Assessment and Prediction of Landscape Ecological Risk from Land Use Change in Xinjiang, China
Abstract
:1. Introduction
2. Study Area and Data Sources
2.1. Overview of Study Area
2.2. Data Sources
2.2.1. Land Use Data
2.2.2. Natural Geography Data
2.2.3. Socio-Economic Data
3. Research Methods
3.1. Land Use Transfer Matrix
3.2. Simulation of Land Use Change
3.2.1. Construction Method of PLUS Model
3.2.2. Model Parameter Setting
- (1)
- Cost Matrix and Setting of Expansion Constraints
- (2)
- Contextual Factors
- (3)
- Accuracy Verification
3.2.3. Scenarios for Land Use Simulation
3.3. Landscape Ecological Risk Assessment
3.3.1. Division of Ecological Risk Assessment Units
3.3.2. Landscape Ecological Risk Index
- (1)
- Landscape Disturbance Index
- (2)
- Landscape Fragility Index
- (3)
- Landscape Loss Degree Index
- (4)
- Landscape Ecological Risk Index
3.4. Spatial Autocorrelation Analysis
4. Results
4.1. Spatial and Temporal Evolution of Land Use
4.2. Simulation of Land Use Changes under Different Scenarios
4.2.1. Natural Development Scenario
4.2.2. Urban Development Scenario
4.2.3. Ecological Conservation Scenario
4.3. Spatial and Temporal Variation of Ecological Risk in the Landscape
4.4. Spatial Autocorrelation Analysis of Landscape Ecological Risk
5. Discussion
5.1. Spatial Characteristics and Functional Patterns of Land Resources
5.2. Landscape Ecological Risk Identification and Optimal Allocation Strategy
5.3. Policy Insights
5.4. Research Prospects
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, H.; Song, Y.; Tian, Y. Simulation of land-use pattern evolution in hilly mountainous areas of North China: A case study in Jincheng. Land Use Policy 2022, 112, 105826. [Google Scholar] [CrossRef]
- Gao, H.; Song, W. Assessing the Landscape Ecological Risks of Land-Use Change. Int. J. Environ. Res. Public Health 2022, 19, 13945. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Song, W. Progress and prospect of ecological risks of land use change. Front. Environ. Sci. 2022, 10, 1077515. [Google Scholar] [CrossRef]
- Qiu, M.; Zuo, Q.; Wu, Q.; Yang, Z.; Zhang, J. Water ecological security assessment and spatial autocorrelation analysis of prefectural regions involved in the Yellow River Basin. Sci. Rep. 2022, 12, 5105. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, X.; Song, W. Determinants of cultivated land abandonment at the parcel, household and village levels in mountain areas of China: A multi-level analysis. Land Use Policy 2014, 41, 186–192. [Google Scholar] [CrossRef]
- Song, W.; Pijanowski, B.C. The effects of China’s cultivated land balance program on potential land productivity at a national scale. Appl. Geogr. 2014, 46, 158–170. [Google Scholar] [CrossRef]
- Liang, X.; Li, Y.; Zhao, Y. Coupling land use analysis and ecological risk assessment: A study of the Three Gorges Reservoir area, China. Mt. Res. Dev. 2020, 40, R1. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency, Risk Assessment Forum. Report on the Ecological Risk Assessment Guidelines Strategic Planning Workshop; U.S. Environmental Protection Agency, Risk Assessment Forum: Washington, DC, USA, 1992. [Google Scholar]
- U.S. Environmental Protection Agency, Risk Assessment Forum. Guidelines for Ecological Risk Assessment; U.S. Environmental Protection Agency, Risk Assessment Forum: Washington, DC, USA, 1998. [Google Scholar]
- Skaare, J.U.; Larsen, H.J.; Lie, E.; Bernhoft, A.; Derocher, A.E.; Norstrom, R.; Ropstad, E.; Lunn, N.F.; Wiig, Ø. Ecological risk assessment of persistent organic pollutants in the arctic. Toxicology 2002, 181, 193–197. [Google Scholar] [CrossRef]
- Xu, Y.; Gao, J.; Gao, Y. Landscape ecological risk assessment in the Taihu region based on land use change. J. Lake Sci. 2011, 23, 642–648. [Google Scholar]
- Song, W.; Deng, X. Land-use/land-cover change and ecosystem service provision in China. Sci. Total Environ. 2017, 576, 705–719. [Google Scholar] [CrossRef]
- Li, C.; Zhang, J.; Philbin, S.P.; Yang, X.; Dong, Z.; Hong, J.; Ballesteros-Pérez, P. Evaluating the impact of highway construction projects on landscape ecological risks in high altitude plateaus. Sci. Rep. 2022, 12, 5170. [Google Scholar] [CrossRef]
- Zhou, S.; Chang, J.; Hu, T.; Luo, P.; Zhou, H. Spatiotemporal Variations of Land Use and Landscape Ecological Risk in a Resource-Based City, from Rapid Development to Recession. Pol. J. Environ. Stud. 2020, 29, 475–490. [Google Scholar] [CrossRef]
- Yongnian, Z.; Wenping, J.; Huimin, W.; Honghui, Z. Simulation of land-use changes and landscape ecological assessment in eastern part of Qinghai Plateau. Trans. Chin. Soc. Agric. Eng. 2014, 30, 185–194. [Google Scholar]
- Xu, Q.; Guo, P.; Jin, M.; Qi, J. Multi-scenario landscape ecological risk assessment based on Markov–FLUS composite model. Geomat. Nat. Hazards Risk 2021, 12, 1449–1466. [Google Scholar] [CrossRef]
- Wang, D.; Ji, X.; Li, C.; Gong, Y. Spatiotemporal variations of landscape ecological risks in a resource-based city under transformation. Sustainability 2021, 13, 5297. [Google Scholar] [CrossRef]
- Guo, K.; Kuai, X.; Chen, Y.; Qi, L.; Zhang, L.; Liu, Y. Risk assessment of land ecology on a regional scale: Application of the relative risk model to the mining city of Daye, China. Hum. Ecol. Risk Assess. Int. J. 2017, 23, 550–574. [Google Scholar] [CrossRef]
- Liang, Y.; Song, W. Integrating potential ecosystem services losses into ecological risk assessment of land use changes: A case study on the Qinghai-Tibet Plateau. J. Environ. Manag. 2022, 318, 115607. [Google Scholar] [CrossRef]
- Zhang, W.; Sun, X.; Shan, R.; Liu, F. Spatio-temporal quantification of landscape ecological risk changes and its driving forces in the Nansihu Lake basin during 1975–2018. Ecol. Sci. 2020, 39, 172–181. [Google Scholar]
- Li, Q.; Zhang, Z.; Wan, L.; Yang, C.; Zhang, J.; Ye, C.; Chen, Y. Landscape pattern optimization in Ningjiang River Basin based on landscape ecological risk assessment. Acta Geogr. Sin. 2019, 74, 1420–1437. [Google Scholar]
- Chen, H.; Shi, T.; Wu, G. The dynamic analysis of lake landscape of Wuhan City in recent 40 years. J. Lake Sci. 2015, 27, 745–754. [Google Scholar]
- Yu, P.; Xu, H.; Liu, S.; Qiao, M.; Zhang, Q.; An, H.; Fu, J. Spatial distribution pattern changes of oasis soil types in Manasi River Basin, arid northwestern China. Catena 2011, 87, 253–259. [Google Scholar] [CrossRef]
- Chen, X. Physical Geography of Arid Areas in China; Science Press: Beijing, China, 2010. [Google Scholar]
- Cai, T.; Luo, X.; Fan, L.; Han, J.; Zhang, X. The Impact of Cultivated land Use Changes on Terrestrial Ecosystem Services Value in Newly Added Cultivated land Hotspots in China during 2000–2020. Land 2022, 11, 2294. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Sun, F.; Li, Z. Recent vegetation browning and its drivers on Tianshan Mountain, Central Asia. Ecol. Indic. 2021, 129, 107912. [Google Scholar] [CrossRef]
- Cai, T.; Zhang, X.; Xia, F.; Lu, D. Function Evolution of Oasis Cultivated Land and Its Trade-Off and Synergy Relationship in Xinjiang, China. Land 2022, 11, 1399. [Google Scholar] [CrossRef]
- Wang, Y.; Shataer, R.; Zhang, Z.; Zhen, H.; Xia, T. Evaluation and Analysis of Influencing Factors of Ecosystem Service Value Change in Xinjiang under Different Land Use Types. Water 2022, 14, 1424. [Google Scholar] [CrossRef]
- Resource Environmental Science and Data Center, Chinese Academy of Sciences. Available online: http://www.resdc.cn/ (accessed on 10 January 2023).
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Open Data Commons Open Database License, OpenStreetMap Foundation. Available online: https://www.openstreetmap.org (accessed on 10 January 2023).
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Lin, W.; Cen, J.; Xu, D.; Du, S.; Gao, J. Wetland landscape pattern changes over a period of rapid development (1985–2015) in the ZhouShan Islands of Zhejiang province, China. Estuar. Coast. Shelf Sci. 2018, 213, 148–159. [Google Scholar] [CrossRef]
- Wang, H.; Liu, X.; Zhao, C.; Chang, Y.; Liu, Y.; Zang, F. Spatial-temporal pattern analysis of landscape ecological risk assessment based on land use/land cover change in Baishuijiang National nature reserve in Gansu Province, China. Ecol. Indic. 2021, 124, 107454. [Google Scholar] [CrossRef]
- Kong, X.; Fu, M.; Zhao, X.; Wang, J.; Jiang, P. Ecological effects of land-use change on two sides of the Hu Huanyong Line in China. Land Use Policy 2022, 113, 105895. [Google Scholar] [CrossRef]
- Ran, P.; Hu, S.; Frazier, A.E.; Qu, S.; Yu, D.; Tong, L. Exploring changes in landscape ecological risk in the Yangtze River Economic Belt from a spatiotemporal perspective. Ecol. Indic. 2022, 137, 108744. [Google Scholar] [CrossRef]
- Wu, P.; Zhan, W.; Cheng, N.; Yang, H.; Wu, Y. A Framework to Calculate Annual Landscape Ecological Risk Index Based on Land Use/Land Cover Changes: A Case Study on Shengjin Lake Wetland. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 11926–11935. [Google Scholar] [CrossRef]
- Ghulam, A.; Ghulam, O.; Maimaitijiang, M.; Freeman, K.; Porton, I.; Maimaitiyiming, M. Remote Sensing Based Spatial Statistics to Document Tropical Rainforest Transition Pathways. Remote Sens. 2015, 7, 6257–6279. [Google Scholar] [CrossRef]
- Darand, M.; Dostkamyan, M.; Rehmani, M.I.A. Spatial autocorrelation analysis of extreme precipitation in Iran. Russ. Meteorol. Hydrol. 2017, 42, 415–424. [Google Scholar] [CrossRef]
- Alexander, L.V.; Bador, M.; Roca, R.; Contractor, S.; Donat, M.G.; Nguyen, P.L. Intercomparison of annual precipitation indices and extremes over global land areas from in situ, space-based and reanalysis products. Environ. Res. Lett. 2020, 15, 055002. [Google Scholar] [CrossRef]
- Zhang, F.; Yushanjiang, A.; Wang, D. Ecological risk assessment due to land use/cover changes (LUCC) in Jinghe County, Xinjiang, China from 1990 to 2014 based on landscape patterns and spatial statistics. Environ. Earth Sci. 2018, 77, 491. [Google Scholar] [CrossRef]
- Yu, T.; Bao, A.; Xu, W.; Guo, H.; Jiang, L.; Zheng, G.; Yuan, Y.; Nzabarinda, V. Exploring Variability in Landscape Ecological Risk and Quantifying Its Driving Factors in the Amu Darya Delta. Int. J. Environ. Res. Public Health 2020, 17, 79. [Google Scholar] [CrossRef]
- Batlle, J.R.M.; van der Hoek, Y. Clusters of high abundance of plants detected from local indicators of spatial association (LISA) in a semi-deciduous tropical forest. PLoS ONE 2018, 13, e0208780. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, X.; Han, H. Future Impacts of Land Use Change on Ecosystem Services under Different Scenarios in the Ecological Conservation Area, Beijing, China. Forests 2020, 11, 584. [Google Scholar] [CrossRef]
- Guo, Z.; Hu, Y.; Bai, Y.; Yang, L.; Wang, J. How to Control Coastal Zone Through Spatial Planning? Taking the Construction of the Spatial Monitoring Index System of the Coastal Zone in China as an Example. Front. Environ. Sci. 2022, 10, 876414. [Google Scholar] [CrossRef]
- Shi, M.; Wu, H.; Jiang, P.; Shi, W.; Zhang, M.; Zhang, L.; Zhang, H.; Fan, X.; Liu, Z.; Zheng, K.; et al. Cultivated land Expansion Mitigates the Supply and Demand Deficit for Carbon Sequestration Service under Different Scenarios in the Future—The Case of Xinjiang. Agriculture 2022, 12, 1182. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Zhang, Q.; Li, J.; Zhou, X. Projections of future land use changes: Multiple scenarios-based impacts analysis on ecosystem services for Wuhan city, China. Ecol. Indic. 2018, 94, 430–445. [Google Scholar] [CrossRef]
- Fang, S.; Tu, W.; Mu, L.; Sun, Z.; Hu, Q.; Yang, Y. Saline alkali water desalination project in Southern Xinjiang of China: A review of desalination planning, desalination schemes and economic analysis. Renew. Sustain. Energy Rev. 2019, 113, 109268. [Google Scholar] [CrossRef]
- Mu, R.; de Jong, M. A network governance approach to transit-oriented development: Integrating urban transport and land use policies in Urumqi, China. Transp. Policy 2016, 52, 55–63. [Google Scholar] [CrossRef]
Land Use Type | Cultivated Land | Forest | Grassland | Water | Construction Land | Unused Land |
---|---|---|---|---|---|---|
Domain weights | 0.275 | 0.046 | 0.339 | 0.067 | 0.069 | 0.202 |
Land Use Types | 2000 | 2010 | 2020 | |||
---|---|---|---|---|---|---|
Area/km2 | Percentage/% | Area/km2 | Percentage/% | Area/km2 | Percentage/% | |
Cultivated land | 61,992.84 | 3.66% | 84,126.24 | 4.97% | 93,946.60 | 5.55% |
Forest land | 39,443.44 | 2.33% | 29,251.12 | 1.73% | 28,484.08 | 1.68% |
Grassland | 496,356.80 | 29.30% | 505,696.76 | 29.85% | 502,376.20 | 29.65% |
Water area | 54,767.44 | 3.23% | 35,273.72 | 2.08% | 36,464.56 | 2.15% |
Construction land | 4536.60 | 0.27% | 8298.80 | 0.49% | 9353.80 | 0.55% |
Unused land | 1,037,012.92 | 61.21% | 1,031,601.56 | 60.89% | 1,023,622.96 | 60.42% |
2000 Land Use Types | 2020 | |||||
---|---|---|---|---|---|---|
Cultivated Land | Forest Land | Grassland | Water Area | Construction Land | Unused Land | |
Cultivated land | 52,791.40 | 1322.08 | 3991.12 | 372.88 | 2816.00 | 697.96 |
Forest land | 3375.28 | 14,459.48 | 18,314.28 | 498.32 | 190.68 | 2602.44 |
Grassland | 24,507.24 | 10,542.72 | 340,964.40 | 4579.84 | 1605.52 | 114,142.16 |
Water area | 690.16 | 340.36 | 8937.64 | 23,860.44 | 108.84 | 20,819.48 |
Construction land | 1531.76 | 97.32 | 255.88 | 20.24 | 2388.88 | 242.52 |
Unused land | 11,049.44 | 1720.44 | 129,853.96 | 7121.48 | 2243.88 | 885,002.00 |
Risk Level | 2020 | Natural Develoment Scenario | Urban Development Scenario | Ecological Conservtion Scenario | ||||
---|---|---|---|---|---|---|---|---|
Area/km2 | Percentage/% | Area/km2 | Percentage/% | Area/km2 | Percentage/% | Area/km2 | Percentage/% | |
Lowest | 422,814.00 | 22.29% | 424,426.52 | 22.37% | 396,763.00 | 20.91% | 435,241.92 | 22.94% |
Lower | 325,335.56 | 17.15% | 288,838.28 | 15.22% | 255,615.72 | 13.47% | 254,875.88 | 13.44% |
Medium | 471,445.08 | 24.85% | 363,708.92 | 19.17% | 248,043.60 | 13.07% | 290,617.16 | 15.32% |
Higher | 664,606.04 | 35.03% | 807,143.48 | 42.54% | 968,915.36 | 51.07% | 895,807.68 | 47.22% |
Highest | 13,016.80 | 0.69% | 13,100.28 | 0.69% | 27,879.80 | 1.47% | 20,433.48 | 1.08% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.; Song, W.; Yu, H.; Wei, X.; Sheng, S.; Liu, B.; Gao, H.; Li, J.; Cao, C.; Yang, D. Assessment and Prediction of Landscape Ecological Risk from Land Use Change in Xinjiang, China. Land 2023, 12, 895. https://doi.org/10.3390/land12040895
Cheng Y, Song W, Yu H, Wei X, Sheng S, Liu B, Gao H, Li J, Cao C, Yang D. Assessment and Prediction of Landscape Ecological Risk from Land Use Change in Xinjiang, China. Land. 2023; 12(4):895. https://doi.org/10.3390/land12040895
Chicago/Turabian StyleCheng, Yaqi, Wei Song, Hao Yu, Xi Wei, Shuangqing Sheng, Bo Liu, He Gao, Junfang Li, Congjie Cao, and Dazhi Yang. 2023. "Assessment and Prediction of Landscape Ecological Risk from Land Use Change in Xinjiang, China" Land 12, no. 4: 895. https://doi.org/10.3390/land12040895
APA StyleCheng, Y., Song, W., Yu, H., Wei, X., Sheng, S., Liu, B., Gao, H., Li, J., Cao, C., & Yang, D. (2023). Assessment and Prediction of Landscape Ecological Risk from Land Use Change in Xinjiang, China. Land, 12(4), 895. https://doi.org/10.3390/land12040895