Nitrogen Mineralization in Texturally Contrasting Soils Subjected to Different Organic Amendments under Semi-Arid Climates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling and Analysis
2.2. Chemical Characteristics of Organic Fertilizers
2.3. Experimental Design
2.3.1. Long-Term Incubation Study-N Mineralization
Kinetics of N Mineralization
Microbial Biomass Carbon and Nitrogen
Fungal Colonization
Enzyme Activities
2.3.2. Short-Term Incubation Study-NH4+ Volatilization
2.4. Statistical Analysis
3. Results
3.1. Net Nitrogen Mineralization
3.2. Kinetics of N Mineralization
3.3. Soil Microbial Biomass Carbon and Nitrogen
3.4. Fungal Colonization and Enzyme Activities
3.5. Ammonia Volatilization in Short-Term Incubation Experiment
4. Discussion
4.1. Long-Term Incubation Study
4.2. Short-Term Incubation Study (25-d)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Powlson, D.S.; Hirsch, P.R.; Brookes, P.C. The role of soil microorganisms in soil organic matter conservation in the tropics. Nutr. Cycl. Agroecosyst. 2001, 61, 41–51. [Google Scholar] [CrossRef]
- Lal, R. Challenges and opportunities in soil organic matter research. Eur. J. Soil Sci. 2009, 60, 158–169. [Google Scholar] [CrossRef]
- Veum, K.S.; Goyne, K.W.; Kremer, R.J.; Miles, R.J.; Sudduth, K.A. Biological indicators of soil quality and soil organic matter characteristics in an agricultural management continuum. Biogeochemistry 2014, 117, 81–99. [Google Scholar] [CrossRef]
- Scharlemann, J.P.; Tanner, E.V.; Hiederer, R.; Kapos, V. Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Manag. 2014, 5, 81–91. [Google Scholar] [CrossRef]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P. Soil quality–A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Amsili, J.P.; Van Es, H.M.; Schindelbeck, R.R. Cropping system and soil texture shape soil health outcomes and scoring functions. Soil Secur. 2021, 4, 100012. [Google Scholar] [CrossRef]
- Magdoff, F.; Van Es, H. Building Soils for Better Crops; Sustainable Agriculture Network Beltsville: Beltsville, MD, USA, 2000. [Google Scholar]
- Liang, X.; He, J.; Zhang, F.; Shen, Q.; Wu, J.; Young, I.M.; O’donnell, A.G.; Wang, L.; Wang, E.; Hill, J. Healthy soils for sustainable food production and environmental quality. Front. Agric. Sci. Eng. 2020, 7, 347–355. [Google Scholar] [CrossRef]
- Nunes, M.R.; van Es, H.M.; Veum, K.S.; Amsili, J.P.; Karlen, D.L. Anthropogenic and inherent effects on soil organic carbon across the US. Sustainability 2020, 12, 5695. [Google Scholar] [CrossRef]
- Fahad, S.; Sönmez, O.; Saud, S.; Wang, D.; Wu, C.; Adnan, M.; Turan, V. (Eds.) Soil Biodiversity and Climate Change. In Sustainable Soil and Land Management and Climate Change, 1st ed.; CRC Press: Boca Raton, FL, USA, 2021; Volume 1, pp. 113–125. [Google Scholar]
- Javeed, H.M.R.; Iqbal, N.; Ali, M.; Masood, N. Agriculture Contribution toward Global Warming. In Climate Change and Plants: Biodiversity, Growth and Interactions; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Javeed, H.M.R.; Ali, M.; Qamar, R.; Shehzad, M.; Haseebur, R.; Nawaz, F.; Jamil, M.; Ahmad, A.; Farooq, A.; Masood, N.; et al. Effect of Date Biochar Pyrolyzed at Different Temperature on Physiochemical Properties of Sandy Soil and Wheat Crop Response. Commun. Soil Sci. Plant Anal. 2021, 52, 2110–2124. [Google Scholar] [CrossRef]
- Qamar, R.; Rehman, A.U.; Javeed, H.M.R.; REHMAN, A.; Safdar, M.E.; ALI, H.; Ahmad, S. Tillage Systems Affecting Rice-Wheat Cropping System (Sistem Pembajakan Mempengaruhi Sistem Tanaman Padi-Gandum). Sains Malays. 2021, 50, 1543–1562. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; Lavallee, J.M. Soil organic matter formation, persistence, and functioning: A synthesis of current understanding to inform its conservation and regeneration. Adv. Agron. 2022, 172, 1–66. [Google Scholar]
- Oldfield, T.L.; Sikirica, N.; Mondini, C.; Lopez, G.; Kuikman, P.J.; Holden, N.M. Biochar, compost and biochar-compost blend as options to recover nutrients and sequester carbon. J. Environ. Manag. 2018, 218, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Javeed, H.M.R.; Qamar, R.; Rehman, A.U.; Ali, M.; Rehman, A.; Farooq, M.; Zamir, S.I.; Nadeem, M.; Cheema, M.A.; Shehzad, M.; et al. Improvement in Soil Characteristics of Sandy Loam Soil and Grain Quality of Spring Maize by Using Phosphorus Solublizing Bacteria. Sustainability 2019, 11, 7049. [Google Scholar] [CrossRef] [Green Version]
- Soinne, H.; Keskinen, R.; Räty, M.; Kanerva, S.; Turtola, E.; Kaseva, J.; Nuutinen, V.; Simojoki, A.; Salo, T. Soil organic carbon and clay content as deciding factors for net nitrogen mineralization and cereal yields in boreal mineral soils. Eur. J. Soil Sci. 2021, 72, 1497–1512. [Google Scholar] [CrossRef]
- Amoakwah, E.; Arthur, E.; Frimpong, K.A.; Parikh, S.J.; Islam, R. Soil organic carbon storage and quality are impacted by corn cob biochar application on a tropical sandy loam. J. Soils Sediments 2020, 20, 1960–1969. [Google Scholar] [CrossRef]
- Cassity-Duffey, K.; Cabrera, M.; Franklin, D.; Gaskin, J.; Kissel, D. Effect of soil texture on nitrogen mineralization from organic fertilizers in four common southeastern soils. Soil Sci. Soc. Am. J. 2020, 84, 534–542. [Google Scholar] [CrossRef]
- Bonanomi, G.; De Filippis, F.; Zotti, M.; Idbella, M.; Cesarano, G.; Al-Rowaily, S.; Abd-ElGawad, A.J.A.S.E. Repeated applications of organic amendments promote beneficial microbiota, improve soil fertility and increase crop yield. Appl. Soil Ecol. 2020, 156, 103714. [Google Scholar] [CrossRef]
- DeLuca, T.H.; Gao, S. Use of Biochar in Organic Farming. In Organic Farming; Springer: Berlin/Heidelberg, Germany, 2019; pp. 25–49. [Google Scholar]
- Jien, S.H.; Chen, W.C.; Ok, Y.S.; Awad, Y.M.; Liao, C.S. Short-term biochar application induced variations in C and N mineralization in a compost-amended tropical soil. Environ. Sci. Pollut. Res. 2018, 25, 25715–25725. [Google Scholar] [CrossRef] [PubMed]
- Lamptey, S.; Xie, J.; Li, L.; Coulter, J.A.; Jagadabhi, P.S. Influence of Organic Amendment on Soil Respiration and Maize Productivity in a Semi-Arid Environment. Agronomy 2019, 9, 611. [Google Scholar] [CrossRef] [Green Version]
- Levavasseur, F.; Lashermes, G.; Mary, B.; Morvan, T.; Nicolardot, B.; Parnaudeau, V.; Thuriès, L.; Houot, S. Quantifying and simulating carbon and nitrogen mineralization from diverse exogenous organic matters. Soil Use Manag. 2021, 38, 411–425. [Google Scholar] [CrossRef]
- Yu, H.; Xie, B.; Khan, R.; Shen, G. The changes in carbon, nitrogen components and humic substances during organic-inorganic aerobic co-composting. Bioresour. Technol. 2019, 271, 228–235. [Google Scholar] [CrossRef]
- Kopittke, P.M.; Dalal, R.C.; Hoeschen, C.; Li, C.; Menzies, N.W.; Mueller, C.W. Soil organic matter is stabilized by organo-mineral associations through two key processes: The role of the carbon to nitrogen ratio. Geoderma 2020, 357, 113974. [Google Scholar] [CrossRef]
- Angst, G.; Mueller, K.E.; Nierop, K.G.; Simpson, M.J. Plant-or microbial-derived? A review on the molecular composition of stabilized soil organic matter. Soil Biol. Biochem. 2021, 156, 108189. [Google Scholar] [CrossRef]
- Kallenbach, C.M.; Frey, S.D.; Grandy, A.S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun. 2016, 7, 13630. [Google Scholar] [CrossRef] [Green Version]
- de Jesus Duarte, S.; Glaser, B.; Paiva de Lima, R.; Pelegrino Cerri, C. Chemical, Physical, and Hydraulic Properties as Affected by One Year of Miscanthus Biochar Interaction with Sandy and Loamy Tropical Soils. Soil Syst. 2019, 3, 24. [Google Scholar] [CrossRef] [Green Version]
- Gavili, E.; Moosavi, A.A.; Moradi Choghamarani, F. Cattle manure biochar potential for ameliorating soil physical characteristics and spinach response under drought. Arch. Agron. Soil Sci. 2018, 64, 1714–1727. [Google Scholar] [CrossRef]
- Bonanomi, G.; Sarker, T.C.; Zotti, M.; Cesarano, G.; Allevato, E.; Mazzoleni, S. Predicting nitrogen mineralization from organic amendments: Beyond C/N ratio by 13 C-CPMAS NMR approach. Plant Soil 2019, 441, 129–146. [Google Scholar] [CrossRef]
- Gee, G.W.; Bauder, J.W. Particle-size analysis, In Methods Soil Anal. Part 1, Physical and Mineralogical Methods, 2nd ed.; Klute, A., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1986; pp. 383–411. [Google Scholar]
- Miller, R.O.; Kissel, D.E. Comparison of soil pH methods on soils of North America. Soil Sci. Soc. Am. J. 2010, 74, 310–316. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis. Part 3. Chemical Methods; Sparks, D.L., Ed.; SSSA and ASA: Madison, WI, USA, 1996. [Google Scholar]
- Mulvaney, R. Nitrogen—Inorganic forms. In Methods of Soil Analysis. Part 3. Chemical Methods; SSSA and ASA: Madison, WI, USA, 1996; Volume 5, pp. 1123–1184. [Google Scholar]
- Keeney, D.R.; Nelson, D.W. Nitrogen—Inorganic forms. In Methods of Soil Analysis, Part 2: Microbiological and Biochemical Properties; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1983; Volume 9, pp. 643–698. [Google Scholar]
- Kissel, D.; Sonon, L.; Cabrera, M. Rapid measurement of soil pH buffering capacity. Soil Sci. Soc. Am. J. 2012, 76, 694–699. [Google Scholar] [CrossRef]
- Crooke, W.; Simpson, W. Determination of ammonium in Kjeldahl digests of crops by an automated procedure. J. Sci. Food Agric. 1971, 22, 9–10. [Google Scholar] [CrossRef]
- Cabrera, M.; Chiang, S. Water content effect on denitrification and ammonia volatilization in poultry litter. Soil Sci. Soc. Am. J. 1994, 58, 811–816. [Google Scholar] [CrossRef]
- Gale, E.S.; Sullivan, D.M.; Cogger, C.G.; Bary, A.I.; Hemphill, D.D.; Myhre, E.A. Estimating plant-available nitrogen release from manures, composts, and specialty products. J. Environ. Qual. 2006, 35, 2321–2332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milliken, G.A.; Debruin, R.L. A procedure to test hypotheses for nonlinear models. Commun. Stat. Theory Methods 1978, 7, 65–79. [Google Scholar] [CrossRef]
- Brookes, P.; Landman, A.; Pruden, G.; Jenkinson, D. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 1985, 17, 837–842. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Jenkinson, D.S.; Brookes, P.C.; Powlson, D.S. Measuring soil microbial biomass. Soil Biol. Biochem. 2004, 1, 5–7. [Google Scholar] [CrossRef]
- Joergensen, R.G.; Mueller, T. The fumigation-extraction method to estimate soil microbial biomass: Calibration of the kEN value. Soil Biol. Biochem. 1996, 28, 33–37. [Google Scholar] [CrossRef]
- Gerdemann, J.; Nicolson, T.H. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans. Br. Mycol. Soc. 1963, 46, 235–244. [Google Scholar] [CrossRef]
- DeForest, J.L. The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and l-DOPA. Soil Biol. Biochem. 2009, 41, 1180–1186. [Google Scholar] [CrossRef]
- Peng, X.; Wang, W. Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of northern China. Soil Biol. Biochem. 2016, 98, 74–84. [Google Scholar] [CrossRef]
- Pinto, R.; Brito, L.M.; Coutinho, J. Nitrogen Mineralization from Organic Amendments Predicted by Laboratory and Field Incubations. Commun. Soil Sci. Plant. Anal. 2020, 51, 515–526. [Google Scholar] [CrossRef]
- Sadet-Bourgeteau, S.; Houot, S.; Dequiedt, S.; Nowak, V.; Tardy, V.; Terrat, S.; Montenach, D.; Mercier, V.; Karimi, B.; Prévost-Bouré, N.C. Lasting effect of repeated application of organic waste products on microbial communities in arable soils. App. Soil Ecol. 2018, 125, 278–287. [Google Scholar] [CrossRef]
- Li, L.; Xu, M.; Eyakub Ali, M.; Zhang, W.; Duan, Y.; Li, D. Factors affecting soil microbial biomass and functional diversity with the application of organic amendments in three contrasting cropland soils during a field experiment. PLoS ONE 2018, 13, e0203812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Y.; Zhu, B.J.G. Arbuscular mycorrhizal fungi reduce soil nitrous oxide emission. New Phytol. 2021, 402, 115179. [Google Scholar] [CrossRef]
- Zungu, N.S.; Egbewale, S.O.; Olaniran, A.O.; Pérez-Fernández, M.; Magadlela, A. Soil nutrition, microbial composition and associated soil enzyme activities in KwaZulu-Natal grasslands and savannah ecosystems soils. App. Soil Ecol. 2020, 155, 103663. [Google Scholar] [CrossRef]
- Alotaibi, K.D.; Schoenau, J.J. Addition of biochar to a sandy desert soil: Effect on crop growth, water retention and selected properties. Agronomy 2019, 9, 327. [Google Scholar] [CrossRef] [Green Version]
Textural analysis | ||||
Units | SL1 | SL2 | SL3 | |
Sand | % | 72 | 67 | 63 |
Silt | % | 19 | 18 | 16 |
Clay | % | 9 | 15 | 21 |
Texture | Sandy Loam | Sandy Loam | Sandy Clay Loam | |
Soil physical properties | ||||
pH (1:5) | 7.85 | 7.51 | 7.66 | |
pH BC | mmole H+ kg−1 soil pH−1 | 6.23 | 7.04 | 7.56 |
EC | dS m−1 | 0.23 | 0.44 | 0.68 |
CEC | meq/100 g | 1.11 | 1.41 | 1.73 |
SOC | % | 0.11 | 0.38 | 0.59 |
CaCO3 | % | 3.66 | 3.01 | 3.21 |
FC | % | 16.25 | 23.76 | 32.51 |
Bulk density | Mg m−3 | 1.01 | 1.26 | 1.34 |
Soil nutrient contents | ||||
TC | mg kg−1 | 0.62 | 0.91 | 1.18 |
TN | mg kg−1 | 0.16 | 0.41 | 0.67 |
Inorganic N | mg kg−1 | 3.26 | 5.89 | 6.96 |
P | mg kg−1 | 0.11 | 0.29 | 0.43 |
K | mg kg−1 | 0.26 | 0.91 | 1.21 |
NH+-N | mg kg−1 | 1.36 | 2.81 | 3.64 |
NO3-N | mg kg−1 | 1.13 | 1.51 | 1.92 |
Characteristics | Units | PM | PMC | FM |
---|---|---|---|---|
pH (1:5) | 6.80 | 6.10 | 5.40 | |
EC | dS m−1 | 0.44 | 0.58 | 0.61 |
CEC | meq/100 g | 1.41 | 1.56 | 1.66 |
SOC | % | 4.5 | 6.8 | 7.1 |
CaCO3 | % | 5.11 | 6.78 | 5.86 |
TC | % | 41.56 | 51.36 | 65.36 |
TN | % | 3.11 | 4.77 | 5.66 |
C:N | ratio | 2.49 | 1.81 | 3.89 |
P | % | 1.85 | 3.45 | 4.36 |
K | % | 4.36 | 6.98 | 7.36 |
Ca | % | 1.96 | 2.89 | 3.78 |
Mg | % | 0.18 | 0.26 | 0.49 |
Mn | % | 0.11 | 0.22 | 0.34 |
Fe | % | 1.48 | 2.26 | 2.91 |
Cu | % | 0.11 | 0.11 | 0.24 |
B | % | 0.08 | 0.11 | 0.18 |
S | % | 0.06 | 0.26 | 0.39 |
Na | % | 2.36 | 4.11 | 5.89 |
Treatments | SL1 | SL2 | SL3 |
---|---|---|---|
g kg−1 Dry Material (% N Total Applied) | |||
CT (NF) | 9.69 d | 12.56 e | 18.84 e |
PMO | 26.89 c (68) | 41.14 cd (71) | 51.81 d (74) |
PMC | 38.78 c (68) | 53.89 c (71) | 61.98 cd (74) |
PMO + FMO | 49.68 bc (66) | 59.87 bc (69) | 78.49 b (73) |
PMC + FMO | 61.49 a (68) | 81.69 a (69) | 109.36 a (76) |
FMO | 18.36 d (41) | 34.23 d (45) | 39.47 d (48) |
CV (%) | 1.56 | 3.11 | 4.89 |
Soil Types | CT | PMO | PMC | PMO + FMO | PMC + FMO | FMO | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
K | R2 | K | N0 | R2 | K | N0 | R2 | K | N0 | R2 | K | N0 | R2 | K | N0 | R2 | |
d−1 | d−1 | g kg−1 | d−1 | g kg−1 | d−1 | g kg−1 | d−1 | g kg−1 | d−1 | g kg−1 | |||||||
SL1 | 0.18 c | 0.62 | 0.152 a | 31.79 c | 0.81 | 0.158 a | 41.49 b | 0.83 | 0.166 a | 51.25 b | 0.85 | 0.192 a | 68.37 b | 0.86 | 0.144 a | 21.78 b | 0.84 |
SL2 | 0.41 b | 0.93 | 0.136 a | 44.12 b | 0.86 | 0.141 a | 52.74 b | 0.85 | 0.149 a | 62.98 b | 0.87 | 0.171 a | 76.69 b | 0.91 | 0.134 a | 26.68 b | 0.86 |
SL3 | 0.67 a | 0.95 | 0.031 b | 58.69 a | 0.92 | 0.044 b | 73.89 a | 0.91 | 0.058 c | 81.69 a | 0.94 | 0.078 b | 101.36 a | 0.95 | 0.026 b | 44.25 a | 0.89 |
Full Model | 0.141 | 51.78 | 0.88 | 0.148 | 58.47 | 0.89 | 0.158 | 71.56 | 0.91 | 0.177 | 88.69 | 0.93 | 0.126 | 28.69 | 0.88 |
Treatments | 10-d | 40-d | 150-d | ||||||
---|---|---|---|---|---|---|---|---|---|
SL1 | SL2 | SL3 | SL1 | SL2 | SL3 | SL1 | SL2 | SL3 | |
CT | 117.63 e | 114.78 e | 111.23 e | 131.78 e | 126.12 c | 138.96 e | 91.26 e | 95.69 d | 108.49 e |
PMO | 131.36 d | 126.15 d | 124.69 d | 138.66 d | 145.69 d | 156.48 d | 167.89 d | 191.25 b | 204.12 d |
PMC | 137.89 c | 131.48 c | 133.48 c | 148.36 c | 154.22 c | 163.36 c | 178.56 c | 198.45 b | 215.36 c |
PMO + FMO | 152.48 b | 146.48 b | 144.69 b | 159.71 b | 166.05 b | 173.42 b | 188.21 c | 214.47 a | 226.18 b |
PMC + FMO | 161.25 a | 155.12 a | 153.46 a | 169.05 a | 174.32 a | 182.49 a | 201.23 a | 218.43 a | 256.79 a |
FMO | 126.48 d | 122.23 d | 121.36 d | 136.45 d | 141.98 d | 152.78 d | 166.79 d | 182.06 c | 197.467 d |
LSD0.05 | 7.56 | 4.06 | 3.56 | 4.23 | 9.58 | 8.45 | 10.56 | 9.05 | 7.26 |
Treatments | 10-d | 40-d | 150-d | ||||||
---|---|---|---|---|---|---|---|---|---|
SL1 | SL2 | SL3 | SL1 | SL2 | SL3 | SL1 | SL2 | SL3 | |
CT | 15.21 f | 12.38 e | 10.23 f | 15.01 e | 16.96 e | 21.36 e | 10.12 f | 12.89 e | 14.79 e |
PMO | 22.75 d | 20.68 c | 18.26 d | 23.66 d | 25.89 d | 28.69 d | 21.36 cde | 29.02 d | 44.26 d |
PMC | 25.02 c | 22.15 c | 20.14 c | 27.96 c | 31.89 c | 33.56 c | 22.78 c | 33.21 c | 48.31 c |
PMO + FMO | 27.89 b | 25.36 ab | 23.59 b | 30.78 b | 33.57 b | 36.14 b | 27.89 b | 39.06 b | 52.76 b |
PMC + FMO | 29.45 a | 26.78 a | 24.98 a | 33.68 a | 35.12 a | 38.75 a | 31.78 a | 44.25 a | 61.35 a |
FMO | 20.89 e | 17.75 d | 16.02 e | 23.01 d | 24.02 d | 27.56 d | 20.36 e | 28.56 d | 41.23 d |
LSD0.05 | 1.35 | 1.51 | 1.11 | 2.74 | 1.44 | 1.09 | 2.35 | 1.84 | 3.53 |
Treatments | 10-d | 40-d | 150-d | ||||||
---|---|---|---|---|---|---|---|---|---|
SL1 | SL2 | SL3 | SL1 | SL2 | SL3 | SL1 | SL2 | SL3 | |
CT | 45.12 e | 47.23 e | 48.69 d | 53.26 d | 54.63 e | 55.26 e | 41.26 d | 49.23 f | 50.78 f |
PMO | 55.23 cd | 57.48 d | 59.48 c | 66.58 c | 69.26 d | 72.55 d | 68.06 c | 72.26 d | 75.55 d |
PMC | 56.48 c | 62.38 c | 61.78 c | 68.23 c | 73.12 c | 76.61 c | 69.05 c | 76.18 c | 78.61 c |
PMO + FMO | 61.59 b | 68.49 b | 71.89 b | 71.48 b | 76.26 b | 81.05 b | 72.81 b | 78.26 b | 83.51 b |
PMC + FMO | 64.89 a | 71.56 a | 74.96 a | 73.58 a | 81.26 a | 84.56 a | 75.58 a | 83.26 a | 88.98 a |
FMO | 56.78 cd | 58.79 d | 61.47 c | 67.05 c | 68.23 d | 71.91 d | 68.91 c | 70.51 e | 74.89 e |
LSD0.05 | 3.46 | 3.21 | 3.16 | 2.23 | 3.98 | 4.51 | 3.81 | 1.91 | 0.78 |
Treatments | 10-d (nmol h−1g−1) | 40-d (nmol h−1g−1) | 150-d (nmol h−1g−1) | ||||||
---|---|---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S1 | S2 | S3 | S1 | S2 | S3 | |
CT | 16.58 e | 15.69 d | 15.22 d | 22.96 e | 23.01 e | 25.15 e | 16.05 e | 20.15 f | 22.23 f |
PMO | 21.23 c | 20.91 c | 20.36 b | 27.45 c | 28.05 c | 33.79 c | 26.49 d | 31.24 d | 61.05 d |
PMC | 22.01 c | 21.78 b | 20.89 b | 29.93 b | 30.48 b | 34.89 c | 30.11 c | 33.41 c | 67.24 c |
PMO + FMO | 23.22 b | 21.96 b | 21.23 b | 32.15 a | 33.71 a | 37.48 b | 31.48 b | 37.41 b | 71.46 b |
PMC + FMO | 25.56 a | 25.15 a | 25.01 a | 33.69 a | 34.56 a | 41.56 a | 34.05 a | 38.66 a | 79.35 a |
FMO | 18.69 d | 18.39 c | 17.58 c | 25.06 d | 26.91 d | 29.15 d | 25.05 d | 30.11 e | 42.15 e |
LSD0.05 | 0.71 | 0.11 | 0.83 | 1.42 | 0.66 | 0.96 | 1.24 | 1.01 | 1.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Javeed, H.M.R.; Ali, M.; Kanwal, N.; Ahmad, I.; Jamal, A.; Qamar, R.; Zakir, A.; Andaleeb, H.; Jabeen, R.; Radicetti, E.; et al. Nitrogen Mineralization in Texturally Contrasting Soils Subjected to Different Organic Amendments under Semi-Arid Climates. Land 2023, 12, 989. https://doi.org/10.3390/land12050989
Javeed HMR, Ali M, Kanwal N, Ahmad I, Jamal A, Qamar R, Zakir A, Andaleeb H, Jabeen R, Radicetti E, et al. Nitrogen Mineralization in Texturally Contrasting Soils Subjected to Different Organic Amendments under Semi-Arid Climates. Land. 2023; 12(5):989. https://doi.org/10.3390/land12050989
Chicago/Turabian StyleJaveed, Hafiz Muhammad Rashad, Mazhar Ali, Nitasha Kanwal, Iftikhar Ahmad, Aftab Jamal, Rafi Qamar, Ali Zakir, Hina Andaleeb, Raheela Jabeen, Emanuele Radicetti, and et al. 2023. "Nitrogen Mineralization in Texturally Contrasting Soils Subjected to Different Organic Amendments under Semi-Arid Climates" Land 12, no. 5: 989. https://doi.org/10.3390/land12050989
APA StyleJaveed, H. M. R., Ali, M., Kanwal, N., Ahmad, I., Jamal, A., Qamar, R., Zakir, A., Andaleeb, H., Jabeen, R., Radicetti, E., & Mancinelli, R. (2023). Nitrogen Mineralization in Texturally Contrasting Soils Subjected to Different Organic Amendments under Semi-Arid Climates. Land, 12(5), 989. https://doi.org/10.3390/land12050989