Prioritizing Tree-Based Systems for Optimizing Carbon Sink in the Indian Sub-Himalayan Region
Abstract
:1. Introduction
2. Methodology
2.1. Study Site
2.2. Sampling and Sample Collection
2.3. Diameter and Height
2.4. Soil Physical and Chemical Parameters
pH | Beckman’s pH meter [40] |
Moisture | Volumetric method [41] |
Bulk density | Core sampler method [41] |
Electrical conductivity | Soil water suspension [40] |
Oxidizable organic carbon (%) | Walkley and Black’s rapid titration method [40] |
Available N Kg ha−1 | Modified Kjeldahl method [40] |
Available P2O5 Kg ha−1 | Bray’s method [40,42] |
Available K2O Kg ha−1 | Flame Photometer method [40] |
2.5. Soil Organic Carbon Stock
2.6. Biomass and Biomass Carbon
2.7. Statistical Analysis
3. Results and Discussions
3.1. Soil Organic Carbon (SOC) Storage in Relation to Different Land Uses
3.2. Soil Electrical Conductivity, Moisture and pH
3.3. Soil-Available Primary Nutrients
3.3.1. Nitrogen
3.3.2. Phosphorus
3.3.3. Potassium
3.4. Biomass Accumulation and Partitioning
3.5. Biomass Carbon and Partitioning
3.6. Ecosystem Carbon in Tree-Based Land Use Systems
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foley, J.A.; Defries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Marland, G.; Boden, T.A.; Andres, R.J. Global, regional, and national CO2 emissions. In Trends: A Compendium of Data on Global Change; Carbon Dioxide Information Analysis Centre, Oak Ridge National Laboratory, U.S. Department of Energy Oak Ridge: Oak Ridge, TN, USA, 2007. [Google Scholar]
- Ciais, P.; Sabine, C.; Bala, G.; Bopp, L.; Brovkin, V.; Canadell, J.; Chhabra, A.; DeFries, R.; Galloway, J.; Heimann, M.; et al. Carbon and other biogeochemical cycles. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Achard, F.; Beuchle, R.; Mayaux, P.; Stibig, H.-J.; Bodart, C.; Brink, A.; Carbonic, S.; Desclée, B.; Donnay, F.; Eva, H.D.; et al. Determination of tropical deforestation rates and related carbon losses from 1990 to 2010. Glob. Chang. Biol. 2014, 20, 2540–2554. [Google Scholar] [CrossRef]
- Le Quéré, C.; Moriarty, R.; Andrew, R.M.; Peters, G.P.; Ciais, P.; Friedlingstein, P.; Jones, S.D.; Sitch, S.; Tans, P.; Arneth, A.; et al. Global carbon budget. Earth Syst. Sci. Data 2015, 7, 47–85. [Google Scholar] [CrossRef]
- Le Quéré, C.; Peters, G.P.; Andres, R.J.; Andrew, R.M.; Boden, T.A.; Ciais, P.; Friedlingstein, P.; Houghton, R.A.; Marland, G.; Moriarty, R.; et al. Global carbon budget. Earth Syst. Sci. Data 2013, 6, 235–263. [Google Scholar] [CrossRef]
- Houghton, R.A. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus Ser. B Chem. Phys. Meteorol. 2003, 55, 378–390. [Google Scholar]
- Houghton, R.A.; Goodale, C.L. Effects of land-use change on the carbon balance of terrestrial ecosystems. In Ecosystems and Land Use Change; DeFries, R.S., Asner, G.P., Houghton, R.A., Eds.; American Geophysical Union: Washington, DC, USA, 2004; pp. 85–98. [Google Scholar]
- IPCC. Land Use, Land Use Change and Forestry: A Special Report of the Intergovernmental Panel on Climate Change (IPCC); Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Zhang, W.J.; Liu, C.H. Some thoughts on global climate change: Will it get warmer and warmer? Environ. Skept. Crit. 2012, 1, 1–7. [Google Scholar]
- Chakravarty, S.; Puri, A.; Vineeta; Dey, T.; Rai, P.; Pala, N.A.; Shukla, G. Climate Change Impacts vis-à-vis Biodiversity. In Forests, Climate Change and Biodiversity; Sood, K.K., Mahajan, V., Eds.; Kalyani Publishers: New Delhi, India, 2018; pp. 223–241. [Google Scholar]
- Heimann, M.; Reichstein, M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 2008, 451, 289–292. [Google Scholar] [CrossRef]
- McAlpine, C.A.; Ryan, J.G.; Seabrook, L.; Thomas, S.; Dargusch, P.J.; Syktus, J.I.; Pielke, R.A.; Etter, A.E.; Fearnside, P.M.; Laurance, W.F. More than CO2: A broader paradigm for managing climate change and variability to avoid ecosystem collapse. Curr. Opin. Environ. Sustain. 2010, 2, 334–346. [Google Scholar] [CrossRef]
- Nath, A.J.; Sileshi, G.W.; Laskar, S.Y.; Pathak, K.; Reang, D.; Nath, A.; Das, A.K. Quantifying carbon stocks and sequestration potential in agroforestry systems under divergent management scenarios relevant to India’s Nationally Determined Contribution. J. Clean. Prod. 2021, 281, 124831. [Google Scholar] [CrossRef]
- Reang, D.; Nath, A.J.; Sileshi, G.W.; Hazarika, A.; Das, A.K. Post-fire restoration of land under shifting cultivation: A case study of pineapple agroforestry in the Sub-Himalayan region. J. Environ. Manag. 2022, 305, 114372. [Google Scholar] [CrossRef]
- Lawler, J.J.; Lewis, D.; Nelson, E.; Plantinga, A.J.; Polasky, S.; Withey, C.J.; Helmers, A.P.; Martinuzzi, S.; Pennington, D.; Radeloff, V.C. Projected land-use change impacts on ecosystem services in the United States. Proc. Natl. Acad. Sci. USA 2014, 111, 7492–7497. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, X.; Chuai, X.; Yang, H.; Lai, L.; Tan, J. Impacts of land use type conversion on carbon storage in terrestrial ecosystems of China: A spatial-temporal perspective. Sci. Rep. 2015, 5, 10233. [Google Scholar] [CrossRef] [PubMed]
- Lai, L.; Huang, X.; Yang, H.; Chuai, X.; Zhang, M.; Zhong, T.; Chen, Z.; Chen, Y.; Wang, X.; Thompson, J.R. Carbon emissions from land-use change and management in China between 1990-2010. Environ. Sci. 2016, 2, e1601063. [Google Scholar] [CrossRef] [PubMed]
- Poorter, L.; Van der Sande, M.T.; Thompson, J.; Arets, E.J.M.M.; Alarcon, A.; Alvarez- Sanchez, J.; Ascarrunz, N.; Balvanera, P.; Barajas-Guzman, G.; Boit, A.; et al. Diversity enhances carbon storage in tropical forests. Glob. Ecol. Biogeogr. 2015, 24, 1314–1328. [Google Scholar] [CrossRef]
- Rai, P.; Vineeta; Shukla, G.; K Manohar, A.; Bhat, J.A.; Kumar, A.; Kumar, M.; Cabral-Pinto, M.; Chakravarty, S. Carbon storage of single tree and mixed tree dominant species stands in a Reserve Forest- case study of the eastern sub-Himalayan region of India. Land 2021, 10, 435. [Google Scholar] [CrossRef]
- Tamang, M.; Chettri, R.; Vineeta; Shukla, G.; Bhat, J.A.; Kumar, A.; Kumar, M.; Suryawanshi, A.; Cabral-Pinto, M.; Chakravarty, S. Stand Structure, Biomass and Carbon Storage in Gmelina arborea Plantation at Agricultural Landscape in Foothills of Eastern Himalayas. Land 2021, 10, 387. [Google Scholar] [CrossRef]
- Kanime, N.; Kaushal, R.; Tewari, S.K.; Rivera, K.P.; Chaturvedi, S.; Chaturvedi, O.P. Biomass production and carbon sequestration in different tree-based systems of central Himalayan Terai region. For. Trees Livelihoods 2013, 22, 38–50. [Google Scholar] [CrossRef]
- Brahma, B.; Pathak, K.; Lal, R.; Kurmi, B.; Das, M.; Nath, A.J.; Das, A.K. (2018) Ecosystem carbon sequestration through restoration of degraded lands in Northeast India. Land Degrad. Dev. 2018, 29, 15–25. [Google Scholar] [CrossRef]
- Wani, A.A.; Joshi, P.K.; Singh, O.; Pandey, R. Carbon sequestration potential of Indian forestry land use systems-a review. Nat. Sci. 2012, 10, 78–85. [Google Scholar]
- Palm, C.; Tomich, T.; Van Noordwijk, M.; Vosti, S.; Alegre, J.; Gockowski, J.; Verchot, L. Mitigating GHG emissions in the humid tropics: Case studies from the Alternatives to Slash-and-Burn Program (ASB). Environ. Dev. Sustain. 2004, 6, 145–162. [Google Scholar]
- Nath, A.J.; Lal, R.; Sileshi, G.W.; Das, A.K. Managing India’s small landholder farms for food security and achieving the “4 per Thousand” target. Sci. Total Environ. 2018, 634, 1024–1033. [Google Scholar] [CrossRef]
- Wood, S.; Sebastian, K.; Scherr, S.J. Pilot Analysis of Global Ecosystems: Agroecosystems; International Food Policy Research Institute and World Resources Institute: Wasington, DC, USA, 2000. [Google Scholar]
- Chauhan, S.K.; Gupta, N.; Ritu, Y.S.; Chauhan, R. Biomass and carbon allocation in different parts of agroforestry tree species. Indian For. 2009, 135, 981–993. [Google Scholar]
- Keeton, W.S.; Kraft, C.E.; Warren, D.R. Mature and old- growth riparian forests: Structure, dynamics and effects on Adirondack stream habitats. Ecol. Appl. 2007, 17, 852–868. [Google Scholar] [CrossRef] [PubMed]
- Woodall, C.W.; Heath, L.S.; Smith, J.E. National inventories of dead and downed forest carbon stocks in the United States: Opportunities and challenges. For. Ecol. Manag. 2008, 256, 221–228. [Google Scholar] [CrossRef]
- Melkania, N.P. Carbon sequestration in Indian natural and planted forests. Indian For. 2009, 135, 380–387. [Google Scholar]
- Houghton, R.A. Aboveground Forest biomass and the global carbon balance. Glob. Chang. Biol. 2005, 11, 945–958. [Google Scholar] [CrossRef]
- Kurz, W.A.; Shaw, C.H.; Boisvenue, C.; Stinson, G.; Metsaranta, J.; Leckie, D.; Dyk, A.; Smyth, C.; Neilson, E.T. Carbon in Canada’s boreal forest—A synthesis. Environ. Rev. 2013, 21, 260–292. [Google Scholar] [CrossRef]
- Ren, H.; Chen, H.; Li, L.; Li, P.; Hou, C. Spatial and temporal patterns of carbon storage from 1992 to 2002 in forest ecosystems in Guangdong, Southern China. Plant Soil 2013, 63, 123–138. [Google Scholar] [CrossRef]
- Millard, P.; Sommerkorn, M.; Grelet, G. Environmental change and carbon limitation in trees: A biochemical, ecophysiological and ecosystem appraisal. New Phytol. 2007, 175, 11–28. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.S.; Shukla, G.; Nath, A.J.; Chakravarty, S. Soil properties, litter dynamics and biomass carbon storage in three-bamboo species of sub-Himalayan region of eastern India. Water Air Soil Pollut. 2022, 233, 12. [Google Scholar] [CrossRef]
- Panwar, P.; Mahalingappa, D.G.; Kaushal, R.; Bhardwaj, D.R.; Chakravarty, S.; Shukla, G.; Thakur, N.S.; Chavan, S.B.; Pal, S.; Nayak, B.G.; et al. Biomass production and carbon sequestration potential of different agroforestry systems in India: A critical review. Forests 2022, 13, 1274. [Google Scholar] [CrossRef]
- Pradhan, R.; Sarkar, B.C.; K Manohar, A.; Shukla, G.; Tamang, M.; Vineeta; Bhat, J.A.; Kumar, M.; Chakravarty, S. Biomass carbon and soil nutrient status in urban green sites at foothills of eastern Himalayas: Implication for carbon management. Curr. Res. Environ. Sustain. 2022, 4, 100168. [Google Scholar] [CrossRef]
- Pande, P.K. Litter Production and Decomposition, Mineral Release and Biochemical Diversity of Four Forest Stands at FRI Decomposition Area. Ph.D. Thesis, Garhwal University, Srinagar, India, 1986. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall of India Pvt. Ltd.: New Delhi, India, 1967. [Google Scholar]
- Piper, C. Soil and Plant Analysis: A Laboratory Manual of Methods for the Examination of Soils and the Determination of the Inorganic Constituents of Plants; Hans Publications: Bombay, India, 1966. [Google Scholar]
- Bray, R.M.; Kurtz, L.T. Determination of total, organic and available forms of phosphorus in soils. Soil Sci. 1945, 59, 39–45. [Google Scholar] [CrossRef]
- FAO. Assessing Carbon Stocks and Modelling Win-Win Scenarios of Carbon Sequestration through Land Use Changes; FAO: Rome, Italy, 2004; 156p. [Google Scholar]
- Kumar, B.M. Species richness and above ground carbon stocks in the homegardens of central Kerala, India. Agric. Ecosyst. Environ. 2011, 140, 430–440. [Google Scholar] [CrossRef]
- Brown, S. Estimating Biomass and Biomass Change of Tropical Forests: A Primer; A Forest Resources Assessment Publication, FAO Forestry; FAO: Rome, Italy, 1997; p. 134. [Google Scholar]
- Kalita, R.M.; Das, A.K.; Nath, A.J. Allometric equations for estimating above and below ground biomass in tea [Camellia sinensis (L.) O. Kuntze] agroforestry system of Barak Valley, Assam, Northeast India. Biomass Bioenergy 2015, 83, 42–49. [Google Scholar] [CrossRef]
- Kalita, R.M.; Das, A.K.; Nath, A.J. Role of smallholder tea growers in carbon sink management. Curr. Sci. 2019, 116, 1560–1566. [Google Scholar] [CrossRef]
- Thokchom, A.; Yadava, P.S. Biomass, carbon stock and sequestration potential of Schizostachyum pergracile bamboo forest of Manipur, north east India. Trop. Ecol. 2017, 58, 23–32. [Google Scholar]
- Shukla, G.; Pala, N.A.; Chakravarty, S. Carbon, litter and nutrient status in teak stands of a foothill forest in Indian eastern Himalayas. J. Tree Sci. 2014, 33, 24–32. [Google Scholar]
- Shukla, G.; Pala, N.A.; Chakravarty, S. Quantification of organic carbon and primary nutrients in litter and soil in a foot hill forest plantation of eastern Himalayas. J. For. Res. 2017, 28, 1195–1202. [Google Scholar] [CrossRef]
- Shukla, G.; Pala, N.A.; Moonis, M.; Chakravarty, S. Carbon accumulation and partitioning in sub-humid forest stands of West Bengal India. Indian For. 2018, 144, 229–233. [Google Scholar]
- Shukla, G.; Chakravarty, S. Biomass, primary nutrient and carbon stock in a sub-Himalayan Forest of West Bengal, India. J. For. Environ. Sci. 2018, 34, 12–23. [Google Scholar]
- Koul, D.N.; Panwar, P. Prioritizing land-management options for carbon sequestration potential. Curr. Sci. 2008, 95, 658–663. [Google Scholar]
- Koul, D.N.; Panwar, P. Opting different land use for carbon build-up in soils and their bio-economics in humid subtropics of West Bengal, India. Ann. For. Res. 2012, 55, 253–264. [Google Scholar]
- Koul, D.N.; Shukla, G.; Panwar, P.; Chakravarty, S. Status of soil carbon sequestration under different land use system in Terai Zone of West Bengal. Environ. We Int. J. Sci. Technol. 2011, 6, 95–100. [Google Scholar]
- Bhardwaj, D.R.; Sanneh, A.A.; Rajput, B.S.; Kumar, S. Status of soil organic carbon stocks under different land use systems in wet temperate north western Himalaya. J. Tree Sci. 2013, 32, 14–22. [Google Scholar]
- Naitham, R.; Bhattacharyya, T. Quasi-equilibrium of organic carbon in shrink–swell soils of the subhumid tropics in India under forest, horticultural, and agricultural systems. Aust. J. Soil Res. 2004, 42, 181–188. [Google Scholar] [CrossRef]
- Singh, G.; Rathod, T.R.; Chouhan, S. Growth, biomass production and the associated changes in soil properties in Acacia tortilis plantation in relation to plantation density in Indian arid zone. Indian For. 2004, 130, 605–614. [Google Scholar]
- Chhabra, A.; Dadhwal, V.K. Forest soil organic carbon pool: An estimate and review of Indian studies. Indian For. 2005, 131, 201–214. [Google Scholar]
- Sreenivas, K.; Dadhwal, V.K.; Kumar, S.; Harsha, G.S.; Mitran, T.; Sujatha, G.; Suresh, G.J.R.; Fyzee, M.A.; Ravisankar, T. Digital mapping of soil organic and inorganic carbon status in India. Geoderma 2016, 269, 160–173. [Google Scholar] [CrossRef]
- Sariyildiz, T.; Savaci, G.; Kravkaz, I.S. Effects of tree species, stand age and land-use change on soil carbon and nitrogen stock rates in north-western Turkey. iForest 2015, 9, 165–170. [Google Scholar] [CrossRef]
- Kimble, J.M.; Rice, C.W.; Reed, D.; Mooney, S.; Follett, R.F.; Lal, R. Soil Carbon Management: Economic, Environmental and Societal Benefits; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Jacobson, M.Z. Review of solutions to global warming, air pollution, and energy security. Energy Environ. Sci. 2009, 2, 148–173. [Google Scholar] [CrossRef]
- Hombegowda, H.C.; van Straaten, O.; Köhler, M.; Hölscher, D. On the rebound: Soil organic carbon stocks can bounce back to near forest levels when agroforests replace agriculture in southern India. Soil 2016, 2, 13–23. [Google Scholar] [CrossRef]
- Woomer, P.L.; Martin, A.; Albrecht, A.; Reseck, D.V.S.; Scharpenseel, H.W. The importance and management of soil organic matter in the tropics. In The Biological Management of Tropical Soil Fertility; Woomer, P.L., Swift, M.J., Eds.; Wiley Chichester: Hoboken, NJ, USA, 1994. [Google Scholar]
- Gairola, S.; Sharma, C.M.; Ghildiyal, S.K.; Suyal, S. Chemical properties of soils in relation to forest composition in moist temperate valley slopes of Garhwal Himalaya, India. Environmentalist 2012, 32, 512–523. [Google Scholar] [CrossRef]
- Paudel, S.; Sah, J.P. Physiochemical characteristic of soil in Sal (Shorea robusta) forests in eastern Nepal. Himal. J. Sci. 2003, 1, 107–110. [Google Scholar]
- de Hann, S. Humus, its formation, its relation with the mineral part of the soil and its significance for soil productivity. In Organic Matter Studies; International Atomic Energy Agency: Vienna, Austria, 1977; Volume 1, pp. 21–30. [Google Scholar]
- Weil, R.R.; Brady, N.C. The Nature and Properties of Soil, 15th ed.; Pearson Education: London, UK, 2017. [Google Scholar]
- Stevenson, F.J. Humus Chemistry: Genesis, Composition, Reactions, 2nd ed.; Wiley Interscience: New York, NY, USA, 1994; 512p. [Google Scholar]
- Sidhu, G.S.; Bhattacharyya, T.; Sarkar, D.; Ray, S.K.; Chandran, P.; Pal, D.K.; Mandal, D.K.; Prasad, J.; Nair, K.M.; Sahoo, A.K.; et al. Impact of management levels and land-use changes on soil properties in rice-wheat cropping system of the Indo-Gangetic plains. Curr. Sci. 2014, 107, 1487–1501. [Google Scholar]
- Singh, A.K.; Parsad, A.; Singh, B. Availability of phosphorus and potassium and its relationship with physicochemical properties of some forest soils of Pali-range (Shahodol, M.P.). Indian For. 1986, 112, 1094–1104. [Google Scholar]
- Raij, B. Avaliacao Da Fertilidade Do Solo; Instituto da Potassa and Fosfato: Piracicaba, Brazil, 1981; 142p. [Google Scholar]
- Jerabkova, L.; Prescott, C.E.; Kishchuk, B.E. Nitrogen availability in soil and forest floor of contrasting types of boreal mixed wood forests. Can. J. For. Res. 2006, 36, 112–122. [Google Scholar] [CrossRef]
- Shukla, G.; Chakravarty, S. Soil Carbon sequestration vis-à-vis soil management. Environ. We Int. J. Sci. Technol. 2012, 7, 107–122. [Google Scholar]
- Scotti, R.; Bonanomi, G.; Scelza, R.; Zoina, A.; Rao, M.A. Organic amendments as sustainable tool to recovery fertility in intensive agricultural systems. J. Soil Sci. Plant Nutr. 2015, 15, 333–352. [Google Scholar] [CrossRef]
- Ruess, J.O.; Innis, G.S. A grassland nitrogen flow simulation mode. Ecology 1977, 58, 348–429. [Google Scholar]
- Binkly, D.; Vitousek, P.M. Soil Nutrient Availability. In Plant Physiological, Field Methods and Instrumentation; Pearey, R.W., Ehleringer, J., Mooney, N.A., Rundel, P.W., Eds.; Champan and Hall: London, UK, 1989; pp. 75–96. [Google Scholar]
- Gupta, J.P.; Sharma, M.P.; Gupta, G.D. Characterization of Kandi belt soils of Jammu region as affected by different land use patterns. J. Indian Soc. Soil Sci. 2001, 49, 770–773. [Google Scholar]
- Deng, X.W.; Liu, Y.; Han, S.J. Carbon and nitrogen dynamics in early stages of forest litter decomposition as affected by nitrogen addition. J. For. Res. 2009, 20, 111–116. [Google Scholar] [CrossRef]
- da Gama-Rodrigues, A.C.; de Barros, N.F.; Comerford, N.B. Biomass and nutrient cycling in pure and mixed stands of native tree species in South-eastern Bahia, Brazil. Rev. Bras. De Ciência Do Solo 2007, 31, 287–298. [Google Scholar] [CrossRef]
- Subba, M.; Pala, N.A.; Shukla, G.; Chakravarty, S. Study of the variability of homegardens influencing carbon stock under sub-humid tropical zone of West Bengal, India. Indian For. 2018, 144, 66–72. [Google Scholar]
- Subba, M.; Pala, N.A.; Shukla, G.; Pradhan, K.; Chakravarty, S. Refocusing the correlates of carbon sequestration through maintaining the carbon stock in homegardens of West Bengal, India. In Natural Resources Management for Sustainable Development and Rural Livelihoods; Sati, V.P., Lalmalsawmzauva, K.C., Eds.; Today & Tomorrow’s Printers and Publishers: New Delhi, India, 2017; Volume 3, pp. 1139–1151. [Google Scholar]
- Behera, M.K.; Mohapatra, N.P. Biomass accumulation and carbon stocks in 13 different clones of teak (Tectona grandis Linn. F.) in Odisha, India. Curr. World Environ. 2015, 10, 1011–1016. [Google Scholar] [CrossRef]
- Brahma, B.; Nath, A.J.; Das, A.K. Managing rubber plantations for advancing climate change mitigation strategy. Curr. Sci. 2016, 110, 2015–2019. [Google Scholar] [CrossRef]
- Selvaraj, A.; Jayachandran, S.; Thirunavukkarasu, D.P.; Jayaraman, A.; Karuppan, P. Carbon sequestration potential physicochemical and microbiological properties of selected trees Mangifera indica L., Manikara zapota L., Cocus nucifera L. and Tectona grandis L. Biosci. Discov. 2016, 7, 131–139. [Google Scholar]
- Chauhan, S.K.; Singh, S.; Sharma, S.; Sharma, R.; Saralch, H.S. Tree biomass and carbon sequestration in four short rotation tree plantations. Range Manag. Agrofor. 2019, 40, 77–82. [Google Scholar]
- Gupta, D.K.; Bhatt, R.K.; Keerthika, A.; Noor Mohamed, M.B.; Shukla, A.K.; Jangid, B.L. Carbon sequestration potential of Hardwickia binata Roxb. based agroforestry in hot semi-arid environment of India: An assessment of tree density impact. Curr. Sci. 2019, 116, 112–117. [Google Scholar] [CrossRef]
- Ngo, K.M.; Turner, B.L.; Muller-Landau, H.C.; Davies, S.J.; Larjavaara, M.; Hassan, N.; Fbin, N.; Lum, S. Carbon stocks in primary and secondary tropical forests in Singapore. For. Ecol. Manag. 2013, 296, 81–89. [Google Scholar] [CrossRef]
- Slik, J.W.F.; Gary, P.; Krista, M.; Shin-Ichiro, A. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Glob. Ecol. Biogeogr. 2013, 22, 1261–1271. [Google Scholar] [CrossRef]
- Pickup, M.; Westoby, M.; Basden, A. Dry mass costs of developing leaf area in relation to leaf size. Funct. Ecol. 2005, 19, 88–97. [Google Scholar] [CrossRef]
- Niinemets, U.; Portsumuth, A.; Tobias, M. Leaf shape and venation pattern alter the support investments within leaf lamia in temperate species: Neglected sources of leaf physiological differentiation. Funct. Ecol. 2007, 21, 28–40. [Google Scholar] [CrossRef]
- Silvertown, J.W.; Doust, J.L. Introduction to Plant Population Biology; Blackwell: London, UK, 1993. [Google Scholar]
- Bazzaz, F.A.; Grace, J. Plant Resources Allocation; Academic Press: London, UK, 1997. [Google Scholar]
- Devi, L.S.; Yadava, P.S. Above ground biomass and net primary production of semi-evergreen tropical forest of Manipur, north-eastern India. J. For. Res. 2009, 20, 151–155. [Google Scholar] [CrossRef]
- Chhabra, A.; Dadhwal, V.K. Assessment of major pools and fluxes of carbon in Indian forests. Clim. Chang. 2004, 64, 341–360. [Google Scholar] [CrossRef]
- Swamy, S.L.; Puri, S.; Singh, A.K. Growth, biomass, carbon storage and nutrient distribution in Gmelina arborea Roxb, stands on red lateritic soils in central India. Bioresour. Technol. 2003, 90, 109–126. [Google Scholar] [CrossRef]
- Catovsky, S.; Bradford, M.A.; Hector, A. Biodiversity and ecosystem productivity: Implications for carbon storage. Oikos 2002, 97, 443–448. [Google Scholar] [CrossRef]
- Kirby, K.R.; Potvin, C. Variation in carbon storage among tree species implications for the management of a small-scale carbon sink project. For. Ecol. Manag. 2007, 246, 208–221. [Google Scholar] [CrossRef]
- Whitmore, A.P.; Kirk, G.J.D.; Rawlins, B.G. Technologies for increasing carbon storage in soil to mitigate climate change. Soil Use Manag. 2015, 31, 62–71. [Google Scholar] [CrossRef]
- Lal, R. Beyond COP 21: Potential and challenges of the “4 per Thousand” initiative. J. Soil Water Conserv. 2016, 71, 20A–25A. [Google Scholar] [CrossRef]
- Minasny, B.; Malone, B.P.; McBratney, A.B.; Angers, D.A.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.-S.; Cheng, K.; Das, B.S.; et al. Soil carbon 4 per mile. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- Powlson, D.S.; Whitmore, A.P.; Goulding, K.W. Soil carbon sequestration to mitigate climate change: A critical re-examination to identify the true and the false. Eur. J. Soil Sci. 2011, 62, 42–55. [Google Scholar] [CrossRef]
- Badgery, W.B.; Simmons, A.T.; Murphy, B.W.; Rawson, A.; Andersson, K.O.; Lonergan, V.E. The influence of land use and management on soil carbon levels for crop-pasture systems in Central New South Wales, Australia. Agric. Ecosyst. Environ. 2014, 196, 147–157. [Google Scholar] [CrossRef]
- Paustian, K.; Andren, O.; Janzen, H.H.; Lal, R.; Smith, P.; Tian, G.; Tiessen, H.; Van Noordwijk, M.; Woomer, P.L. Agricultural soils as a sink to mitigate CO2 emissions. Soil Use Manag. 2007, 13, 230–244. [Google Scholar] [CrossRef]
- Brown, S.J.; Sathaye, J.; Cannel, M.; Kauppi, P.E. Mitigation of carbon emission to the atmosphere by Forest Management. Commonw. For. Rev. 1996, 75, 80–91. [Google Scholar]
- Brown, S.J.; Satheya, J.; Cannel, M.; Kauppi, P. Management of forests for mitigation of greenhouse gas emissions. In Climate Change 1995: Impacts, Adaptation and Mitigation of Climate Change: Scientific-Technical Analysis; Contribution of Working Group II to the Second Assessment Report of IPCC, Chapter 24; Watson, R.T., Zinyowera, M.C., Moss, R.H., Eds.; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Maji, A.K.; Obi Reddy, G.P.; Sarkar, D. Degraded and Wastelands of India Status and Spatial Distribution; Indian Council of Agricultural Research: New Delhi, India, 2010. [Google Scholar]
- Chakravarty, S.; Kumari, A.; Rai, P.; Subba, M.; Dey, T.; Lepcha, U. Forestry options as a strategy for mitigation of climate change. In Forests, Climate Change and Biodiversity; Sood, K.K., Mahajan, V., Eds.; Kalyani Publishers: New Delhi, India, 2018; pp. 197–210. [Google Scholar]
- Moreno-Calles, A.; Casas, A.; García-Frapolli, E. Traditional agroforestry systems of multi-crop “milpa” and “chichipera” cactus forest in the arid Tehuacán Valley, Mexico: Their management and role in people’s subsistence. Agrofor. Syst. 2012, 84, 207–226. [Google Scholar] [CrossRef]
- Vineeta; Sarkar, B.C.; Tamang, M.; Shukla, G.; Debnath, M.K.; Nath, A.J.; Chakravarty, S. Floristic diversity, and conservation status of large cardamom based traditional agroforestry system along an altitudinal gradient in the Darjeeling Himalaya, India. Agrofor. Syst. 2022, 96, 1199–1210. [Google Scholar] [CrossRef]
- Vineeta; Tamang, B.; Siril, S.; Singh, M.; Das, S.; Shukla, G.; Chakravarty, S. Ecosystem services of traditional large cardamom-based agroforestry systems of Darjeeling and Sikkim Himalayas. J. Tree Sci. 2021, 40, 78–91. [Google Scholar] [CrossRef]
- Roy, M.; Sarkar, B.C.; Shukla, G.; Vineeta; Debnath, M.K.; Nath, A.J.; Bhat, J.A.; Chakravarty, S. Traditional homegardens and ethnomedicinal plants: Insights from the Indian Sub-Himalayan region. Trees For. People 2022, 8, 100236. [Google Scholar] [CrossRef]
- Roy, M.; Sarkar, B.C.; Manohar, K.A.; Shukla, G.; Vineeta; Nath, A.J.; Bhat, J.A.; Chakravarty, S. Fuelwood species diversity and consumption pattern in the homegardens from foothills of Indian Eastern Himalayas. Agrofor. Syst. 2022, 96, 453–464. [Google Scholar] [CrossRef]
- Possu, W.B.; Fernando, J.; Eatrafa, N.; Jurado, H.O. An overview: The potential role of agroforestry in enhancing carbon sequestration and reducing greenhouse gas emissions on agricultural lands. Adv. Plants Agric. Res. 2018, 8, 419–430. [Google Scholar]
- Chakravarty, S.; Dey, T.; Pala, N.A.; Shukla, G. Mitigation, Adaptation and Coping Strategies of Forest and Farming Dependent Communities from Impacts of Global Climate Change. Indian For. 2018, 144, 1054–1062. [Google Scholar]
- Boege, E. El Patrimonio Biocultural de los Pueblos Indígenas de México: Hacia la Conservación in Situ de la Biodiversidad y Agrobiodiversidad de los Territorios Indígenas; Instituto Nacional de Antropología e: Historia, Mexico, 2008. [Google Scholar]
- Toledo, V.M.; Barrera-Bassols, N. La Memoria Biocultural: La Importancia Ecológica de las Sabidurías Tradicionales; Icaria Editorial: Barcelona, Spain, 2008. [Google Scholar]
- Torquebiau, E. Are tropical agroforestry homegardens sustainable? Agric. Ecosyst. Environ. 1992, 41, 189–207. [Google Scholar] [CrossRef]
- Kumar, B.M.; Nair, P.K.R. The enigma of tropical homegardens. Agrofor. Syst. 2004, 61, 135–152. [Google Scholar]
- Montagnini, F. Homegardens of Mesoamerica: Biodiversity, food security, and nutrient management. In Tropical Homegardens: A Time-Tested Example of Sustainable Agroforestry; Kumar, B.M., Nair, P.K.R., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 61–84. [Google Scholar]
- Kumar, B.M. Carbon sequestration potential of tropical homegardens. In Tropical Homegardens: A Time-Tested Example of Sustainable Agroforestry; Kumar, B.M., Nair, P.K.R., Eds.; Springer Science: Dordrecht, The Netherlands, 2006; pp. 185–204. [Google Scholar]
- Nair, P.K.R.; Nair, V.D.; Kumar, B.M.; Showalter, J.M. Carbon sequestration in agroforestry systems. Adv. Agron. 2010, 108, 237–307. [Google Scholar]
- Albrecht, A.; Kandji, S.T. Carbon sequestration in tropical agroforestry systems. Agric. Ecosyst. Environ. 2003, 99, 15–27. [Google Scholar] [CrossRef]
- Altieri, M.A. Agroecology, small farms and food sovereignty. Mon. Rev. 2009, 61, 102–113. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef]
- Deng, L.; Zhu, G.Y.; Tang, Z.S.; Shangguan, Z.P. Global patterns of the effects of land-use changes on soil carbon stocks. Glob. Ecol. Conserv. 2016, 5, 127–138. [Google Scholar] [CrossRef]
- Zhao, S.Q.; Liu, S.; Sohl, T.; Young, C.; Werner, J. Land use and carbon dynamics in the southeastern United States from 1992 to 2050. Environ. Res. Lett. 2013, 8, 044022. [Google Scholar] [CrossRef]
- Cantarello, E.; Newton, A.C.; Hill, R.A. Potential effects of future land-use change on regional carbon stocks in the UK. Environ. Sci. Policy 2011, 14, 40–52. [Google Scholar] [CrossRef]
- Schlamadinger, S.; Bird, N.; Johns, T.; Brown, S.; Canadell, J.; Ciccarese, L.; Dutschke, M.; Fiedler, J.; Fiscchlin, A.; Fearnside, P.; et al. A synopsis of land use, land use change and forestry (LULUCF) under the Kyoto protocol and Marrakech Accords. Environ. Sci. Policy 2007, 10, 271–282. [Google Scholar] [CrossRef]
- Baccini, A.; Goetz, S.J.; Walker, W.S.; Laporte, N.T.; Sun, M.; Sulla-Menashe, D.; Hackler, J.; Beck, P.S.A.; Dubayah, R.; Friedl, M.A.; et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Chang. 2012, 2, 182–185. [Google Scholar] [CrossRef]
- Liu, S.G.; Bond-Lamberty, B.; Hicke, J.A.; Vargas, R.; Zhao, S.Q.; Chen, J.; Edburg, S.L.; Hu, Y.M.; Liu, J.X.; McGuire, A.D.; et al. Simulating the impacts of disturbances on forest carbon cycling in North America: Processes, data, models, and challenges. J. Geophys. Res. Biogeosci. 2011, 116, G00K08. [Google Scholar] [CrossRef]
- Liu, S.G.; Tan, Z.X.; Li, Z.P.; Zhao, S.Q.; Yuan, W.P. Are soils of Iowa USA currently a carbon sink or source? Simulated changes in SOC stock from 1972 to 2007. Agric. Ecosyst. Environ. 2011, 140, 160–162. [Google Scholar] [CrossRef]
- Houghton, R.A. How well do we know the flux of CO2 from land-use change? Tellus B 2010, 62, 337–351. [Google Scholar] [CrossRef]
- Strassmann, K.M.; Joos, F.; Fischer, G. Simulating effects of land use changes on carbon fluxes: Past contributions to atmospheric CO2 increases and future commitments due to losses of terrestrial sink capacity. Tellus Ser. B Chem. Phys. Meteorol. 2008, 60, 583–603. [Google Scholar] [CrossRef]
- Zhao, S.Q.; Liu, S.G.; Li, Z.P.; Sohl, T.L. Federal land management, carbon sequestration, and climate change in the southeastern US: A case study with fort Benning. Environ. Sci. Technol. 2010, 44, 992–997. [Google Scholar] [CrossRef]
- Zhao, S.Q.; Liu, S.; Li, Z.; Sohl, T.L. Ignoring detailed fast-changing dynamics of land use overestimates regional terrestrial carbon sequestration. Biogeosciences 2009, 6, 1647–1654. [Google Scholar] [CrossRef]
- Zhao, S.Q.; Liu, S.; Li, Z.; Sohl, T.L. A spatial resolution threshold of land cover in estimating terrestrial carbon sequestration in four counties in Georgia and Alabama, USA. Biogeosciences 2010, 7, 71–80. [Google Scholar] [CrossRef]
- Stone, B., Jr. Land use as climate change mitigation. Environ. Sci. Technol. 2009, 43, 9052–9056. [Google Scholar] [CrossRef] [PubMed]
- Canadell, J.G.; Kirschbaum, M.U.; Kurz, W.A.; Sanz, M.J.; Schlamadinger, B.; Yamagata, Y. Factoring out natural and indirect human effects on terrestrial carbon sources and sinks. Environ. Sci. Policy 2007, 10, 370–384. [Google Scholar] [CrossRef]
- Canadell, J.G.; Le Quéré, C.; Raupach, M.R.; Field, C.B.; Buitenhuis, E.T.; Ciais, P.; Conway, T.J.; Gillett, N.P.; Houghton, R.A.; Marland, G. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl. Acad. Sci. USA 2007, 104, 18866–18870. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.L.; Bouchard, M.; Butman, D.; Hawbaker, T.; Li, Z.; Liu, J.; Liu, S.; McDonald, C.; Reker, R.; Sayler, K.; et al. Baseline and projected future carbon storage and greenhouse-gas fluxes in the Great Plains region of the United States. In US Geological Survey Professional Paper 1787; Zhu, Z.L., Ed.; USGS: Reston, VA, USA, 2011. Available online: http://pubs.usgs.gov/pp/1787/ (accessed on 1 March 2023).
- Sanderman, J.; Baldock, J.A. Accounting for soil carbon sequestration in national inventories: A soil scientist’s perspective. Environ. Res. Lett. 2010, 5, 034003. [Google Scholar] [CrossRef]
Tree-Based Land Use System | Number of Quadrats |
---|---|
I. Forest landscape | 50 |
1. Lagerstroemia parviflora stand | 10 |
2. Michelia champaca stand | 10 |
3. Tectona grandis stand | 10 |
4. Shorea robusta stand | 10 |
5. Mixed-species forest | 10 |
II. Agricultural Landscape | 150 |
i. Forest Tree Plantation | 70 |
6. Swietenia macrophylla | 10 |
7. Anthocephalus cadamba | 10 |
8. Gmelina arborea | 10 |
9. Shorea borneensis | 10 |
10. Tectona grandis | 10 |
11. Lagerstroemia indica | 10 |
12. Tectona grandis + Milvus migrans | 5 |
13. Anthocephalus cadamba + Swietenia macrophylla | 5 |
ii. Agroforestry | 34 |
14. Albizia lebbeck based | 3 |
15. Swietenia macrophylla based | 3 |
16. Terminalia arjuna based | 3 |
17. Gmelina arborea based | 3 |
18. Millettia pinnata based | 3 |
19. Lagerstroemia indica based | 3 |
20. Anthocephalus cadamba based | 3 |
21. Mangifera indica based | 3 |
22. Homegardens | 10 |
iii. Commercial Crop Plantation | 30 |
23. Hevea brasiliensis | 3 |
24. Cocos nucifera | 3 |
25. Areca catechu | 10 |
26. Machilus bombycina (Som) | 4 |
27. Tea plantations | 10 |
iv. Fruit Orchard | 18 |
28. Psidium guajava | 3 |
29. Manilkara zapota | 3 |
30. Litchi chinensis | 3 |
31. Anacardium occidentale | 3 |
32. Citrus lemon | 3 |
33. Mangifera indica | 3 |
Total sample size | 200 |
EC | pH | MC | SOC | N | P | K | PB | LB | |
---|---|---|---|---|---|---|---|---|---|
pH | −0.6 ** | ||||||||
MC | 0.5 ** | −0.4 * | |||||||
SOC | 0.9 ** | −0.4 * | 0.5 ** | ||||||
N | 0.7 ** | −0.7 ** | 0.3 | 0.9 ** | |||||
P | 0.8 ** | −0.6 ** | 0.6 ** | 0.9 ** | 0.7 ** | ||||
K | 0.5 ** | −0.6 ** | 0.3 | 0.8 ** | 0.7 ** | 0.7 ** | |||
PB | 0.7 ** | −0.5 ** | 0.5 ** | 0.8 ** | 0.7 ** | 0.7 ** | 0.7 ** | ||
LB | 0.8 ** | −0.7 ** | 0.4 ** | 0.9 ** | 0.8 ** | 0.7 ** | 0.7 ** | 0.7 ** | |
EC | 0.8 ** | −0.6 ** | 0.5 ** | 0.9 ** | 0.9 ** | 0.8 ** | 0.8 ** | 0.9 ** | 0.8 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dey, T.; S, D.; Singh, M.; A, A.; Tamang, M.; N, S.N.; Nath, A.J.; Shukla, G.; Chakravarty, S. Prioritizing Tree-Based Systems for Optimizing Carbon Sink in the Indian Sub-Himalayan Region. Land 2023, 12, 1155. https://doi.org/10.3390/land12061155
Dey T, S D, Singh M, A A, Tamang M, N SN, Nath AJ, Shukla G, Chakravarty S. Prioritizing Tree-Based Systems for Optimizing Carbon Sink in the Indian Sub-Himalayan Region. Land. 2023; 12(6):1155. https://doi.org/10.3390/land12061155
Chicago/Turabian StyleDey, Tanusri, Dinesha S, Manendra Singh, Arshad A, Mendup Tamang, Shahina N N, Arun Jyoti Nath, Gopal Shukla, and Sumit Chakravarty. 2023. "Prioritizing Tree-Based Systems for Optimizing Carbon Sink in the Indian Sub-Himalayan Region" Land 12, no. 6: 1155. https://doi.org/10.3390/land12061155
APA StyleDey, T., S, D., Singh, M., A, A., Tamang, M., N, S. N., Nath, A. J., Shukla, G., & Chakravarty, S. (2023). Prioritizing Tree-Based Systems for Optimizing Carbon Sink in the Indian Sub-Himalayan Region. Land, 12(6), 1155. https://doi.org/10.3390/land12061155