Morphodynamic Types of the Laptev Sea Coast: A Review
Abstract
:1. Introduction
2. Materials and Methods
3. An Overview of the Study Area
3.1. Geological Structure and Permafrost Characteristics
3.2. Hydrological and Sea Ice Conditions
3.3. Relief-Forming Processes
4. Laptev Sea Coasts Classification
4.1. Morphodynamic Types of the Laptev Sea Coasts
4.2. Abrasional Coast Types
4.2.1. Thermal-Denudational Cliffs formed by Ice Walls of Outlet Glaciers
4.2.2. Abrasional and Abrasional-Denudational Cliffs in Bedrocks
4.2.3. Thermal-Abrasional Coasts
4.2.4. Thermal-Denudational Coasts
4.3. Accumulative Coast Types
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The Ocean and Cryosphere in a Changing Climate: Special Report of the Intergovernmental Panel on Climate Change. In Intergovernmental Panel on Climate Change (IPCC); Cambridge University Press: Cambridge, UK, 2022. [CrossRef]
- Grigoriev, M.N.; Razumov, S.O.; Kunitzkiy, V.V.; Spektor, V.B. Dynamics of the Russian East Arctic Sea coasts: Major factors, regularities and tendencies. Kriosf. Zemli (Earth’s Cryosphere) 2006, 4, 74–94. (In Russian) [Google Scholar]
- Costard, F.; Gautier, E.; Fedorov, A.; Konstantinov, P.; Dupeyrat, L. An Assessment of the Erosion Potential of the Fluvial Thermal Process during Ice Breakups of the Lena River (Siberia). Permafr. Periglac. Process. 2014, 3, 162–171. [Google Scholar] [CrossRef]
- Liljedahl, A.; Boike, J.; Daanen, R.; Fedorov, A.N.; Frost, G.V.; Grosse, G.; Hinzman, L.D.; Iijima, Y.; Jorgenson, J.C.; Matveyeva, N.; et al. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat. Geosci. 2016, 9, 312–318. [Google Scholar] [CrossRef]
- Gavrilov, A.V.; Pizhankova, E.I. Dynamics of permafrost in the coastal zone of Eastern-Asian sector of the Arctic. Geogr. Environ. Sustain. 2018, 11, 20–37. [Google Scholar] [CrossRef]
- Morgenstern, A.; Overduin, P.P.; Günther, F.; Stettner, S.; Ramage, J.; Schirrmeister, L.; Grigoriev, M.N.; Grosse, G. Thermo-erosional valleys in Siberian ice-rich permafrost. Permafr. Periglac Process 2020, 32, 59–75. [Google Scholar] [CrossRef]
- Nitze, I.; Cooley, S.W.; Duguay, C.R.; Jones, B.M.; Grosse, G. The catastrophic thermokarst lake drainage events of 2018 in northwestern Alaska: Fast-forward into the future. Cryosphere 2020, 12, 4279–4297. [Google Scholar] [CrossRef]
- Kizyakov, A.I.; Wetterich, S.; Günther, F.; Opel, T.; Jongejans, L.L.; Courtin, J.; Meyer, H.; Shepelev, A.G.; Syromyatnikov, I.I.; Fedorov, A.N.; et al. Landforms and degradation pattern of the Batagay thaw slump, Northeastern Siberia. Geomorphology 2023, 420, 108501. [Google Scholar] [CrossRef]
- Are, F.E. Termoabraziya Morskikh Beregov (Thermal Abrasion of Sea Coasts); Nauka: Moscow, Russia, 1980; p. 158. (In Russian) [Google Scholar]
- Günther, F.; Overduin, P.P.; Yakshina, I.A.; Opel, T.; Baranskaya, A.V.; Grigoriev, M.N. Observing Muostakh disappear: Permafrost thaw subsidence and erosion of a ground-ice-rich island in response to arctic summer warming and sea ice reduction. Cryosphere 2015, 9, 151–178. [Google Scholar] [CrossRef]
- Overduin, P.P.; Wetterich, S.; Günther, F.; Grigoriev, M.N.; Grosse, G.; Schirrmeister, L.; Hubberten, H.-W.; Makarov, A. Coastal dynamics and submarine permafrost in shallow water of the central Laptev Sea, East Siberia. Cryosphere 2016, 10, 1449–1462. [Google Scholar] [CrossRef]
- Irrgang, A.M.; Bendixen, M.; Farquharson, L.M.; Baranskaya, A.V.; Erikson, L.H.; Gibbs, A.E.; Ogorodov, S.A.; Overduin, P.P.; Lantuit, H.; Grigoriev, M.N.; et al. Drivers, dynamics and impacts of changing Arctic coasts. Nat. Rev. Earth Environ. 2022, 3, 39–54. [Google Scholar] [CrossRef]
- Permafrost-Landscape Map of the Republic Sakha (Yakutia); Scale 1:1,500,000; Zheleznyak, M.N. (Ed.) IMZ SB RAS: Yakutsk, Russia, 2018. [Google Scholar]
- Schirrmeister, L.; Froese, D.; Tumskoy, V.; Grosse, G.; Wetterich, S. Yedoma: Late Pleistocene ice-rich syngenetic permafrost of Beringia. In The Encyclopedia of Quaternary Science; Elias, S.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 542–552. [Google Scholar] [CrossRef]
- Strauss, J.; Laboor, S.; Schirrmeister, L.; Fedorov, A.N.; Fortier, D.; Froese, D.G.; Fuchs, M.; Günther, F.; Grigoriev, M.N.; Harden, J.W.; et al. Circum-arctic map of the Yedoma permafrost domain. Front. Earth Sci. 2021, 9, 758360. [Google Scholar] [CrossRef]
- Strauss, J.; Laboor, S.; Schirrmeister, L.; Fedorov, A.N.; Fortier, D.; Froese, D.G.; Fuchs, M.; Günther, F.; Grigoriev, M.N.; Harden, J.W.; et al. Database of Ice-Rich Yedoma Permafrost Version 2 (IRYP v2); PANGAEA: Germany, Potsdam, 2022. [Google Scholar] [CrossRef]
- Shiklomanov, N.I.; Streletskiy, D.A.; Little, J.D.; Nelson, F.E. Isotropic thaw subsidence in undisturbed permafrost landscapes. Geophys. Res. Lett. 2013, 40, 6356–6361. [Google Scholar] [CrossRef]
- Günther, F.; Overduin, P.P.; Sandakov, A.V.; Grosse, G.; Grigoriev, M.N. Short- and long-term thermo-erosion of ice-rich permafrost coasts in the Laptev Sea region. Biogeosciences 2013, 10, 4297–4318. [Google Scholar] [CrossRef]
- Vonk, J.E.; Sánchez-García, L.; van Dongen, B.E.; Alling, V.; Kosmach, D.; Charkin, A.; Semiletov, I.P.; Dudarev, O.V.; Shakhova, N.; Roos, P.; et al. Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia. Nature 2012, 489, 137–140. [Google Scholar] [CrossRef] [PubMed]
- Fritz, M.; Vonk, J.; Lantuit, H. Collapsing Arctic coastlines. Nat. Clim. Change 2017, 7, 6–7. [Google Scholar] [CrossRef]
- Ramage, J.L.; Irrgang, A.M.; Morgenstern, A.; Lantuit, H. Increasing coastal slump activity impacts the release of sediment and organic carbon into the Arctic Ocean. Biogeosciences 2018, 15, 1483–1495. [Google Scholar] [CrossRef]
- Fuchs, M.; Grosse, G.; Strauss, J.; Günther, F.; Grigoriev, M.; Maximov, G.M.; Hugelius, G. Carbon and nitrogen pools in thermokarst-affected permafrost landscapes in Arctic Siberia. Biogeosciences 2018, 15, 953–971. [Google Scholar] [CrossRef]
- Haugk, C.; Jongejans, L.L.; Mangelsdorf, K.; Fuchs, M.; Ogneva, O.; Palmtag, J.; Mollenhauer, G.; Mann, P.J.; Overduin, P.P.; Grosse, G.; et al. Organic matter characteristics of a rapidly eroding permafrost cliff in NE Siberia (Lena Delta, Laptev Sea region). Biogeosciences 2022, 19, 2079–2094. [Google Scholar] [CrossRef]
- Schuur, E.A.G.; Vogel, J.G.; Crummer, K.G.; Lee, H.; Sickman, J.O.; Osterkamp, T.E. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 2009, 459, 556–559. [Google Scholar] [CrossRef]
- Fuchs, M.; Nitze, I.; Strauss, J.; Günther, F.; Wetterich, S.; Kizyakov, A.; Fritz, M.; Opel, T.; Grigoriev, M.N.; Maksimov, G.T.; et al. Rapid Fluvio-Thermal Erosion of a Yedoma Permafrost Cliff in the Lena River Delta. Front. Earth Sci. 2020, 8, 336. [Google Scholar] [CrossRef]
- Lantuit, H.; Overduin, P.P.; Couture, N.; Wetterich, S.; Are, F.; Atkinson, D.; Brown, J.; Cherkashov, G.; Drozdov, D.; Forbes, D.; et al. The Arctic Coastal Dynamics Database: A New Classification Scheme and Statistics on Arctic Permafrost Coastlines. Estuaries Coasts 2012, 35, 383–400. [Google Scholar] [CrossRef]
- Sovershaev, V.A. Beregoformiruyushchiye Faktory i Rayonirovaniye Beregov Morey Laptevykh, Vostochno-Sibirskogo i Chukotskogo po Dinamicheskomu Printsipu (Coast-Forming Factors and Zoning of the Shores of the Laptev, East Siberian and Chukchi Seas according to the Dynamic Principle). Ph.D. Thesis, Moscow State University, Moscow, Russia, 1980; 26p. (In Russian). [Google Scholar]
- Sovershaev, V.A. Beregovaya zona arkticheskikh morey (Coastal zone of the Arctic seas). In Geoecology of the North; Solomatin, V.I., Ed.; Moscow State University: Moscow, Russia, 1992; pp. 55–60. (In Russian) [Google Scholar]
- Are, F.; Reimnitz, E.; Grigoriev, M.; Hubberten, H.-W.; Rachold, V. The influence of cryogenic processes on the erosional Arctic shoreface. J. Coast. Res. 2008, 241, 110–121. [Google Scholar] [CrossRef]
- Fetterer, F.; Knowles, K.; Meier, W.N.; Savoie, M.; Windnagel, A.K. Sea Ice Index, Version 3; Distributed by National Snow and Ice Data Center: Boulder, CO, USA, 2017. [Google Scholar] [CrossRef]
- Are, F.E. Razrusheniye Beregov Arkticheskikh Primorskikh Nizmennostey (Coastal Destruction of the Arctic Coastal Lowlands); Geo: Novosibirsk, Russia, 2012; 291p. (In Russian) [Google Scholar]
- Li, J.; Ma, Y.; Liu, Q.; Zhang, W.; Guan, C. Growth of wave height with retreating ice cover in the Arctic. Cold Reg. Sci. Technol. 2019, 164, 102790. [Google Scholar] [CrossRef]
- Lantuit, H.; Atkinson, D.; Overduin, P.P.; Grigoriev, M.; Rachold, V.; Grosse, G.; Hubberten, H.-W. Coastal erosion dynamics on the permafrost-dominated Bykovsky Peninsula, north Siberia, 1951–2006. Polar Res. 2011, 30, 7341. [Google Scholar] [CrossRef]
- Khmyznikov, P.K. O razmyve beregov v more Laptevykh (On coast erosion in the Laptev Sea). In Northern Sea Route; GUSMP Publishing House: Leningrad, Russia, 1937; pp. 122–133. (In Russian) [Google Scholar]
- Stepanov, V.I. O sud’be Zemli Sannikova, Zemli Bunge i Novosibirskogo arkhipelaga (On the Fate of Sannikov Land, Bunge Land and the Novosibirsk Archipelago). In Problems of the Arctic; Sea transport: Leningrad, Russia, 1948; pp. 19–34. (In Russian) [Google Scholar]
- Gakkel, Y.Y. Razrusheniye ostrova Semenovskogo (Destruction of Semenovsky Island). In Problems of the Arctic; Sea transport: Leningrad, Russia, 1958; pp. 95–97. (In Russian) [Google Scholar]
- Zhigarev, L.A.; Sovershaev, V.A. Termoabrazionnoye razrusheniye arkticheskikh ostrovov (Thermal abrasion destruction of the Arctic islands). In Coastal Processes in the Permafrost; Nauka: Novosibirsk, Russia, 1984; pp. 31–38. (In Russian) [Google Scholar]
- Günther, F.; Grigoriev, M.N.; Overduin, P.P.; Lantuit, H.; Hubberten, H.-W. Arctic coastal dynamics. In 20 Years of Terrestrial Research in the Siberian Arctic, The History of the Lena Expeditions; Hubberten, H.-W., Bolshiyanov, D.Y., Grigoriev, M.N., Grosse, G., Morgenstern, A., Pfeiffer, E.-M., Rachold, V., Schirrmeister, L., Eds.; Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research: Bremerhaven, Germany, 2018; pp. 96–99. ISBN 978-3-88808-714-1. [Google Scholar]
- Copernicus Open Access Hub. Available online: https://scihub.copernicus.eu (accessed on 11 June 2020).
- World Imagery. Available online: https://www.arcgis.com/home/item.html?id=10df2279f9684e4a9f6a7f08febac2a9 (accessed on 18 March 2021).
- Ermolov, A.A.; Kizyakov, A.I.; Ilyushin, G.D.; Eliseeva, Y.A.; Mikhaylyukova, P.G.; Glebova, M.A. Ecological sensitivity of Laptev Sea coasts. In Ecological Atlas Laptev Sea; Isachenko, A.I., Ed.; Arctic Research Center: Moscow, Russia, 2017; pp. 201–281. (In Russian) [Google Scholar]
- Ermolov, A.A.; Ilyushin, G.D.; Kizyakov, A.I. Ecological and geomorphological coast sensitivity assessment of the Laptev sea to the oil spills. Eng. Surv. 2017, 9, 26–40. [Google Scholar] [CrossRef]
- Leontiev, O.K.; Nikiforov, L.G.; Safyanov, G.A. Geomorfologiya Morskikh Beregov (Geomorphology of Sea Coasts); Moscow State University: Moscow, Russia, 1975; 336p. (In Russian) [Google Scholar]
- Kaplin, P.A.; Leontiev, O.K.; Lukyanova, S.A.; Nikiforov, L.G. Berega (Shores); Mysl’: Moscow, Russia, 1991; 479p. [Google Scholar]
- Soloviev, P.A. Kriolitozona Severnoy Chasti Leno-Amginskogo Mezhdurech’ya (The Permafrost of the Northern Part of the Lena-Amga Interfluve); Academy of Science Press: Moscow, Russia, 1959; 142p. (In Russian) [Google Scholar]
- Konishchev, V.N. Formirovaniye Sostava Dispersnykh Porod v Kriolitosfere (Formation of the Composition of Dispersed Deposits in the Cryolithosphere); Nauka: Novosibirsk, Russia, 1981; 197p. (In Russian) [Google Scholar]
- Kaplina, T.N. Alas complexes of Northern Yakutia. Kriosf. Zemli (Earth’s Cryosphere) 2009, 4, 3–17. (In Russian) [Google Scholar]
- Romanovsky, N.N.; Tumskoy, V.E. Retrospective approach to the estimation of the contemporary extension and structure of the shelf cryolithozone in East Arctic. Kriosf. Zemli (Earth’s Cryosphere) 2011, 1, 3–14. (In Russian) [Google Scholar]
- Paull, C.K.; Dallimore, S.R.; Jin, Y.K.; Caress, D.W.; Lundsten, E.; Gwiazda, R.; Anderson, K.; Clarke, J.H.; Youngblut, S.; Melling, H. Rapid seafloor changes associated with the degradation of Arctic submarine permafrost. Proc. Natl. Acad. Sci. USA 2022, 119, e2119105119. [Google Scholar] [CrossRef]
- Rekant, P.V.; Tumskoy, V.E.; Gusev, E.A.; Shvenk, T.; Spiess, F.; Cherkashev, G.A.; Kassens, H. Distribution and occurrence characteristics of the subaqueous cryolithozone in the area of the Semenovskaya and Vasilievskaya banks (the Laptev Sea) according to seismoacoustic profiling data. In The System of the Laptev Sea and Adjacent Seas of the Arctic: Current State and History of Development; Kassine, H., Lisitsyn, A.P., Polyakova, E.I., Timokhov, L.A., Frolov, I.E., Eds.; Publishing house MSU: Moscow, Russia, 2009; pp. 332–348. (In Russian) [Google Scholar]
- Gavrilov, A.V.; Tumskoy, V.E. Modern cryolithogenesis processes on the eastern coast of the Laptev Sea. Kriosf. Zemli (Earth’s Cryosphere) 2002, 1, 35–48. (In Russian) [Google Scholar]
- Kachurin, S.P. Termokarst na Territorii SSSR (Thermokarst in the USSR); Academy of Science Press: Moscow, Russia, 1961; 291p. (In Russian) [Google Scholar]
- Soloviev, P.A. Alasnyy rel’yef Tsentral’noy Yakutii i yego proiskhozhdeniye (Alas relief of Central Yakutia and its origin). In Mnogoletnemerzlyye Porody i Soputstvuyushchiye im Yavleniya na Territorii Yakutskoy ASSR (Permafrost and Related Phenomena on the Territory of the Yakut ASSR); Grave, N.A., Ed.; Academy of Science Press: Moscow, Russia, 1962; pp. 38–53. [Google Scholar]
- Katasonov, E.M. Alasnyye otlozheniya i taberal’nyye obrazovaniya Yakutii (Alas deposits and taberal formations of Yakutia). In Geologiya Kaynozoya Yakutii (Cenozoic Geology of Yakutia); Fradkina, A.F., Ed.; Yakutian division of Siberian branch of USSR Academy of Sciences: Yakutsk, Russia, 1982; pp. 110–122. (In Russian) [Google Scholar]
- Are, F.E.; Grigoriev, M.N.; Rachold, V.; Hubberten, H.-W. Using thermoterrace dimensions to calculate the coastal erosion rate. Kriosf. Zemli (Earth’s Cryosphere) 2004, 3, 52–56. (In Russian) [Google Scholar] [CrossRef]
- Are, F.E.; Molochushkin, E.N. Skorost’ razrusheniya arkticheskikh obryvov Yakutii pod deystviyem termodenudatsii (The rate of destruction of the Arctic cliffs of Yakutia under the influence of thermal denudation). In Protsessy Teplomassoobmena v Merzlykh Gornykh Porodakh (Processes of Heat and Mass Transfer in Frozen Sediments); Scholokov, V.K., Ed.; Nauka: Moscow, Russia, 1965; pp. 130–138. (In Russian) [Google Scholar]
- Grigoriev, M.N. Cryomorphogenesis and Lithodynamics of the Coastal-Shelf Zone of the Seas of Eastern Siberia. Ph.D. Thesis, Melnikov Permafrost Institute of the SB RAS, Yakutsk, Russia, 2008. [Google Scholar]
- Petersen, J.; Nelson, D.; Macella, T.; Michel, J.; Atkinson, M.; White, M.; Boring, C.; Szathmary, L.; Horsman, J.; Weaver, J. NOAA Technical Memorandum NOS OR&R 52. Environmental Sensitivity Index Guidelines. Version 4.0. 2019. Available online: https://response.restoration.noaa.gov/sites/default/files/ESI_Guidelines.pdf (accessed on 14 May 2023).
Coast Type (by Prevalent Processes) | Index on Map (Figure 2) | Proportion in Length, % |
---|---|---|
1. Abrasional coast types | ||
1.1. Thermal-denudation cliffs formed by ice walls of outlet glaciers | 1 | 1 |
1.2. Coastal cliffs in bedrock (lithified sediments): | ||
1.2.1. Abrasional cliffs | 2 | 11 |
1.2.2. Abrasional-denudational cliffs | 3 | 8 |
1.3. Coastal cliffs in unlithified sediments: | ||
1.3.1. Thermal-abrasional cliffs | 4 | 5 |
1.3.2. Thermal-denudational cliffs | 5 | 15 |
1.3.3. Abrasional coasts with stabilized cliffs, bordered by beaches or accumulative terraces | 6 | 3 |
2. Accumulative coasts types | ||
2.1. Accumulative coasts with accumulative landforms | 7 | 5 |
2.2. Accumulative coasts with shallow coastal zone and windwatts | 8 | 6 |
2.3. Accumulative sheltered coasts in bays and gulfs | 9 | 11 |
2.4. Deltas | 10 | 34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kizyakov, A.I.; Ermolov, A.A.; Baranskaya, A.V.; Grigoriev, M.N. Morphodynamic Types of the Laptev Sea Coast: A Review. Land 2023, 12, 1141. https://doi.org/10.3390/land12061141
Kizyakov AI, Ermolov AA, Baranskaya AV, Grigoriev MN. Morphodynamic Types of the Laptev Sea Coast: A Review. Land. 2023; 12(6):1141. https://doi.org/10.3390/land12061141
Chicago/Turabian StyleKizyakov, Alexander I., Alexander A. Ermolov, Alisa V. Baranskaya, and Mikhail N. Grigoriev. 2023. "Morphodynamic Types of the Laptev Sea Coast: A Review" Land 12, no. 6: 1141. https://doi.org/10.3390/land12061141
APA StyleKizyakov, A. I., Ermolov, A. A., Baranskaya, A. V., & Grigoriev, M. N. (2023). Morphodynamic Types of the Laptev Sea Coast: A Review. Land, 12(6), 1141. https://doi.org/10.3390/land12061141