Examining the Impact of China’s Poverty Alleviation on Nighttime Lighting in 831 State-Level Impoverished Counties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Data Source
2.2.1. Nighttime Lighting Dataset
2.2.2. Land Cover Datasets
2.3. Methods
2.3.1. Research Framework
2.3.2. Identification of Spatial–Temporal Characteristics of Nighttime Lighting Data
2.3.3. The Spatial Equilibrium of Nighttime Lighting in Impoverished Counties
2.3.4. Cluster/Outlier Analysis of Nighttime Lighting
3. Results
3.1. Amount Identification of the Nighttime Lighting
3.2. Spatial Identification of the Nighttime Lighting
3.3. The Spatial Equilibrium of Nighttime Lighting in Impoverished Counties
3.4. Cluster/Outlier Analysis of Nighttime Lighting Based on Time Series and Land Use Change
3.4.1. Cluster/Outlier Analysis of Nighttime Lighting Based on Time Series
3.4.2. Land Use Change under Cluster/Outlier Analysis of Nighttime Lighting
4. Discussion and Conclusions
4.1. Discussion
4.2. Conclusions
4.3. Limitations and Uncertainties
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fritz, S.; See, L.; Carlson, T.; Haklay, M.; Oliver, J.L.; Fraisl, D.; Mondardini, R.; Brocklehurst, M.; Shanley, L.A.; Schade, S.; et al. Citizen science and the United Nations Sustainable Development Goals. Nat. Sustain. 2019, 2, 922–930. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Y.; Huang, C.; Tan, R.; Cai, J. Measuring farmers’ sustainable livelihood resilience in the context of poverty alleviation: A case study from Fugong County, China. Humanit. Soc. Sci. Commun. 2023, 10, 75. [Google Scholar] [CrossRef] [PubMed]
- Di Falco, S.; Lynam, G. New evidence on the rural poverty and energy choice relationship. Sci. Rep. 2023, 13, 3320. [Google Scholar] [CrossRef] [PubMed]
- Bruckner, B.; Hubacek, K.; Shan, Y.; Zhong, H.; Feng, K. Impacts of poverty alleviation on national and global carbon emissions. Nat. Sustain. 2022, 5, 311–320. [Google Scholar] [CrossRef]
- Hubacek, K.; Baiocchi, G.; Feng, K.; Patwardhan, A. Poverty eradication in a carbon constrained world. Nat. Commun. 2017, 8, 912. [Google Scholar] [CrossRef]
- Marotzke, J.; Semmann, D.; Milinski, M. The economic interaction between climate change mitigation, climate migration and poverty. Nat. Clim. Chang. 2020, 10, 518–525. [Google Scholar] [CrossRef]
- Soergel, B.; Kriegler, E.; Bodirsky, B.L.; Bauer, N.; Leimbach, M.; Popp, A. Combining ambitious climate policies with efforts to eradicate poverty. Nat. Commun. 2021, 12, 2342. [Google Scholar] [CrossRef]
- Xu, X.; Yang, H. Elderly chronic diseases and catastrophic health expenditure: An important cause of Borderline Poor Families’ return to poverty in rural China. Humanit. Soc. Sci. Commun. 2022, 9, 291. [Google Scholar] [CrossRef]
- Bossuroy, T.; Goldstein, M.; Karimou, B.; Karlan, D.; Kazianga, H.; Parienté, W.; Premand, P.; Thomas, C.C.; Udry, C.; Vaillant, J.; et al. Tackling psychosocial and capital constraints to alleviate poverty. Nature 2022, 605, 291–297. [Google Scholar] [CrossRef]
- Huang, J.K.; Shi, P.F. Regional rural and structural transformations and farmer’s income in the past four decades in China. China Agric. Econ. Rev. 2021, 13, 278–301. [Google Scholar] [CrossRef]
- Guo, Y.Z.; Liu, Y.S. Sustainable poverty alleviation and green development in China’s underdeveloped areas. J. Geogr. Sci. 2022, 32, 23–43. [Google Scholar] [CrossRef]
- Xu, R.; Yue, W.; Wei, F.; Yang, G.; Chen, Y.; Pan, K. Inequality of public facilities between urban and rural areas and its driving factors in ten cities of China. Sci. Rep. 2022, 12, 13244. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Zheng, X.; Wei, C. Measurement of inequality using household energy consumption data in rural China. Nat. Energy 2017, 2, 795–803. [Google Scholar] [CrossRef]
- Wang, H.; Zhuo, Y. The Necessary Way for the Development of China’s Rural Areas in the New Era-Rural Revitalization Strategy. Open J. Soc. Sci. 2018, 06, 97–106. [Google Scholar] [CrossRef]
- Shu, H.; Xiong, P.P. The Gini coefficient structure and its application for the evaluation of regional balance development in China. J. Clean. Prod. 2018, 199, 668–686. [Google Scholar] [CrossRef]
- Bowles, S.; Carlin, W. Inequality as experienced difference: A reformulation of the Gini coefficient. Econ. Lett. 2020, 186, 108789. [Google Scholar] [CrossRef]
- Park, J.W.; Kim, C.U. Getting to a feasible income equality. PLoS ONE 2021, 16, e0249204. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zheng, Z.; Wu, Z.; Qian, Q. Review and prospect of application of nighttime light remote sensing data. Prog. Geogr. 2019, 38, 205–223. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.; Zhizhin, M.; Hsu, F.C.; Ghosh, T. VIIRS night-time lights. Int. J. Remote Sens. 2017, 38, 5860–5879. [Google Scholar] [CrossRef]
- Levin, N.; Kyba, C.C.M.; Zhang, Q.L.; de Miguel, A.S.; Roman, M.O.; Li, X.; Portnov, B.A.; Molthan, A.L.; Jechow, A.; Miller, S.D.; et al. Remote sensing of night lights: A review and an outlook for the future. Remote Sens. Environ. 2020, 237, 111443. [Google Scholar] [CrossRef]
- Jiang, W.; He, G.J.; Long, T.F.; Guo, H.X.; Yin, R.Y.; Leng, W.C.; Liu, H.C.; Wang, G.Z. Potentiality of Using Luojia 1-01 Nighttime Light Imagery to Investigate Artificial Light Pollution. Sensors 2018, 18, 2900. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.M.; Weng, Q.H.; Huang, L.Y.; Wang, K.; Deng, J.S.; Jiang, R.W.; Ye, Z.R.; Gan, M.Y. A new source of multi-spectral high spatial resolution night-time light imagery-JL1-3B. Remote Sens. Environ. 2018, 215, 300–312. [Google Scholar] [CrossRef]
- Li, X.; Xu, H.M.; Chen, X.L.; Li, C. Potential of NPP-VIIRS Nighttime Light Imagery for Modeling the Regional Economy of China. Remote Sens. 2013, 5, 3057–3081. [Google Scholar] [CrossRef]
- Zhao, C.C.; Cao, X.; Chen, X.H.; Cui, X.H. A consistent and corrected nighttime light dataset (CCNL 1992-2013) from DMSP-OLS data. Sci. Data 2022, 9, 12. [Google Scholar] [CrossRef]
- Bennie, J.; Davies, T.W.; Duffy, J.P.; Inger, R.; Gaston, K.J. Contrasting trends in light pollution across Europe based on satellite observed night time lights. Sci. Rep. 2014, 4, 3789. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Berrios, N.L.; Pares-Ramos, I.K.; Aide, T.M. Contrasting Patterns of Urban Expansion in Colombia, Ecuador, Peru, and Bolivia between 1992 and 2009. Ambio 2013, 42, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Imhoff, M.L.; Lawrence, W.T.; Stutzer, D.C.; Elvidge, C.D. A technique for using composite DMSP/OLS “city lights” satellite data to map urban area. Remote Sens. Environ. 1997, 61, 361–370. [Google Scholar] [CrossRef]
- Small, C.; Pozzi, F.; Elvidge, C.D. Spatial analysis of global urban extent from DMSP-OLS night lights. Remote Sens. Environ. 2005, 96, 277–291. [Google Scholar] [CrossRef]
- Zhou, Y.Y.; Smith, S.J.; Zhao, K.G.; Imhoff, M.; Thomson, A.; Bond-Lamberty, B.; Asrar, G.; Zhang, X.S.; He, C.Y.; Elvidge, C.D. A global map of urban extent from nightlights. Environ. Res. Lett. 2015, 10, 054011. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhou, Y.Y.; Seto, K.C.; Stokes, E.C.; Deng, C.B.; Pickett, S.T.A.; Taubenbock, H. Understanding an urbanizing planet: Strategic directions for remote sensing. Remote Sens. Environ. 2019, 228, 164–182. [Google Scholar] [CrossRef]
- Min, B.; Gaba, K.M.; Sarr, O.F.; Agalassou, A. Detection of rural electrification in Africa using DMSP-OLS night lights imagery. Int. J. Remote Sens. 2013, 34, 8118–8141. [Google Scholar] [CrossRef]
- Min, B.; Gaba, K.M. Tracking Electrification in Vietnam Using Nighttime Lights. Remote Sens. 2014, 6, 9511–9529. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R.; Davis, C.W. Relation between satellite observed visible-near infrared emissions, population, economic activity and electric power consumption. Int. J. Remote Sens. 1997, 18, 1373–1379. [Google Scholar] [CrossRef]
- Forbes, D.J. Multi-scale analysis of the relationship between economic statistics and DMSP-OLS night light images. GIScience Remote Sens. 2013, 50, 483–499. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Sutton, P.C.; Ghosh, T.; Tuttle, B.T.; Baugh, K.E.; Bhaduri, B.; Bright, E. A global poverty map derived from satellite data. Comput. Geosci. 2009, 35, 1652–1660. [Google Scholar] [CrossRef]
- Wang, W.; Cheng, H.; Zhang, L. Poverty assessment using DMSP/OLS night-time light satellite imagery at a provincial scale in China. Adv. Space Res. 2012, 49, 1253–1264. [Google Scholar] [CrossRef]
- Yu, B.L.; Shi, K.F.; Hu, Y.J.; Huang, C.; Chen, Z.Q.; Wu, J.P. Poverty Evaluation Using NPP-VIIRS Nighttime Light Composite Data at the County Level in China. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2015, 8, 1217–1229. [Google Scholar] [CrossRef]
- Weber, D.C. Ecological Consequences of Artificial Night Lighting. Environ. Entomol. 2008, 37, 1371–1372. [Google Scholar] [CrossRef]
- Lunn, R.M.; Blask, D.E.; Coogan, A.N.; Figueiro, M.; Gorman, M.R.; Hall, J.E.; Hansen, J.; Nelson, R.J.; Panda, S.; Smolensky, M.H.; et al. Health consequences of electric lighting practices in the modern world: A report on the National Toxicology Program’s workshop on shift work at night, artificial light at night, and circadian disruption. Sci. Total Environ. 2017, 607, 1073–1084. [Google Scholar] [CrossRef]
- Li, X.C.; Zhou, Y.Y.; Zhao, M.; Zhao, X. A harmonized global nighttime light dataset 1992-2018. Sci. Data 2020, 7, 9. [Google Scholar] [CrossRef]
- Zhou, N.; Hubacek, K.; Roberts, M. Analysis of spatial patterns of urban growth across South Asia using DMSP-OLS nighttime lights data. Appl. Geogr. 2015, 63, 292–303. [Google Scholar] [CrossRef]
- Lazar, M.M. Shedding Light on the Global Distribution of Economic Activity. Open Geogr. J. 2010, 3, 147–160. [Google Scholar] [CrossRef]
- Fu, H.Y.; Shao, Z.F.; Fu, P.; Cheng, Q.M. The Dynamic Analysis between Urban Nighttime Economy and Urbanization Using the DMSP/OLS Nighttime Light Data in China from 1992 to 2012. Remote Sens. 2017, 9, 416. [Google Scholar] [CrossRef]
- Xu, K.; Chen, F.; Liu, X. The Truth of China Economic Growth:Evidence from Global Night-time Light Data. Econ. Res. J. 2015, 9, 17–29. [Google Scholar]
- Pérez-Sindín, X.S.; Chen, T.-H.K.; Prishchepov, A.V. Are night-time lights a good proxy of economic activity in rural areas in middle and low-income countries? Examining the empirical evidence from Colombia. Remote Sens. Appl. Soc. Environ. 2021, 24, 100647. [Google Scholar] [CrossRef]
- Rounsevell, M.D.A.; Pedroli, B.; Erb, K.H.; Gramberger, M.; Busck, A.G.; Haberl, H.; Kristensen, S.; Kuemmerle, T.; Lavorel, S.; Lindner, M.; et al. Challenges for land system science. Land Use Policy 2012, 29, 899–910. [Google Scholar] [CrossRef]
- Dang, A.N.; Kawasaki, A. Integrating biophysical and socio-economic factors for land-use and land-cover change projection in agricultural economic regions. Ecol. Model. 2017, 344, 29–37. [Google Scholar] [CrossRef]
- Li, J.Y.; Zhang, C.X.; Zheng, X.Q.; Chen, Y.M. Temporal-Spatial Analysis of the Warming Effect of Different Cultivated Land Urbanization of Metropolitan Area in China. Sci. Rep. 2020, 10, 17. [Google Scholar] [CrossRef]
- Serra, P.; Pons, X.; Sauri, D. Land-cover and land-use change in a Mediterranean landscape: A spatial analysis of driving forces integrating biophysical and human factors. Appl. Geogr. 2008, 28, 189–209. [Google Scholar] [CrossRef]
- Li, C.; Zhu, H.L.; Ye, X.Y.; Jiang, C.; Dong, J.; Wang, D.; Wu, Y.J. Study on Average Housing Prices in the Inland Capital Cities of China by Night-time Light Remote Sensing and Official Statistics Data. Sci. Rep. 2020, 10, 20. [Google Scholar] [CrossRef]
- Liu, Z.F.; He, C.Y.; Zhang, Q.F.; Huang, Q.X.; Yang, Y. Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008. Landsc. Urban Plan. 2012, 106, 62–72. [Google Scholar] [CrossRef]
- Shu, C.; Xie, H.L.; Jiang, J.F.; Chen, Q.R. Is Urban Land Development Driven by Economic Development or Fiscal Revenue Stimuli in China? Land Use Policy 2018, 77, 107–115. [Google Scholar] [CrossRef]
- Singh, S.K.; Srivastava, P.K.; Gupta, M.; Thakur, J.K.; Mukherjee, S. Appraisal of land use/land cover of mangrove forest ecosystem using support vector machine. Environ. Earth Sci. 2014, 71, 2245–2255. [Google Scholar] [CrossRef]
- Chen, Z.Q.; Yu, B.L.; Yang, C.S.; Zhou, Y.Y.; Yao, S.J.; Qian, X.J.; Wang, C.X.; Wu, B.; Wu, J.P. An extended time series (2000-2018) of global NPP-VIIRS-like nighttime light data from a cross-sensor calibration. Earth Syst. Sci. Data 2021, 13, 889–906. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Wu, J.H.; Tu, Y.; Chen, Z.Q.; Yu, B.L. Analyzing the Spatially Heterogeneous Relationships between Nighttime Light Intensity and Human Activities across Chongqing, China. Remote Sens. 2022, 14, 5695. [Google Scholar] [CrossRef]
- Gastwirth, J.L. The Estimation of the Lorenz Curve and Gini Index. Rev. Econ. Stat. 1972, 54, 306–316. [Google Scholar] [CrossRef]
- Niennattrakul, V.; Ratanamahatana, C.A. On Clustering Multimedia Time Series Data Using K-Means and Dynamic Time Warping. In Proceedings of the 2007 International Conference on Multimedia and Ubiquitous Engineering (MUE’07), Seoul, Republic of Korea, 26–28 April 2007; pp. 733–738. [Google Scholar]
- Fan, J.F.; Liu, Q.Y.; Ren, Z.P.; Chen, Z.; Li, W.Q.; Yu, Y.; Zhou, Y.K. Nighttime luminosity transitions are tightly spatiotemporally correlated with land use changes: A pixelwise case study in Beijing, China. Ecol. Indic. 2022, 145, 16. [Google Scholar] [CrossRef]
- Rao, Y.; Zhang, J.; Wang, K.; Jepsen, M.R. Understanding land use volatility and agglomeration in northern Southeast Asia. J. Environ. Manag. 2021, 278, 111536. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Y.; Chen, X.; Yao, Q.; Ding, J.; Lai, Y.; Rao, Y. Examining the Impact of China’s Poverty Alleviation on Nighttime Lighting in 831 State-Level Impoverished Counties. Land 2023, 12, 1128. https://doi.org/10.3390/land12061128
Shen Y, Chen X, Yao Q, Ding J, Lai Y, Rao Y. Examining the Impact of China’s Poverty Alleviation on Nighttime Lighting in 831 State-Level Impoverished Counties. Land. 2023; 12(6):1128. https://doi.org/10.3390/land12061128
Chicago/Turabian StyleShen, Yiguo, Xiaojie Chen, Qingxin Yao, Jiahui Ding, Yuhan Lai, and Yongheng Rao. 2023. "Examining the Impact of China’s Poverty Alleviation on Nighttime Lighting in 831 State-Level Impoverished Counties" Land 12, no. 6: 1128. https://doi.org/10.3390/land12061128
APA StyleShen, Y., Chen, X., Yao, Q., Ding, J., Lai, Y., & Rao, Y. (2023). Examining the Impact of China’s Poverty Alleviation on Nighttime Lighting in 831 State-Level Impoverished Counties. Land, 12(6), 1128. https://doi.org/10.3390/land12061128