Spatial-Temporal Distribution and Coupling Relationship of High-Speed Railway and Economic Networks in Metropolitan Areas of China
Abstract
:1. Introduction
2. Literature Review
2.1. The Impact of HSRs on Regional Economic Development
2.2. The Impact of Regional Economy on the Development of HSRs
2.3. Relationship between HSR Network and Economic Network
3. Background, Data, and Methodology
3.1. Background and Data
3.2. Analysis Method of HSR Network
3.3. Analysis Method of Economic Network
3.4. Analysis Method of Network Coupling Relationship
4. Results and Analysis
4.1. HSR Network Analysis
4.2. Economic Network Analysis
4.3. Network Coupling Relationship Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- LeGates, R.T.; Stout, F. The City Reader; Routledge: London, UK, 2011; pp. 189–190. [Google Scholar]
- Hu, J.; Ma, G.; Shen, C.; Zhou, X. Impact of Urbanization through High-Speed Rail on Regional Development with the Interaction of Socioeconomic Factors: A View of Regional Industrial Structure. Land 2022, 11, 1790. [Google Scholar] [CrossRef]
- Antrop, M. Landscape change and the urbanization process in Europe. Landsc. Urban Plan. 2004, 67, 9–26. [Google Scholar] [CrossRef]
- Glaeser, E.L.; Kahn, M.E.; Rappaport, J. Why do the poor live in cities? The role of public transportation. J. Urban Econ. 2008, 63, 1–24. [Google Scholar] [CrossRef]
- Maparu, T.S.; Mazumder, T.N. Transport infrastructure, economic development and urbanization in India (1990–2011): Is there any causal relationship? Transp. Res. Part A Policy Pract. 2017, 100, 319–336. [Google Scholar] [CrossRef]
- Yuan, X.; Li, X. The evolution of the industrial value chain in China’s high-speed rail driven by innovation policies: A patent analysis. Technol. Forecast. Soc. Chang. 2021, 172, 121054. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, M. High-speed rail impacts on travel times, accessibility, and economic productivity: A benchmarking analysis in city-cluster regions of China. J. Transp. Geogr. 2018, 73, 25–40. [Google Scholar] [CrossRef]
- Heuermann, D.F.; Schmieder, J.F. The effect of infrastructure on worker mobility: Evidence from high-speed rail expansion in Germany. J. Econ. Geogr. 2019, 19, 335–372. [Google Scholar] [CrossRef]
- Guirao, B.; Casado-Sanz, N.; Campa, J.L. Labour opportunities provided by Spanish high-speed rail (HSR) commuting services in a period of financial crisis: An approach based on regional wage disparities and housing rental prices. Reg. Stud. 2020, 54, 539–549. [Google Scholar] [CrossRef]
- Komikado, H.; Morikawa, S.; Bhatt, A.; Kato, H. High-speed rail, inter-regional accessibility, and regional innovation: Evidence from Japan. Technol. Forecast. Soc. Chang. 2021, 167, 120697. [Google Scholar] [CrossRef]
- Chen, C.L.; Vickerman, R. Can transport infrastructure change regions’ economic fortunes? Some evidence from Europe and China. Reg. Stud. 2017, 51, 144–160. [Google Scholar] [CrossRef]
- Fang, C. Important progress and future direction of studies on China’s urban agglomerations. J. Geogr. Sci. 2015, 25, 1003–1024. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.S. High-speed rail developments and spatial restructuring: A case study of the Capital region in South Korea. Cities 2000, 17, 251–262. [Google Scholar] [CrossRef]
- Ahlfeldt, G.M.; Feddersen, A. From periphery to core: Measuring agglomeration effects using high-speed rail. J. Econ. Geogr. 2018, 18, 355–390. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Z.; Wang, P. Impact of high-speed rail on urban economic efficiency in China. Transp. Policy 2020, 97, 220–231. [Google Scholar] [CrossRef]
- Chen, Z.; Haynes, K.E. Impact of high-speed rail on regional economic disparity in China. J. Transp. Geogr. 2017, 65, 80–91. [Google Scholar] [CrossRef]
- Xu, W.; Huang, Y. The correlation between HSR construction and economic development–Empirical study of Chinese cities. Transp. Res. Part A Policy Pract. 2019, 126, 24–36. [Google Scholar]
- Jiao, J.; Wang, J.; Zhang, F.; Jin, F.; Liu, W. Roles of accessibility, connectivity and spatial interdependence in realizing the economic impact of high-speed rail: Evidence from China. Transp. Policy 2020, 91, 1–15. [Google Scholar] [CrossRef]
- Kim, H.; Sultana, S. The impacts of high-speed rail extensions on accessibility and spatial equity changes in South Korea from 2004 to 2018. J. Transp. Geogr. 2015, 45, 48–61. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Liu, Y.; Sun, C.; Liu, Y. Accessibility impact of the present and future high-speed rail network: A case study of Jiangsu Province, China. J. Transp. Geogr. 2016, 54, 161–172. [Google Scholar] [CrossRef]
- Monzon, A.; Lopez, E.; Ortega, E. Has HSR improved territorial cohesion in Spain? An accessibility analysis of the first 25 years: 1990–2015. Eur. Plan. Stud. 2019, 27, 513–532. [Google Scholar] [CrossRef]
- Liu, S.; Wan, Y.; Zhang, A. Does China’s high-speed rail development lead to regional disparities? A network perspective. Transp. Res. Part A Policy Pract. 2020, 138, 299–321. [Google Scholar] [CrossRef] [PubMed]
- Shao, S.; Tian, Z.; Yang, L. High speed rail and urban service industry agglomeration: Evidence from China’s Yangtze River Delta region. J. Transp. Geogr. 2017, 64, 174–183. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, W. How China’s high-speed rail promote local economy: New evidence from county-level panel data. Int. Rev. Econ. Financ. 2022, 80, 67–81. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, Y.; Liu, Y.; Liu, J.; Hu, X.; Ma, J.; Wang, X.; Wan, Y.; Hu, J.; Zhang, Z.; et al. The impact of China’s high-speed rail investment on regional economy and air pollution emissions. J. Environ. Sci. 2023, 131, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Lin, K.C.; Shi, W.; Lee, P.T.; Li, K.X. Impacts of high-speed railways on economic growth and disparity in China. Transp. Res. Part A Policy Pract. 2020, 138, 158–171. [Google Scholar] [CrossRef]
- Yoo, S.; Kumagai, J.; Kawasaki, K.; Hong, S.; Zhang, B.; Shimamura, T.; Managi, S. Double-edged Trains: Economic outcomes and regional disparity of high-speed railways. Transp. Policy 2023, 133, 120–133. [Google Scholar] [CrossRef]
- Lao, X.; Zhang, X.; Shen, T.; Skitmore, M. Comparing China’s city transportation and economic networks. Cities 2016, 53, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Mandel, B.; Gaudry, M.; Rothengatter, W. A disaggregate Box-Cox Logit mode choice model of intercity passenger travel in Germany and its implications for high-speed rail demand forecasts. Ann. Reg. Sci. 1997, 31, 99–120. [Google Scholar] [CrossRef]
- Börjesson, M. Forecasting demand for high speed rail. Transp. Res. Part A Policy Pract. 2014, 70, 81–92. [Google Scholar] [CrossRef] [Green Version]
- Cascetta, E.; Coppola, P. High Speed Rail (HSR) induced demand models. Procedia-Soc. Behav. Sci. 2014, 111, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Zhang, L.; Chen, X.M. Short-term forecasting of high-speed rail demand: A hybrid approach combining ensemble empirical mode decomposition and gray support vector machine with real-world applications in China. Transp. Res. Part C Emerg. Technol. 2014, 44, 110–127. [Google Scholar] [CrossRef]
- Guo, Y.; Cao, L.; Song, Y.; Wang, Y.; Li, Y. Understanding the formation of City-HSR network: A case study of Yangtze River Delta, China. Transp. Policy 2022, 116, 315–326. [Google Scholar] [CrossRef]
- Guo, Y.; Li, B.; Han, Y. Dynamic network coupling between high-speed rail development and urban growth in emerging economies: Evidence from China. Cities 2020, 105, 102845. [Google Scholar] [CrossRef]
- Lv, Y.; Chen, Y. Research on the Evolution Characteristics and Synergistic Relationship between HSR Network and Economic Network in Hubei Province. Sustainability 2022, 14, 9076. [Google Scholar] [CrossRef]
- Huggins, R.; Izushi, H.; Prokop, D.; Thompson, P. The Global Competitiveness of Regions; Routledge: London, UK, 2014; pp. 68–70. [Google Scholar]
- Ren, X.; Wang, F.; Wang, C.; Du, Z.; Chen, Z.; Wang, J.; Dan, T. Impact of high-speed rail on intercity travel behavior change. J. Transp. Land Use 2019, 12, 265–285. [Google Scholar]
- Opsahl, T.; Agneessens, F.; Skvoretz, J. Node centrality in weighted networks: Generalizing degree and shortest paths. Soc. Netw. 2010, 32, 245–251. [Google Scholar] [CrossRef]
- Tinbergen, J. Shaping the World Economy; Suggestions for an International Economic Policy; Twentieth Century Fund: New York, NY, USA, 1962; pp. 192–193. [Google Scholar]
- Pöyhönen, P. A tentative model for the volume of trade between countries. Weltwirtschaftliches Archiv. 1963, 90, 93–100. [Google Scholar]
- Krings, G.; Calabrese, F.; Ratti, C.; Blondel, V.D. Urban gravity: A model for inter-city telecommunication flows. J. Stat. Mech. Theory Exp. 2009, 2009, L07003. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Zhang, S.; He, Z.; He, B.; Yu, H.; Ye, X.; Yang, H.; Zhang, X.; Chi, Z. Spatial pattern and evolution of urban system based on gravity model and whole network analysis in the Huaihe River Basin of China. Discret. Dyn. Nat. Soc. 2018, 2018. [Google Scholar] [CrossRef]
- Henderson, J.V. Cities and development. J. Reg. Sci. 2010, 50, 515–540. [Google Scholar] [CrossRef]
- Zhang, W.; Zhuang, X.; Lu, Y.; Wang, J. Spatial linkage of volatility spillovers and its explanation across G20 stock markets: A network framework. Int. Rev. Financ. Anal. 2020, 71, 101454. [Google Scholar] [CrossRef]
- An, Y.; Wei, Y.D.; Yuan, F.; Chen, W. Impacts of high-speed rails on urban networks and regional development: A study of the Yangtze River Delta, China. Int. J. Sustain. Transp. 2022, 16, 483–495. [Google Scholar] [CrossRef]
- Ma, L.J. Urban administrative restructuring, changing scale relations and local economic development in China. Political Geogr. 2005, 24, 477–497. [Google Scholar] [CrossRef]
Region | Number of Cities | Real GDP (USD Trillion) | Permanent Population (Million) | ||||||
---|---|---|---|---|---|---|---|---|---|
2009 | 2012 | 2016 | 2020 | 2009 | 2012 | 2016 | 2020 | ||
YRD | 41 | 1.18 | 1.63 | 2.25 | 2.93 | 209.30 | 217.65 | 222.02 | 235.38 |
Shanghai MA | 9 | 0.61 | 0.82 | 1.11 | 1.44 | 64.78 | 69.03 | 69.98 | 77.46 |
Hangzhou MA | 6 | 0.17 | 0.23 | 0.31 | 0.40 | 23.83 | 24.67 | 25.31 | 29.65 |
Nanjing MA | 8 | 0.15 | 0.22 | 0.32 | 0.42 | 30.37 | 32.86 | 33.42 | 33.95 |
Hefei MA | 7 | 0.08 | 0.13 | 0.18 | 0.25 | 24.36 | 28.46 | 29.42 | 29.89 |
Su-Xi-Chang MA | 3 | 0.22 | 0.31 | 0.42 | 0.57 | 20.02 | 21.70 | 21.86 | 25.49 |
Ningbo MA | 3 | 0.10 | 0.13 | 0.18 | 0.24 | 14.17 | 14.78 | 15.11 | 17.21 |
Rank | 2009 | 2012 | 2016 | 2020 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
City | Location | Centrality | City | Location | Centrality | City | Location | Centrality | City | Location | Centrality | |
1 | Shanghai | SH | 12.71 | Shanghai | SH | 15.94 | Shanghai | SH | 19.66 | Nanjing | NJ | 21.90 |
2 | Nanjing | NJ | 9.73 | Nanjing | NJ | 11.48 | Nanjing | NJ | 17.14 | Shanghai | SH | 19.37 |
3 | Wuxi | SH, SXC | 8.27 | Wuxi | SH, SXC | 10.91 | Suzhou | SH, SXC | 12.48 | Suzhou | SH, SXC | 13.53 |
4 | Changzhou | SH, SXC | 6.67 | Suzhou | SH, SXC | 10.09 | Wuxi | SH, SXC | 11.89 | Wuxi | SH, SXC | 12.91 |
5 | Suzhou | SH, SXC | 5.86 | Changzhou | SH, SXC | 8.25 | Hangzhou | HZ | 10.61 | Hangzhou | HZ | 11.51 |
6 | Zhenjiang | NJ | 5.00 | Zhenjiang | NJ | 6.76 | Changzhou | SH, SXC | 9.90 | Changzhou | SH, SXC | 11.29 |
7 | Hefei | HF | 2.56 | Hangzhou | HZ | 5.72 | Zhenjiang | NJ | 7.38 | Hefei | HF | 9.06 |
8 | Hangzhou | HZ | 2.47 | Xuzhou | / | 3.25 | Hefei | HF | 7.22 | Zhenjiang | NJ | 9.02 |
9 | Lu’an | HF | 2.23 | Ningbo | NB | 3.20 | Ningbo | NB | 7.08 | Ningbo | NB | 6.22 |
10 | Xuzhou | / | 2.05 | Wenzhou | / | 2.99 | Xuzhou | / | 6.04 | Xuzhou | / | 6.07 |
Panel A. Shanghai MA | ||||||||
---|---|---|---|---|---|---|---|---|
2009 | 2012 | 2016 | 2020 | |||||
1 | Shanghai | 36.23 | Shanghai | 40.84 | Shanghai | 45.29 | Shanghai | 42.18 |
2 | Wuxi | 26.09 | Wuxi | 32.26 | Wuxi | 33.54 | Wuxi | 33.06 |
3 | Suzhou | 21.38 | Suzhou | 31.02 | Suzhou | 31.95 | Suzhou | 31.30 |
Panel B. Hangzhou MA | ||||||||
2009 | 2012 | 2016 | 2020 | |||||
1 | Hangzhou | 26.67 | Hangzhou | 31.26 | Hangzhou | 57.52 | Hangzhou | 68.69 |
2 | Jiaxing | 23.33 | Jiaxing | 24.83 | Jiaxing | 31.30 | Shaoxing | 33.88 |
3 | Quzhou | 10.00 | Shaoxing | 12.87 | Shaoxing | 28.32 | Jiaxing | 27.23 |
Panel C. Nanjing MA | ||||||||
2009 | 2012 | 2016 | 2020 | |||||
1 | Nanjing | 15.44 | Nanjing | 16.68 | Nanjing | 18.27 | Nanjing | 26.56 |
2 | Zhenjiang | 14.67 | Zhenjiang | 14.86 | Zhenjiang | 15.26 | Zhenjiang | 19.73 |
3 | Chuzhou | 1.54 | Chuzhou | 2.97 | Chuzhou | 4.96 | Ma’anshan | 10.17 |
Panel D. Hefei MA | ||||||||
2009 | 2012 | 2016 | 2020 | |||||
1 | Hefei | 16.67 | Hefei | 25.99 | Hefei | 33.49 | Hefei | 29.26 |
2 | Lu’an | 16.67 | Wuhu | 22.64 | Lu’an | 21.27 | Lu’an | 17.67 |
3 | Chuzhou | 3.13 | Ma’anshan | 21.09 | Bengbu | 19.84 | Huainan | 12.59 |
Rank | 2009 | 2012 | 2016 | 2020 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
City | MA | DM | City | MA | DM | City | MA | DM | City | MA | DM | |
1 | Shanghai | SH | 19.38% | Shanghai | SH | 18.46% | Shanghai | SH | 17.67% | Suzhou | SH | 17.51% |
2 | Suzhou | SH, SXC | 16.53% | Suzhou | SH, SXC | 17.01% | Suzhou | SH, SXC | 16.60% | Shanghai | SH, SXC | 16.66% |
3 | Wuxi | SH, SXC | 11.00% | Wuxi | SH, SXC | 10.98% | Wuxi | SH, SXC | 10.52% | Wuxi | SH, SXC | 11.34% |
4 | Hangzhou | HZ | 7.07% | Hangzhou | HZ | 6.80% | Hangzhou | HZ | 6.90% | Hangzhou | HZ | 7.35% |
5 | Nanjing | NJ | 6.06% | Nanjing | NJ | 6.27% | Nanjing | NJ | 6.54% | Nanjing | NJ | 6.46% |
6 | Changzhou | SH, SXC | 4.22% | Changzhou | SH, SXC | 4.26% | Changzhou | SH, SXC | 4.39% | Changzhou | SH, SXC | 4.58% |
7 | Zhenjiang | NJ | 4.03% | Zhenjiang | NJ | 4.00% | Zhenjiang | NJ | 4.24% | Nantong | SH | 3.77% |
8 | Nantong | SH | 3.44% | Nantong | SH | 3.45% | Nantong | SH | 3.63% | Zhenjiang | NJ | 3.51% |
9 | Ningbo | NB | 3.00% | Ningbo | NB | 2.86% | Ningbo | NB | 2.81% | Ningbo | NB | 2.86% |
10 | Shaoxing | HZ | 2.67% | Shaoxing | HZ | 2.54% | Shaoxing | HZ | 2.41% | Jiaxing | HZ | 2.44% |
Region | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
YRD | 0.454 *** | 0.523 *** | 0.563 *** | 0.542 *** | 0.559 *** | 0.558 *** | 0.526 *** | 0.533 *** | 0.506 *** | 0.505 *** | 0.502 *** | 0.494 *** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
Shanghai MA | 0.493 ** | 0.51 ** | 0.541 ** | 0.557 ** | 0.574 ** | 0.571 ** | 0.572 ** | 0.576 ** | 0.562 ** | 0.585 ** | 0.591 ** | 0.589 ** |
(0.031) | (0.026) | (0.026) | (0.017) | (0.012) | (0.016) | (0.015) | (0.015) | (0.014) | (0.015) | (0.013) | (0.013) | |
Nanjing MA | −0.045 | −0.048 | −0.032 | −0.034 | −0.018 | −0.020 | −0.008 | −0.008 | 0.095 | 0.085 | 0.110 | 0.001 |
(0.659) | (0.667) | (0.672) | (0.669) | (0.686) | (0.667) | (0.674) | (0.688) | (0.216) | (0.224) | (0.188) | (0.383) | |
Hangzhou MA | 0.065 | 0.686 ** | 0.381 ** | 0.447 ** | 0.78 *** | 0.804 *** | 0.629 ** | 0.65 ** | 0.743 *** | 0.756 *** | 0.703 *** | 0.731 *** |
(0.256) | (0.022) | (0.077) | (0.087) | (0.006) | (0.005) | (0.032) | (0.017) | (0.003) | (0.006) | (0.003) | (0.002) | |
Hefei MA | −0.012 | −0.013 | −0.025 | −0.027 | 0.077 | 0.049 | 0.034 | 0.065 | 0.016 | 0.013 | 0.002 | 0.012 |
(0.671) | (0.648) | (0.661) | (0.650) | (0.258) | (0.264) | (0.280) | (0.279) | (0.343) | (0.347) | (0.362) | (0.295) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, G.; Hu, J.; Zhang, R. Spatial-Temporal Distribution and Coupling Relationship of High-Speed Railway and Economic Networks in Metropolitan Areas of China. Land 2023, 12, 1193. https://doi.org/10.3390/land12061193
Ma G, Hu J, Zhang R. Spatial-Temporal Distribution and Coupling Relationship of High-Speed Railway and Economic Networks in Metropolitan Areas of China. Land. 2023; 12(6):1193. https://doi.org/10.3390/land12061193
Chicago/Turabian StyleMa, Guojie, Jinxing Hu, and Riquan Zhang. 2023. "Spatial-Temporal Distribution and Coupling Relationship of High-Speed Railway and Economic Networks in Metropolitan Areas of China" Land 12, no. 6: 1193. https://doi.org/10.3390/land12061193
APA StyleMa, G., Hu, J., & Zhang, R. (2023). Spatial-Temporal Distribution and Coupling Relationship of High-Speed Railway and Economic Networks in Metropolitan Areas of China. Land, 12(6), 1193. https://doi.org/10.3390/land12061193