Interactive Effects Determine Radiocarbon Abundance in Soil Fractions of Global Biomes
Abstract
:1. Introduction
2. Methods
2.1. Data Source and Processing
2.1.1. Soil Radiocarbon
2.1.2. Climate
2.1.3. Vegetation Types
2.1.4. Soil Properties
2.2. Statistical Analyses
2.2.1. Δ14C in Different Depth Intervals, Density Fractions, and Biomes
2.2.2. Relationships of Δ14C with Depth and Climate
2.2.3. Relationships of Δ14C with Soil Properties
3. Results
4. Discussion
4.1. Interactive Effect of Depth and Soil Carbon Fractions
4.2. Interactive Effect of Vegetation Types and Fractions
4.3. Interactive Effect of MAT and MAP
4.3.1. Temperature
4.3.2. Moisture
4.4. Interactive Effect of Soil Properties
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wagai, R.; Mayer, L.M.; Kitayama, K. Nature of the ‘occluded’ low-density fraction in soil organic matter studies: A critical review. Soil Sci. Plant Nutr. 2009, 55, 13–25. [Google Scholar] [CrossRef]
- Jackson, R.B.; Lajtha, K.; Crow, S.E.; Hugelius, G.; Kramer, M.G.; Piñeiro, G. The Ecology of Soil Carbon: Pools, Vulnerabilities, and Biotic and Abiotic Controls. Annu. Rev. Ecol. Evol. Syst. 2017, 48, 419–445. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security: Soils: The final frontier. Science (Am. Assoc. Adv. Sci.) 2004, 304, 1623–1627. [Google Scholar] [CrossRef]
- Van Gestel, N.; Shi, Z.; Van Groenigen, K.J.; Osenberg, C.W.; Andresen, L.C.; Dukes, J.S.; Hovenden, M.J.; Luo, Y.; Michelsen, A.; Pendall, E.J.N. Predicting soil carbon loss with warming. Nature 2018, 554, E4–E5. [Google Scholar] [CrossRef] [PubMed]
- Davidson, E.A.; Janssens, I.A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 2006, 440, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Kirschbaum, M.U. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol. Biochem. 1995, 27, 753–760. [Google Scholar] [CrossRef]
- Belay-Tedla, A.; Zhou, X.; Su, B.; Wan, S.; Luo, Y. Labile, recalcitrant, and microbial carbon and nitrogen pools of a tallgrass prairie soil in the US Great Plains subjected to experimental warming and clipping. Soil Biol. Biochem. 2009, 41, 110–116. [Google Scholar] [CrossRef]
- Kleber, M.; Nico, P.S.; Plante, A.; Filley, T.; Kramer, M.; Swanston, C.; Sollins, P. Old and stable soil organic matter is not necessarily chemically recalcitrant: Implications for modeling concepts and temperature sensitivity. Glob. Chang. Biol. 2011, 17, 1097–1107. [Google Scholar] [CrossRef]
- Knorr, W.; Prentice, I.; House, J.; Holland, E.J.N. Long-term sensitivity of soil carbon turnover to warming. Nature 2005, 433, 298–301. [Google Scholar] [CrossRef]
- John, B.; Yamashita, T.; Ludwig, B.; Flessa, H. Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use. Geoderma 2005, 128, 63–79. [Google Scholar] [CrossRef]
- Chen, L.; Yang, Y.; Cleland, E. Response to Comment on ‘Soil carbon persistence governed by plant input and mineral protection at regional and global scales’. Ecol. Lett. 2021, 24, 2529–2532. [Google Scholar] [CrossRef]
- Heckman, K.; Hicks Pries, C.E.; Lawrence, C.R.; Rasmussen, C.; Crow, S.E.; Hoyt, A.M.; Fromm, S.F.; Shi, Z.; Stoner, S.; McGrath, C.; et al. Beyond bulk: Density fractions explain heterogeneity in global soil carbon abundance and persistence. Glob. Chang. Biol. 2022, 28, 1178–1196. [Google Scholar] [CrossRef] [PubMed]
- Trumbore, S.E. Potential responses of soil organic carbon to global environmental change. Proc. Natl. Acad. Sci. USA 1997, 94, 8284–8291. [Google Scholar] [CrossRef]
- von Luetzow, M.; Koegel-Knabner, I.; Ekschmitt, K.; Flessa, H.; Guggenberger, G.; Matzner, E.; Marschner, B. SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms. Soil Biol. Biochem. 2007, 39, 2183–2207. [Google Scholar] [CrossRef]
- Sollins, P.; Spycher, G.; Topik, C. Processes of Soil Organic-Matter Accretion at a Mudfloe Chronosequence, Mt. Shasta, California. Ecology 1983, 64, 1273–1282. [Google Scholar] [CrossRef]
- Spycher, G.; Sollins, P.; Rose, S. Carbon and nitrogen in the light fraction of a forest soil: Vertical distribution and seasonal patterns. Soil Sci. 1983, 135, 79–87. [Google Scholar] [CrossRef]
- Golchin, A.; Oades, J.M.; Skjemstad, J.O.; Clarke, P. Study of Free and Occluded Particulate Organic-Matter in Soils by Solid-State C-13 Cp/Mas Nmr-Spectroscopy and Scanning Electron-Microscopy. Aust. J. Soil Res. 1994, 32, 285–309. [Google Scholar] [CrossRef]
- Baisden, W.T.; Amundson, R.; Cook, A.C.; Brenner, D.L. Turnover and storage of C and N in five density fractions from California annual grassland surface soils. Glob. Biogeochem. Cycles 2002, 16, 61–64. [Google Scholar] [CrossRef]
- Wagai, R.; Mayer, L.M.; Kitayama, K.; Knicker, H. Climate and parent material controls on organic matter storage in surface soils: A three-pool, density-separation approach. Geoderma 2008, 147, 23–33. [Google Scholar] [CrossRef]
- Brodowski, S.; John, B.; Flessa, H.; Amelung, W. Aggregate-occluded black carbon in soil. Eur. J. Soil Sci. 2006, 57, 539–546. [Google Scholar] [CrossRef]
- Aber, J.D.; Melillo, J.M.; McClaugherty, C.A. Predicting long-term patterns of mass loss, nitrogen dynamics, and soil organic matter formation from initial fine litter chemistry in temperate forest ecosystems. Can. J. Bot. 1990, 68, 2201–2208. [Google Scholar] [CrossRef]
- Conant, R.T.; Ryan, M.G.; Ågren, G.I.; Birge, H.E.; Davidson, E.A.; Eliasson, P.E.; Evans, S.E.; Frey, S.D.; Giardina, C.P.; Hopkins, F.M. Temperature and soil organic matter decomposition rates–synthesis of current knowledge and a way forward. Glob. Chang. Biol. 2011, 17, 3392–3404. [Google Scholar] [CrossRef]
- Trumbore, S. Radiocarbon and Soil Carbon Dynamics. Annu. Rev. Earth Planet Sci. 2009, 37, 47–66. [Google Scholar] [CrossRef]
- Trumbore, S.E. Age of soil organic matter and soil respiration: Radiocarbon constraints on belowground C dynamics. Ecol. Appl. 2000, 10, 399–411. [Google Scholar] [CrossRef]
- Golchin, A.; Baldock, J.A.; Clarke, P.; Higashi, T.; Oades, J.M. The effects of vegetation and burning on the chemical composition of soil organic matter of a volcanic ash soil as shown by C-13 NMR spectroscopy 2. Density fractions. Geoderma 1997, 76, 175–192. [Google Scholar] [CrossRef]
- Hemingway, J.D.; Rothman, D.H.; Grant, K.E.; Rosengard, S.Z.; Eglinton, T.I.; Derry, L.A.; Galy, V. Mineral protection regulates long-term global preservation of natural organic carbon. Nature 2019, 570, 228–231. [Google Scholar] [CrossRef]
- Eusterhues, K.; Rumpel, C.; Kleber, M.; Kögel-Knabner, I. Stabilisation of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation. Org. Geochem. 2003, 34, 1591–1600. [Google Scholar] [CrossRef]
- Lawrence, C.R.; Beem-Miller, J.; Hoyt, A.M.; Monroe, G.; Sierra, C.A.; Stoner, S.; Heckman, K.; Blankinship, J.C.; Crow, S.E.; McNicol, G. An open-source database for the synthesis of soil radiocarbon data: International Soil Radiocarbon Database (ISRaD) version 1.0. Earth Syst. Sci. Data 2020, 12, 61–76. [Google Scholar] [CrossRef]
- Stuiver, M.; Polach, H.A. Reporting of C-14 Data—Discussion. Radiocarbon 1977, 19, 355–363. [Google Scholar] [CrossRef]
- Shi, Z.; Allison, S.D.; He, Y.; Levine, P.A.; Hoyt, A.M.; Beem-Miller, J.; Zhu, Q.; Wieder, W.R.; Trumbore, S.; Randerson, J. The age distribution of global soil carbon inferred from radiocarbon measurements. Nat. Geosci. 2020, 13, 555–559. [Google Scholar] [CrossRef]
- Li, Z.-Y.; Xu, R.-K.; Li, J.-Y.; Hong, Z.-N. Effect of clay colloids on the zeta potential of Fe/Al oxide-coated quartz: A streaming potential study. J. Soils Sediments 2016, 16, 2676–2686. [Google Scholar] [CrossRef]
- Warner, S.A. Cation Exchange Properties of Forest Litter as Influenced by Vegetation Type and Decomposition. Master’s Thesis, Oregon State University, Corvallis, OR, USA, 1976. [Google Scholar]
- Ahmad, J. Motion Detection of Camouflaged Targets Using “ANOVA” Technique. Ph.D. Dissertation, University of Florida, Gainesville, FL, USA, 1982. [Google Scholar]
- Abdi, H.; Williams, L. Newman-Keuls test and Tukey test. Encycl. Res. Des. 2010, 2, 897–902. [Google Scholar]
- Li, B. Robust Prediction from Linear Mixed-Effects Models with Applications to Small Area Estimation; University of California: Davis, CA, USA, 2001. [Google Scholar]
- Efroymson, M.A. Multiple regression analysis. In Mathematical Methods for Digital Computers; John Wiley & Sons: Hoboken, NJ, USA, 1960; pp. 191–203. [Google Scholar]
- Ellerbrock, R.H.; Kaiser, M. Stability and composition of different soluble soil organic matter fractions–evidence from δ13C and FTIR signatures. Geoderma 2005, 128, 28–37. [Google Scholar] [CrossRef]
- Bradford, M.A.; Wieder, W.R.; Bonan, G.B.; Fierer, N.; Raymond, P.A.; Crowther, T.W.J. Managing uncertainty in soil carbon feedbacks to climate change. Nat. Clim. Chang. 2016, 6, 751–758. [Google Scholar] [CrossRef]
- Ahrens, B.; Guggenberger, G.; Rethemeyer, J.; John, S.; Marschner, B.; Heinze, S.; Angst, G.; Mueller, C.W.; Kögel-Knabner, I.; Leuschner, C.; et al. Combination of energy limitation and sorption capacity explains 14C depth gradients. Soil Biol. Biochem. 2020, 148, 107912. [Google Scholar] [CrossRef]
- Sierra, C.A.; Hoyt, A.M.; He, Y.; Trumbore, S.E. Soil organic matter persistence as a stochastic process: Age and transit time distributions of carbon in soils. Glob. Biogeochem. Cycles 2018, 32, 1574–1588. [Google Scholar] [CrossRef]
- Waters, A.; Oades, J.J.A. Organic matter in water-stable aggregates. Adv. Soil Org. Matter Res. Impact Agric. Environ. 1991, 90, 163–174. [Google Scholar]
- Six, J.; Bossuyt, H.; Degryze, S.; Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
- Krull, E.S.; Swanston, C.W.; Skjemstad, J.O.; McGowan, J.A. Importance of charcoal in determining the age and chemistry of organic carbon in surface soils. J. Geophys. Res. Biogeosci. 2006, 111, G4. [Google Scholar] [CrossRef]
- Preston, C.M.; Schmidt, M.W. Black (pyrogenic) carbon: A synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences 2006, 3, 397–420. [Google Scholar] [CrossRef]
- Villarino, S.H.; Pinto, P.; Jackson, R.B.; Piñeiro, G. Plant rhizodeposition: A key factor for soil organic matter formation in stable fractions. Sci. Adv. 2021, 7, eabd3176. [Google Scholar] [CrossRef] [PubMed]
- Parton, W.; Silver, W.L.; Burke, I.C.; Grassens, L.; Harmon, M.E.; Currie, W.S.; King, J.Y.; Adair, E.C.; Brandt, L.A.; Hart, S.C.; et al. Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 2007, 315, 361–364. [Google Scholar] [CrossRef] [PubMed]
- Schuur, E.A.; Druffel, E.R.; Trumbore, S.E. Radiocarbon and Climate Change; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Schmidt, M.W.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kögel-Knabner, I.; Lehmann, J.; Manning, D.A. Persistence of soil organic matter as an ecosystem property. Nature 2011, 478, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Trumbore, S.E.; Zheng, S. Comparison of fractionation methods for soil organic matter 14C analysis. Radiocarbon 1996, 38, 219–229. [Google Scholar] [CrossRef]
- Six, J.; Elliott, E.T.; Paustian, K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 2000, 32, 2099–2103. [Google Scholar] [CrossRef]
- Six, J.; Conant, R.T.; Paul, E.A.; Paustian, K. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil 2002, 241, 155–176. [Google Scholar] [CrossRef]
- Chen, L.; Fang, K.; Wei, B.; Qin, S.; Feng, X.; Hu, T.; Ji, C.; Yang, Y. Soil carbon persistence governed by plant input and mineral protection at regional and global scales. Ecol. Lett. 2021, 24, 1018–1028. [Google Scholar] [CrossRef]
- Torn, M.S.; Trumbore, S.E.; Chadwick, O.A.; Vitousek, P.M.; Hendricks, D.M. Mineral control of soil organic carbon storage and turnover. Nature 1997, 389, 170–173. [Google Scholar] [CrossRef]
- Oades, J.M. Soil organic matter and structural stability: Mechanisms and implications for management. Plant Soil 1984, 76, 319–337. [Google Scholar] [CrossRef]
- Masiello, C.A.; Chadwick, O.A.; Southon, J.; Torn, M.S.; Harden, J.W. Weathering controls on mechanisms of carbon storage in grassland soils. Glob. Biogeochem. Cycles 2004, 18, 4. [Google Scholar] [CrossRef]
- Mikutta, R.; Kleber, M.; Torn, M.S.; Jahn, R. Stabilization of Soil Organic Matter: Association with Minerals or Chemical Recalcitrance? Biogeochemistry 2006, 77, 25–56. [Google Scholar] [CrossRef]
- Lalonde, K.; Mucci, A.; Ouellet, A.; Gélinas, Y. Iron promotes the preservation of organic matter in sediments. Nature 2012, 483, 198–200. [Google Scholar] [CrossRef] [PubMed]
- Finley, B.K.; Dijkstra, P.; Rasmussen, C.; Schwartz, E.; Mau, R.L.; Liu, X.-J.A.; van Gestel, N.; Hungate, B.A. Soil mineral assemblage and substrate quality effects on microbial priming. Geoderma 2018, 322, 38–47. [Google Scholar] [CrossRef]
- Rowley, M.C.; Grand, S.; Verrecchia, É.P. Calcium-mediated stabilisation of soil organic carbon. Biogeochemistry 2017, 137, 27–49. [Google Scholar] [CrossRef]
- Kindler, R.; Siemens, J.; Kaiser, K.; Walmsley, D.C.; Bernhofer, C.; Buchmann, N.; Cellier, P.; Eugster, W.; Gleixner, G.; Grũnwald, T. Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance. Glob. Chang. Biol. 2011, 17, 1167–1185. [Google Scholar] [CrossRef]
Fraction Property | Intercept | Coef | p |
---|---|---|---|
Free light | Depth | −2.77 | 0.00 |
MAT | 9.60 | 0.00 | |
MAP | 0.04 | 0.06 | |
MAT × MAP | 0.00 | 0.00 | |
Occluded light | Depth | −5.00 | 0.00 |
MAT | 12.04 | 0.00 | |
MAP | 0.04 | 0.26 | |
MAT × MAP | −0.01 | 0.02 | |
Heavy fraction | Depth | −1.46 | 0.00 |
MAT | 8.00 | 0.00 | |
MAP | 0.07 | 0.00 | |
MAT × MAP | 0.00 | 0.00 |
Fraction Property | Depth (cm) | Intercept | Coef | p |
---|---|---|---|---|
Free light | 0–30 | Depth | −5.00 | 0.00 |
MAT | 4.93 | 0.02 | ||
MAP | −0.01 | 0.55 | ||
MAT × MAP | 0.00 | 0.28 | ||
30–60 | Depth | −4.08 | 0.03 | |
MAT | 14.95 | 0.00 | ||
MAP | 0.13 | 0.10 | ||
MAT × MAP | −0.01 | 0.06 | ||
60–100 | Depth | 0.18 | 0.92 | |
MAT | 5.94 | 0.54 | ||
MAP | 0.11 | 0.70 | ||
MAT × MAP | −0.01 | 0.77 | ||
Occluded light | 0–30 | Depth | −6.81 | 0.00 |
MAT | 10.80 | 0.00 | ||
MAP | 0.02 | 0.49 | ||
MAT × MAP | 0.00 | 0.02 | ||
30–60 | Depth | −6.03 | 0.04 | |
MAT | 22.38 | 0.02 | ||
MAP | 0.19 | 0.18 | ||
MAT × MAP | −0.03 | 0.02 | ||
60–100 | Depth | −7.09 | 0.00 | |
MAT | 57.47 | 0.22 | ||
MAP | 1.71 | 0.17 | ||
MAT × MAP | −0.14 | 0.18 | ||
Heavy fraction | 0–30 | Depth | −5.88 | 0.00 |
MAT | 5.25 | 0.00 | ||
MAP | 0.02 | 0.30 | ||
MAT × MAP | 0.00 | 0.24 | ||
30–60 | Depth | −4.19 | 0.01 | |
MAT | 7.86 | 0.00 | ||
MAP | 0.04 | 0.38 | ||
MAT × MAP | −0.01 | 0.01 | ||
60–100 | Depth | −2.60 | 0.10 | |
MAT | 16.29 | 0.00 | ||
MAP | 0.23 | 0.01 | ||
MAT × MAP | −0.02 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Chai, X.; Shi, Z.; Ruan, H. Interactive Effects Determine Radiocarbon Abundance in Soil Fractions of Global Biomes. Land 2023, 12, 1072. https://doi.org/10.3390/land12051072
Li G, Chai X, Shi Z, Ruan H. Interactive Effects Determine Radiocarbon Abundance in Soil Fractions of Global Biomes. Land. 2023; 12(5):1072. https://doi.org/10.3390/land12051072
Chicago/Turabian StyleLi, Guoai, Xuxu Chai, Zheng Shi, and Honghua Ruan. 2023. "Interactive Effects Determine Radiocarbon Abundance in Soil Fractions of Global Biomes" Land 12, no. 5: 1072. https://doi.org/10.3390/land12051072
APA StyleLi, G., Chai, X., Shi, Z., & Ruan, H. (2023). Interactive Effects Determine Radiocarbon Abundance in Soil Fractions of Global Biomes. Land, 12(5), 1072. https://doi.org/10.3390/land12051072