrossRef]
- Zong, Y.G.; Zhou, S.Y.; Ping, P.; Liu, C.; Guo, R.H.; Cheng, H.C. Perspective of road ecology development. Acta Ecol. Sinica 2003, 23, 2396–2405. [Google Scholar]
- Li, Y.; Zhou, J.; Wu, X. Effects of the construction of Qinghai-Tibet railway on the vegetation ecosystem and eco-resilience. Geogr. Res. 2017, 36, 2129–2140. [Google Scholar] [CrossRef]
- Chen, H.; Li, S.; Zheng, D. Features of Ecosystems alongside Qinghai-Xizang Highway and Railway and the Impacts of Road Construction on Them. J. Mt. Res. 2003, 21, 559–567. [Google Scholar]
- Yan, J.; Zhang, Y.; Liu, L.; Shen, Z.; Liu, Y.; Zheng, D. Main Effect of Plateau Traffic on Land Use and Landscape Pattern Change: From Lanzhou to Golmud. Acta Geogr. Sin. 2003, 58, 34–44. [Google Scholar]
- Zhu, G.; Zhao, K.; Liu, J.; Yang, F.; Gao, Y.; Lin, J.; Han, D.; Xu, H.; Jiang, Y.; Sun, H. Study on Ecological Conflict and Coordination of Highway Network Planning—A Case Study of the Three-River Headwater Region of Qinghai-Tibet Plateau. J. Cap. Norm. Univ. (Nat. Sci. Ed.) 2020, 41, 57–63. [Google Scholar]
- Peng, H.; Ren, Y.; Li, Q.; Wei, J. Spatial and Temporal Land Use/Cover Change Characteristics of Qinghai-Tibet Plateau. J. Yangtze River Sci. Res. Inst. 2022, 39, 41–49+57. [Google Scholar] [CrossRef]
- Hong, L. Research on the compensation mechanism and policy of ecological migration in Sanjiangyuan. J. South-Cent. Minzu Univ. (Humanit. Soc. Sci.) 2013, 33, 101–105. [Google Scholar]
- Li, S.; Liu, M. The Development Process, Current Situation and Prospects of the Conversion of Farmland to Forests and Grasses Project in China. J. Resour. Ecol. 2022, 13, 120–128. [Google Scholar]
- Liu, D.; Ma, Y.; Dong, Q.; Shi, J. Effect of Forbidden Grazing and Exclusion Grassland on Communities Character of Artificial Pasture in “Back Soil Beach”. Chin. Qinghai J. Anim. Vet. Sci. 2008, 38, 10–12. [Google Scholar]
- Zhai, X.; Liang, X.; Yan, C.; Xing, X.; Jia, H.; Wei, X.; Feng, K. Vegetation Dynamic Changes and their Response to Ecological Engineering in the Sanjiangyuan Region of China. Remote Sens. 2020, 12, 4035. [Google Scholar] [CrossRef]
- Han, S.; Meng, Q.; Liu, H.; Peng, Y.; Han, J.; Jin, S.; Fan, S.; Xin, B.; He, L.; Li, H. Refined land-cover classification mapping using a multi-scale transformation method from remote sensing, unmanned aerial vehicle, and field surveys in Sanjiangyuan National Park, China. J. Appl. Remote Sens. 2021, 15, 014513. [Google Scholar] [CrossRef]
- Xia, S.; Yan, X.; Qian, K.; Liang, X. Management system of China’s nature reserve. J. Zhejiang A F Univ. 2009, 26, 127–131. [Google Scholar]
- Ma, Y.; Ma, J.; Li, F.; Ma, X. Spatial and Temporal Characteristics of Short-time Strong Rainfall and Its Altitude Distrbution Characteristics in Linxia at Plateau Slope. Desert Oasis Meteorol. 2022, 16, 68–74. [Google Scholar]
- Zeng, Y.; Zhang, Q.; Hou, F. Effects of Climate Change on Pasture Production on Qinghai-Tibet Plateau based on Integratedanalyse of Database. J. Grassl. Forage Sci. 2022, 266, 13–23. [Google Scholar]
- Zhu, P.; Huang, L.; Xiao, T.; Wang, J. Dynamic changes of habitats in China’s typical national nature reserves on spatial and temporal scales. J. Geogr. Sci. 2018, 28, 778–790. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Meng, L.; Li, S.; Di, Y. Effectiveness of grazing exclusion on the restoration of degraded alpine grasslands on the Northern Tibetan Plateau from 2010 to 2017. Pratacultural Sci. 2019, 36, 1148–1162. [Google Scholar]
- Zu, D.; Luo, P.; Yang, H.; Mou, C.; Li, Y.; Mo, L.; Li, T.; Luo, C.; Li, H.; Wu, S. Assessing the space neighborhood effects and the protection effectiveness of a protected area—A case study from Zoige Wetland National Nature Reserve. Chin. J. Appl. Environ. Biol. 2019, 25, 0854–0862. [Google Scholar] [CrossRef]
- Chung, M.G.; Pan, T.; Zou, X.; Liu, J. Complex Interrelationships between Ecosystem Services Supply and Tourism Demand: General Framework and Evidence from the Origin of Three Asian Rivers. Sustainability 2018, 10, 4576. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.-J.; Si, J.-H.; Hou, C.-Y.; Li, Y.-S.; Wang, M.-M.; Yan, X.-X.; Xie, M.; Sun, J.-X.; Chen, B.-J.; Li, S.-S. Spatiotemporal distribution of nitrogen and phosphorus in alpine lakes in the Sanjiangyuan Region of the Tibetan Plateau. Water Sci. Technol. 2017, 76, 396–412. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, C.M.; Oakleaf, J.R.; Theobald, D.M.; Baruch-Mordo, S.; Kiesecker, J. Managing the middle: A shift in conservation priorities based on the global human modification gradient. Glob. Chang. Biol. 2019, 25, 811–826. [Google Scholar] [CrossRef]
- Theobald, D.M.; Kennedy, C.; Chen, B.; Oakleaf, J.; Baruch-Mordo, S.; Kiesecker, J. Earth transformed: Detailed mapping of global human modification from 1990 to 2017. Earth Syst. Sci. Data 2020, 12, 1953–1972. [Google Scholar] [CrossRef]
Data Type | Time | Data Sources |
---|---|---|
Population density data | 2000–2020 | World Pop data set |
Land-use data | 2000–2020 | Resource and Environmental Science Data Center of the Chinese Academy of Sciences |
Grazing intensity data | 2000–2020 | Global Ecosystems and Environment observation Analysis Research Cooperation |
Night-light data | 2000–2020 | National Oceanic and Atmospheric Administration (NOAA) |
Road data | 2002–2020 | Open Street Map |
Road Categories | Buffer Distance | ||
---|---|---|---|
0–1 km | 1–2 km | 2–5 km | |
Freeways | 10 | 6 | 3 |
National roads | 8 | 4 | 2 |
Provincial roads | 4 | 2 | 1 |
County roads | 2 | 1 | 0 |
Railways | 8 | 4 | 1 |
Human Pressures | 2000 | 2005 | 2010 | 2015 | 2020 |
---|---|---|---|---|---|
Roads | 0.1213 | 0.1343 | 0.1397 | 0.1556 | 0.3738 |
Nighttime lights | 0.0001 | 0.0002 | 0.0005 | 0.0006 | 0.0017 |
Population density | 0.4102 | 0.4126 | 0.4178 | 0.4864 | 0.5129 |
Land-use activity | 0.0377 | 0.0380 | 0.0380 | 0.0383 | 0.0655 |
Grazing intensity | 0.9254 | 0.7731 | 1.1212 | 1.2757 | 0.8335 |
HP value | 1.4765 | 1.3326 | 1.7085 | 1.9326 | 1.7669 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, M.; Zhao, X.; Wang, R.; Yin, L.; Zhang, B. Assessment of Conservation Effectiveness of the Qinghai–Tibet Plateau Nature Reserves from a Human Footprint Perspective with Global Lessons. Land 2023, 12, 869. https://doi.org/10.3390/land12040869
Jiang M, Zhao X, Wang R, Yin L, Zhang B. Assessment of Conservation Effectiveness of the Qinghai–Tibet Plateau Nature Reserves from a Human Footprint Perspective with Global Lessons. Land. 2023; 12(4):869. https://doi.org/10.3390/land12040869
Chicago/Turabian StyleJiang, Mingjun, Xinfei Zhao, Run Wang, Le Yin, and Baolei Zhang. 2023. "Assessment of Conservation Effectiveness of the Qinghai–Tibet Plateau Nature Reserves from a Human Footprint Perspective with Global Lessons" Land 12, no. 4: 869. https://doi.org/10.3390/land12040869
APA StyleJiang, M., Zhao, X., Wang, R., Yin, L., & Zhang, B. (2023). Assessment of Conservation Effectiveness of the Qinghai–Tibet Plateau Nature Reserves from a Human Footprint Perspective with Global Lessons. Land, 12(4), 869. https://doi.org/10.3390/land12040869