Data-Driven Intelligent Platforms—Design of Self-Sovereign Data Trust Systems
Abstract
:1. Intelligent Data-Driven Cities: Towards Platform Cities
2. Data Sovereignty in Digital Technology Services
2.1. Digital Technology and Self-Sovereignty
2.2. Blockchain Systems
3. Digital Trust Ecosystems and Decentralised Brands
4. Self-Sovereign Data Platforms and Urban Healthcare: Practical Example
4.1. Digital Advances in the Healthcare Sector
4.2. Smart Cities and Healthcare
4.3. Challenges and Bottlenecks in Healthcare in Smart Platform Cities
4.4. Decentralised Solutions and Blockchain Systems in Urban Healthcare
5. Illustration of Open Data-Sharing Units (DSUs) and PharmaLedger
5.1. OpenDSUs
5.1.1. Cryptographically Validated Codes—A Code Signing Avoids the Associated Risks of Security Models Based Only on Data Encryption
5.1.2. Zero-Access Blockchain Anchoring—To Minimise the On-Chain Data Storage to Encrypted Anchors and Information to Other Blockchain Network Participants
5.1.3. Symmetric Encrypted Messages
5.1.4. Multiple Blockchain Domains and Decentralised Gateway Architecture (DGA)
5.1.5. Pluginisable DID Methods and Validation Strategies
5.1.6. OpenDSU Cryptographic Methods
5.2. Special Methods in Selected PharmaLedger Use Case
5.3. A Design Perspective
6. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ESPON. The Territorial and Urban Dimensions of the Digital Transition of Public Services; ESPON: Luxembourg, 2020. [Google Scholar]
- Savastano, M.; Suciu, M.-C.; Gorelova, I.; Stativă, G.-A. How smart is mobility in smart cities? An analysis of citizens’ value perceptions through ICT applications. Cities 2023, 132, 104071. [Google Scholar] [CrossRef]
- Peppard, J.; Ward, J. The Strategic Management of Information Systems; John Wiley: New York, NY, USA, 2016. [Google Scholar]
- Ladley, J. Data Governance; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Berson, A.; Dubov, L. Master Data Management and Data Governance; McGraw Hill: New York, NY, USA, 2011. [Google Scholar]
- Bhansali, N. (Ed.) Data Governance; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Cuppini, N.; Frapporti, M.; Pirone, M. When cities meet platforms: Towards a trans-urban approach. Digit. Geogr. Soc. 2022, 3, 100042. [Google Scholar] [CrossRef]
- Ferber, J. Multi-Agent Systems; Addison Wesley: Boston, MA, USA, 1999. [Google Scholar]
- Chamoso, P.; González-Briones, A.; Rodríguez, S.; Corchado, J.M. Tendencies of Technologies and Platforms in Smart Cities: A State-of-the-art Review. Wirel. Commun. Mob. Comput. 2018, 2018, 3086854. [Google Scholar] [CrossRef] [Green Version]
- Repette, P.; Sabatini-Marques, J.; Yigitcanlar, T.; Sell, D.; Costa, E. The Evolution of City-as-a-Platform: Smart Urban Development Governance with Collective Knowledge-Based Platform Urbanism. Land 2021, 10, 33. [Google Scholar] [CrossRef]
- Blok, A.; Courmont, A.; Hoyng, R.; Marquet, C.; Minor, K.; Nold, C.; Young, M. Data Platforms and Cities. TECNOSCIENZA Ital. J. Sci. Technol. Stud. 2018, 8, 175–220. [Google Scholar]
- Oztemel, E.; Gursev, S. Literature Review of Industry 4.0 and Related Technologies. J. Intell. Manuf. 2020, 31, 127–182. [Google Scholar] [CrossRef]
- Dalenogare, L.S.; Benitez, G.B.; Ayala, N.F.; Frank, A.G. The Expected Contribution of Industry 4.0 Technologies for Industrial Performance. Int. J. Prod. Econ. 2018, 204, 383–394. [Google Scholar] [CrossRef]
- Ghobakhloo, M.; Fathi, M.; Iranmanesh, M.; Maroufkhani, P.; Morales, M.E. Industry 4.0 ten years on: A bibliometric and systematic review of concepts, sustainability value drivers, and success determinants. J. Clean. Prod. 2021, 302, 127052. [Google Scholar] [CrossRef]
- Bernholz, L.; Landemore, H.; Reich, R. (Eds.) Digital Technology and Democratic Theory; University of Chicago Press: Chicago, IL, USA, 2021. [Google Scholar]
- European Commission. The Digital Economy and Society Index (DESI). 2023. Available online: https://digital-strategy.ec.europa.eu/en/policies/desi (accessed on 1 June 2023).
- Couture, S.; Toupin, S. What does the notion of “sovereignty” mean when referring to the digital? New Media Soc. 2019, 21, 2305–2322. [Google Scholar] [CrossRef]
- Chander, A.; Le, U.P. Data Nationalism. Emory Law J. 2015, 64, 677–739. [Google Scholar]
- Hill, J.F. The Growth of Data Localization Post-Snowden: Analysis and Recommendations for U. S. Policymakers and Industry Leaders. Lawfare Res. Pap. Ser. 2014, 2, 1–41. [Google Scholar]
- Panday, J.; Malcolm, J. The Political Economy of Data Localization. Partecip. E Confl. 2018, 11, 511–527. [Google Scholar] [CrossRef]
- Selby, J. Data localization laws: Trade barriers or legitimate responses to cybersecurity risks, or both? Int. J. Law Inf. Technol. 2017, 25, 213–232. [Google Scholar] [CrossRef]
- European Commission. Trends in Electronic Identification: An Overview, Value Proposition of eIDAS eID, CEF eID SMO, Version 1.1; European Commission: Brussels, Belgium, 2023; ISBN 978-92-861-5541-3 (PDF/EN). [CrossRef]
- Balan, A.; Rata, A.; Alboaie, S.; Kourtit, K.; Nijkamp, P. Sustainability, Smart Digital Cities and Decentralized Brands. In Planning for Liveable Cities; Girard, L.F., Nocca, F., Kourtit, K., Nijkamp, P., Eds.; Franco Angeli: Milan, Italy, 2023; in press. [Google Scholar]
- Shuaib, M.; Hassan, N.H.; Usman, S.; Alam, S.; Bhatia, S.; Mashat, A.; Kumar, A.; Kumar, M. Self-Sovereign Identity Solution for Blockchain-Based Land Registry System: A Comparison. Mob. Inf. Syst. 2022, 2022, 8930472. [Google Scholar] [CrossRef]
- Stokkink, Q.; Pouwelse, J. Deployment of a Blockchain-Based Self-Sovereign Identity. In Proceedings of the 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Halifax, NS, Canada, 30 July–3 August 2018; pp. 1336–1342. [Google Scholar]
- European Commission: Brussels, Belgium. 2018. Available online: https://ec.europa.eu/digital-building-blocks/wikis/download/attachments/78549570/Trends%20report%20on%20electronic%20identification_for%20publication_v.1.1.pdf?version=1&modificationDate=1551198712785&api=v2 (accessed on 1 June 2023).
- Meiklejohn, S.; Pomarole, M.; Jordan, G.; Levchenko, K.; McCoy, D.; Voelker, G.M.; Savage, S. A Fistful of Bitcoins: Characterizing Payments among Men with No Names. In Proceedings of the 2013 Conference on Internet Measurement Conference (IMC’13), Barcelona, Spain, 23–25 October 2013. [Google Scholar]
- Kosba, A.; Miller, A.; Shi, E.; Wen, Z.; Papamanthou, C. Hawk: The Blockchain Model of Cryptography and Privacy-preserving Smart Contracts. In Proceedings of the IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–26 May 2016; pp. 839–858. [Google Scholar]
- Chauhan, A.; Malviya, O.P.; Verma, M.; Mor, T.S. Blockchain and Scalability. In Proceedings of the 2018 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C), Lisbon, Portugal, 16–20 July 2018; pp. 122–128. [Google Scholar] [CrossRef]
- Taş, R.; Tanrıöver, Ö. Building A Decentralized Application on the Ethereum Blockchain. In Proceedings of the 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey, 11–13 October 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Ethereum. Ethereum Whitepaper. 2020. Available online: https://github.com/ethereum/wiki/wiki/White-Paper#applications (accessed on 1 March 2020).
- Alboaie, S.; Ursache, N.-C.; Alboaie, L. Self-Sovereign Applications: Return control of data back to people. Procedia Comput. Sci. 2020, 176, 1531–1539. [Google Scholar] [CrossRef]
- Pihl, R. Top Benefits of Decentralized Applications (dApps). Retrieved 22 December 2021 from Toshi Times. 2018. Available online: https://toshitimes.com/top-benefits-ofdecentralized-applications-dapps/ (accessed on 1 June 2023).
- Ethereum. Introduction to Dapps. Available online: https://ethereum.org/en/developers/docs/dapps/ (accessed on 31 May 2023).
- Atzei, N.; Bartoletti, M.; Cimoli, T. A Survey of Attacks on Ethereum Smart Contracts (sok). In International Conference on Principles of Security and Trust; Springer: Berlin, Heidelberg, 2017; pp. 164–186. [Google Scholar]
- Alboaie, S.; Cuomo, M.; Ursache, C.N.; Sava, D.; Gheorghiu, A.; Shah, A.; Alboaie, L. OpenDSU Bluepaper (Draft 2.0). 2020. Available online: https://opendsu.com/?home (accessed on 1 June 2022).
- Coombs, R.; Saviotti, P.; Walsh, V. Economics and Technological Change; Macmillan: London, UK, 1987. [Google Scholar]
- Maple, C.; Epiphaniou, G.; Gurukumar, N.K. Facets of Trustworthiness in Digital Identity Systems: The Alan Turing Institute—Technical Briefing: London, UK. 2021. pp. 4–9. Available online: https://www.turing.ac.uk/sites/default/files/2021-05/technical_briefing-facets_of_trustworthiness_in_digital_identity_systems.pdf (accessed on 1 June 2023).
- Cameron, K. The Laws of Identity. Microsoft Corp 2005, 12, 8–11. [Google Scholar]
- Perrin, A. Half of Americans Have Decided not to Use a Product or Service Because of Privacy Concerns. Pew Res. Cent. 2020. Available online: https://www.pewresearch.org/short-reads/2020/04/14/half-of-americans-have-decided-not-to-use-a-product-or-service-because-of-privacy-concerns/ (accessed on 1 June 2023).
- Cusumano, M.A.; Gawer, A. The Elements of Platform Leadership. MIT Sloan Manag. Rev. 2002, 43, 51. [Google Scholar] [CrossRef] [Green Version]
- Valdez-de-Leon, O. Key Elements and Enablers for Developing a Digital Ecosystem for the IoT. Pipeline 2018. Available online: https://pipelinepub.com/network-transformation/iot_ecosystems (accessed on 1 June 2023).
- Van Alstyne, M. The Opportunity and Challenge of Platforms. In Platforms and Ecosystems: Enabling the Digital Economy, Briefing Paper, World Economic Forum; Jacobides, M.G., Sundararajan, A., Van Alstyne, M., Eds.; 2019; Available online: http://www3.weforum.org/docs/WEF_Digital_Platforms_and_Ecosystems_2019.pdf (accessed on 1 June 2023).
- Van Alstyne, M.W.; Parker, G.G.; Choudary, S.P. Pipelines, Platforms, and the New Rules of Strategy. Harv. Bus. Rev. 2016, 94, 54–62. [Google Scholar]
- Kodali, S.; Swerdlow, F.; Wolken, S. Digitally Impacted Retail Sales. In 2018: Still Only Half Of Retail, Highlights from the Forrester Data: Digital-Influenced Retail Sales Forecast, 2017 To 2022 (US). 2018. Available online: forrester.com/report/Digitally-Impacted-Retail-Sales-In-2018-Still-Only-Half-Of-Retail/RES122907 (accessed on 1 June 2023).
- Zuboff, S. The Age of Surveillance Capitalism: The Fight for a Human Future at the Frontier Power; Ingram Publisher Services: La Vergne, TN, USA, 2019. [Google Scholar]
- Schroll, R.; Füller, J. The Value of Community-Brands. Available SSRN 1452622 2009. [Google Scholar]
- Pohle, J.; Thiel, T. Digital Sovereignty. Internet Policy Rev. 2020, 9. [Google Scholar] [CrossRef]
- PharmaLedger. 2020. Available online: https://pharmaledger.eu/about-us/members/ (accessed on 1 June 2023).
- Glick, T.B.; Figliozzi, M.A.; Unnikrishnan, A. Case Study of Drone Delivery Reliability for Time-Sensitive Medical Supplies With Stochastic Demand and Meteorological Conditions. Transp. Res. Rec. J. Transp. Res. Board 2021, 2676, 242–255. [Google Scholar] [CrossRef]
- Gallacher, D. Drones to manage the urban environment: Risks, rewards, alternatives. J. Unmanned Veh. Syst. 2016, 4, 115–124. Available online: https://www.researchgate.net/publication/292995153_Drones_to_manage_the_urban_environment_Risks_rewards_alternatives (accessed on 1 June 2023). [CrossRef] [Green Version]
- Comtet, H.E.; Johannessen, K.-A. A Socio-Analytical Approach to the Integration of Drones into Health Care Systems. Information 2022, 13, 62. [Google Scholar] [CrossRef]
- Azuma, R.T. A Survey of Augmented Reality. Presence Teleoper. Virtual Environ. 1997, 6, 355–385. [Google Scholar] [CrossRef]
- Alzahrani, N.M.; Alfouzan, F.A. Augmented Reality (AR) and Cyber-Security for Smart Cities—A Systematic Literature Review. Sensors 2022, 22, 2792. [Google Scholar] [CrossRef] [PubMed]
- Milosavljević, A.; Rančić, D.; Dimitrijević, A.; Predić, B.; Mihajlović, V. Integration of GIS and video surveillance. Int. J. Geogr. Inf. Sci. 2016, 30, 2089–2107. [Google Scholar] [CrossRef]
- Moguel, E.; Preciado, M.Á.; Preciado, J.C. A Smart Parking Campus: An Example of Integrating Different Parking Sensing Solutions into a Single Scalable System. Smart Cities 2014, 98, 29–30. [Google Scholar]
- Díaz, M.; Martín, C.; Rubio, C. State-of-the-art, Challenges, and Open Issues in the Integration of Internet of Things and Cloud Computing. J. Netw. Comput. Appl. 2016, 67, 99–117. [Google Scholar] [CrossRef]
- Achar, S. Cloud Computing Forensics. Int. J. Comput. Eng. Technol. 2022, 13, 1–10. [Google Scholar]
- Zhu, H.; Shen, L.; Ren, Y. How can smart city shape a happier life? The mechanism for developing a Happiness Driven Smart City. Sustain. Cities Soc. 2022, 80. [Google Scholar] [CrossRef]
- Al Sharif, R.; Pokharel, S. Smart City Dimensions and Associated Risks: Review of literature. Sustain. Cities Soc. 2021, 77, 103542. [Google Scholar] [CrossRef]
- Caprotti, F.; Chang, I.C.C.; Joss, S. Beyond the Smart City: A Typology of Platform Urbanism. Urban Transform. 2022, 4, 4. [Google Scholar] [CrossRef] [PubMed]
- Hathaliya, J.J.; Tanwar, S. An exhaustive survey on security and privacy issues in Healthcare 4.0. Comput. Commun. 2020, 153, 311–335. [Google Scholar] [CrossRef]
- Somayya, M.; Ramaswamy, R. Amsterdam Smart City (ASC): Fishing Village to Sustainable City. WIT Trans. Ecol. Environ. 2016, 204, 831–842. [Google Scholar] [CrossRef] [Green Version]
- Toli, A.M.; Murtagh, N. The Concept of Sustainability in Smart City Definitions. Front. Built. Environ. 2020, 6, 77. [Google Scholar] [CrossRef]
- Ramirez Lopez, L.J.; Castro, A.I.G. Sustainability and Resilience in Smart City Planning: A Review. Sustainability 2021, 13, 181. [Google Scholar] [CrossRef]
- Cui, L.; Xie, G.; Qu, Y.; Gao, L.; Yang, Y. Security and Privacy in Smart Cities: Challenges and Opportunities. IEEE Access 2018, 6, 46134–46145. [Google Scholar] [CrossRef]
- Singh, T.; Solanki, A.; Sharma, S.K.; Nayyar, A.; Paul, A. A Decade Review on Smart Cities: Paradigms, Challenges and Opportunities. IEEE Access 2022, 10, 68319–68364. [Google Scholar] [CrossRef]
- King, W. The ‘Healthcare Internet of Things’. Pharm. Exec. 2017, 37, 34–35. [Google Scholar]
- Dash, S.; Shakyawar, S.K.; Sharma, M.; Kaushik, S. Big data in healthcare: Management, analysis and future prospects. J. Big Data 2019, 6, 54. [Google Scholar] [CrossRef] [Green Version]
- Topol, E. Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again; Basic Books: New York, NY, USA, 2019; p. 341. [Google Scholar]
- UK Government, Department of Health and Social Care. Code of Practice for Digital and Data- driven Health Technologies. 2021. Available online: https://www.gov.uk/government/publications/code-of-conduct-for-data-driven-health-and-care-technology/initial-code-of-conduct-for-data-driven-health-and-care-technology (accessed on 1 June 2023).
- Beard, L.; Schein, R.; Morra, D.; Wilson, K.; Keelan, J. The Challenges in Making Electronic Health Records Accessible to Patients. J. Am. Med. Inf. Assoc. 2012, 19, 116–120. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.D.; Malley, J.D.; Schechter, A.N. Quantitative analysis of globin gene induction in single human erythroleukemic cells. Nucleic Acids Res. 2000, 28, 4998–5004. [Google Scholar] [CrossRef] [Green Version]
- Keshta, I.; Odeh, A. Security and privacy of electronic health records: Concerns and challenges. Egypt. Inform. J. 2020, 22, 177–183, ISSN 1110-8665. Available online: https://www.sciencedirect.com/science/article/pii/S1110866520301365 (accessed on 1 June 2023). [CrossRef]
- Tan, K.-L.; Chi, C.-H.; Lam, K.-Y. Analysis of Digital Sovereignty and Identity: From Digitization to Digitalization. Computer Science. Cryptography and Security (cs.CR); Distributed, Parallel, and Cluster Computing (cs.DC); Software Engineering (cs.SE). arXiv 2022, arXiv:2202.10069. [Google Scholar] [CrossRef]
- Dwork, C.; Kenthapadi, K.; McSherry, F.; Mironov, I.; Naor, M. Our Data, Ourselves: Privacy via Distributed Noise Generation. In Advances in Cryptology-EUROCRYPT 2006; Audenay, S., Ed.; Lecture Notes in Computer Science, 4004; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Shi, E.; Chan, H.T.H.; Rieffel, E.; Chow, R.; Song, D. Privacy-preserving Aggregation of Time-series Data. In Annual Network & Distributed System Security Symposium (NDSS); Internet Society: Reston, VA, USA, 2011. [Google Scholar]
- Rastogi, V.; Nath, S. Differentially Private Aggregation of Distributed Time-Series with Transformation and Encryption. In Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, Indianapolis, IN, USA, 6–10 June 2010. [Google Scholar] [CrossRef]
- Avellaneda, O.; Bachmann, A.; Barbir, A.; Brenan, J.; Dingle, P.; Duffy, K.H.; Maler, E.; Reed, D.; Sporny, M. Decentralized Identity: Where Did It Come From and Where Is It Going? IEEE Commun. Stand. Mag. 2019, 3, 10–13. [Google Scholar] [CrossRef]
- Allen, C. The Path to Self-Sovereign Identity; Coin Desk: New York, NY, USA, 2016; Available online: https://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html (accessed on 1 June 2023).
- Romero Ugarte, J.L. Distributed Ledger Technology (DLT): Introduction. Banco Espana 2018, 19, 18. [Google Scholar]
- Sporny, M.; Longley, D.; Chadwick, D. Verifiable Credentials Data Model 1.0 Recommendation. 2019. Available online: https://www.w3.org/TR/vc-data-model/ (accessed on 1 June 2023).
- Barclay, I.; Radha, S.; Preece, A.; Taylor, I.; Nabrzyski, J. Certifying Provenance of Scientific Datasets with Self-sovereign Identity and Verifiable Credentials. In Proceedings of the 12th International Workshop on Science Gateways (IWSG), Online, 10–12 June 2020. [Google Scholar]
- Ismail, L.; Materwala, H.; Zeadally, S. Lightweight Blockchain for Healthcare. IEEE Access 2019, 7, 149935–149951. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M.; Singh, R.P.; Suman, R.; Rab, S. Blockchain technology applications in healthcare: An overview. Int. J. Intell. Netw. 2021, 2, 130–139. [Google Scholar] [CrossRef]
- Ekblaw, A.C. MedRec: Blockchain for Medical Data Access, Permission Management and Trend Analysis. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2017. [Google Scholar]
- Da Fonseca Ribeiro, M.I.; Vasconcelos, A. MedBlock: Using Blockchain in Healthcare Application based on Blockchain and Smart Contracts. In Proceedings of the 22nd International Conference on Enterprise Information Systems (ICEIS 2020), Prague, Czech Republic, 5–7 May 2020; Volume 1, pp. 156–164. [Google Scholar] [CrossRef]
- PharmaLedger. D3.9 Reference Implementation of Advanced Confidentiality Methods—Final Report. 2022. Available online: https://pharmaledger.eu/resources-publications/horizon-2020-pharmaledger-grant-agreement-documents/ (accessed on 1 June 2023).
- Alboaie, S.; Mastahac, B. Anchoring. 2021. Available online: https://opendsu.com/?openDSU/rfc004.html (accessed on 1 June 2023).
- Axiologic; PharmaLedger. OpenDSU Concepts: Anchoring (RFC-005). 2022. Available online: https://opendsu.com/rfc005 (accessed on 1 June 2023).
- Axiologic; PrivateSKY și PharmaLedger. OpenDSU APIHub APIs Anchoring (RFC-121). 2022. Available online: https://opendsu.com/rfc121 (accessed on 9 June 2023).
- Axiologic; PrivateSky și PharmaLedger. Anchoring (RFC-069). 2022. Available online: https://opendsu.com/rfc069 (accessed on 1 June 2023).
OpenDSU Supported Methodologies | Added Confidentiality Value |
---|---|
Cryptographically validated code | Enhances security by assigning responsibility and verifying the authenticity and integrity of code through digital signatures, ensuring it has not been tampered with and clarifying accountability in multi-party development scenarios |
Zero-access blockchain anchoring | Minimises on-chain data storage by storing encrypted anchors and metadata on the blockchain while keeping the actual data inaccessible to anyone other than the owner |
Symmetric encryption | Safeguards sensitive data, storing encrypted bricks with unique keys on servers to prevent unauthorised access and correlation and ensuring confidential communication between wallets |
Multiple blockchain domains | Facilitates domain-specific storage and access of data, thereby reducing the risk of metadata correlation attacks |
Decentralised gateway architecture | Ensures robust security and privacy by leveraging a distributed network of nodes for data storage and access, minimising single points of failure and enhancing protection against data breaches |
Plunginisable DID methods | Offers flexibility by supporting various DID methods and actor identification methods |
Validation strategies | Offers flexibility to balance confidentiality and audibility and tailors the management of decentralised data to specific needs |
OpenDSU cryptographic methods | OpenDSU’s extensibility allows for easy customisation and adaptation to new cryptographic techniques, achieved through anchoring code signatures in a ledger, ensuring auditability, security and a seamless transition to stronger confidentiality measures |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balan, A.; Gabriel Tan, A.; Kourtit, K.; Nijkamp, P. Data-Driven Intelligent Platforms—Design of Self-Sovereign Data Trust Systems. Land 2023, 12, 1224. https://doi.org/10.3390/land12061224
Balan A, Gabriel Tan A, Kourtit K, Nijkamp P. Data-Driven Intelligent Platforms—Design of Self-Sovereign Data Trust Systems. Land. 2023; 12(6):1224. https://doi.org/10.3390/land12061224
Chicago/Turabian StyleBalan, Ana, Andi Gabriel Tan, Karima Kourtit, and Peter Nijkamp. 2023. "Data-Driven Intelligent Platforms—Design of Self-Sovereign Data Trust Systems" Land 12, no. 6: 1224. https://doi.org/10.3390/land12061224
APA StyleBalan, A., Gabriel Tan, A., Kourtit, K., & Nijkamp, P. (2023). Data-Driven Intelligent Platforms—Design of Self-Sovereign Data Trust Systems. Land, 12(6), 1224. https://doi.org/10.3390/land12061224