Response of Spontaneous Plant Communities to Sedum mexicanum Cover and Water Availability in Green Roof Microcosms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Species Selection and Seed Collection
2.2. Seed Germination
Species | Family | Common Name | Country |
---|---|---|---|
Epilobium parviflorum | Onagraceae | Hoary willowherb | Australia, United Kingdom, France, Switzerland, Belgium |
Euphorbia maculata | Euphorbiaceae | Spotted spurge | Australia, France, Belgium |
Euphorbia peplus | Euphorbiaceae | Petty spurge | Australia, France, Belgium, New Zealand |
Helichrysum luteoalbum | Asteraceae | Jersey cudweed | Australia, United Kingdom, Germany |
Malva neglecta | Malvaceae | Common mallow | Australia, Germany |
Nepeta cataria | Lamiaceae | Catnip | Australia, Germany |
Polycarpon tetraphyllum | Caryophyllaceae | Four-leaf allseed | Australia, France, Sweden, United Kingdom |
Portulaca oleracea | Portulacaceae | Common purslane | Australia, France |
Rumex crispus | Polygonaceae | Curly dock | Australia, France |
Solanum nigrum | Solanaceae | Black nightshade | Australia, France |
Sonchus oleraceus | Asteraceae | Common sowthistle | Australia, France, Sweden, Switzerland, New Zealand, United Kingdom |
Stellaria media | Caryophyllaceae | Chickweed | Australia, France, United Kingdom |
Taraxacum officinale | Asteraceae | Dandelion | Australia, Belgium, Germany, New Zealand, Switzerland, United Kingdom |
Trifolium repens | Fabaceae | White clover | Australia, Belgium, France, Switzerland, United Kingdom |
2.3. Relative Growth Rate
2.4. Experimental Design
2.5. Seed Sowing in Microcosms
2.6. Spontaneous Species Abundance, Biomass, and Trait Measures
2.7. Data Analyses
3. Results
3.1. Species Abundance
3.2. Biomass and Species Richness of Spontaneous Plant Communities
3.3. Spontaneous Plant Community Leaf Traits and Functional Richness
4. Discussion
4.1. Spontaneous Community Abundance and Biomass
4.2. Spontaneous Community Species and Functional Richness
4.3. Spontaneous Community Specific Leaf Area
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Species | Seed Weight (mg) | Seed Germ (%) | Seed Viability (%) | Relative Growth Rate (mg g−1 day−1) |
---|---|---|---|---|
Epilobium parviflorum | 0.4 | 92 | 96 | 121 |
Euphorbia maculata | 1.3 | 0 | 95 | 106 |
Euphorbia peplus | 4.8 | 80 | 92 | 90 |
Helichrysum luteoalbum | 0.4 | 45 | 90 | 153 |
Malva neglecta | 10 | 36 | 65 | 124 |
Nepeta cataria | 5.4 | 52 | 85 | 200 |
Polycarpon tetraphyllum | 0.3 | 83 | 95 | 118 |
Portulaca oleracea | 4.4 | 90 | 100 | 217 |
Rumex crispus | 10.5 | 96 | 100 | 180 |
Solanum nigrum | 8.5 | 57 | 88 | 194 |
Sonchus oleraceus | 1.6 | 100 | 100 | 218 |
Stellaria media | 2.9 | 21 | 95 | 190 |
Taraxacum officinale | 3.8 | 87 | 95 | 164 |
Trifolium repens | 5.4 | 94 | 100 | 198 |
Appendix B
Appendix C
Species | 0% | 25% | 50% | 75% | 100% | |||||
---|---|---|---|---|---|---|---|---|---|---|
WW | WD | WW | WD | WW | WD | WW | WD | WW | WD | |
Epilobium parviflorum | <0.01 | - | - | - | - | - | - | - | - | - |
Euphorbia maculata | 0.27 | <0.01 | - | 0.03 | - | - | - | - | - | - |
Euphorbia peplus | 0.09 | <0.01 | - | 0.05 | - | - | - | - | - | - |
Helichrysum luteoalbum | 0.02 | 0.41 | 0.03 | 0.78 | 0.15 | 1.52 | 0.19 | - | - | - |
Malva neglecta | <0.01 | - | - | - | - | - | - | - | - | - |
Nepeta cataria | <0.01 | 0.03 | - | - | - | - | - | - | - | - |
Polycarpon tetraphyllum | 1.18 | - | 2.15 | 2.50 | 1.24 | 1.30 | 1.06 | 1.50 | - | 6.60 |
Rumex crispus | 0.13 | 0.06 | 0.16 | 0.07 | 0.13 | - | 0.23 | - | 0.12 | - |
Solanum nigrum | 0.69 | - | 0.67 | - | - | - | - | - | - | - |
Sonchus oleraceus | 0.16 | 0.10 | 0.20 | 0.15 | 0.20 | 0.14 | 0.20 | 0.21 | - | 1.20 |
Trifolium repens | 70.44 | 48.49 | 128.78 | 68.08 | 127.81 | 59.84 | 143.40 | 30.85 | 130.87 | 46.25 |
References
- Bevilacqua, P.; Coma, J.; Pérez, G.; Chocarro, C.; Juárez, A.; Solé, C.; De Simone, M.; Cabeza, L.F. Plant cover and floristic composition effect on thermal behaviour of extensive green roofs. Build. Environ. 2015, 92, 305–316. [Google Scholar] [CrossRef] [Green Version]
- Pianella, A.; Aye, L.; Chen, Z.; Williams, N.S.G. Substrate Depth, Vegetation and Irrigation Affect Green Roof Thermal Performance in a Mediterranean Type Climate. Sustainability 2017, 9, 1451. [Google Scholar] [CrossRef] [Green Version]
- Versini, P.A.; Ramier, D.; Berthier, E.; de Gouvello, B. Assessment of the hydrological impacts of green roof: From building scale to basin scale. J. Hydrol. 2015, 524, 562–575. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Szota, C.; Fletcher, T.D.; Williams, N.S.G.; Werdin, J.; Farrell, C. Influence of plant composition and water use strategies on green roof stormwater retention. Sci. Total Environ. 2018, 625, 775–781. [Google Scholar] [CrossRef] [PubMed]
- Gonsalves, S.; Starry, O.; Szallies, A.; Brenneisen, S. The effect of urban green roof design on beetle biodiversity. Urban Ecosyst. 2022, 25, 205–219. [Google Scholar] [CrossRef]
- Madre, F.; Vergnes, A.; Machon, N.; Clergeau, P. Green roofs as habitats for wild plant species in urban landscapes: First insights from a large-scale sampling. Landsc. Urban Plan. 2014, 122, 100–107. [Google Scholar] [CrossRef]
- Lee, K.E.; Williams, K.J.H.; Sargent, L.D.; Williams, N.S.G.; Johnson, K.A. 40-second green roof views sustain attention: The role of micro-breaks in attention restoration. J. Environ. Psychol. 2015, 42, 182–189. [Google Scholar] [CrossRef]
- Loder, A. ‘There’s a meadow outside my workplace’: A phenomenological exploration of aesthetics and green roofs in Chicago and Toronto. Landsc. Urban Plan. 2014, 126, 94–106. [Google Scholar] [CrossRef]
- Mesimäki, M.; Hauru, K.; Lehvävirta, S. Do small green roofs have the possibility to offer recreational and experiential benefits in a dense urban area? A case study in Helsinki, Finland. Urban For. Urban Green. 2019, 40, 114–124. [Google Scholar] [CrossRef]
- Oberndorfer, E.; Lundholm, J.; Bass, B.; Coffman, R.R.; Doshi, H.; Dunnett, N.; Gaffin, S.; Köhler, M.; Liu, K.K.Y.; Rowe, B. Green Roofs as Urban Ecosystems: Ecological Structures, Functions, and Services. Bioscience 2007, 57, 823–833. [Google Scholar] [CrossRef]
- Walker, E.A.; Lundholm, J.T. Designed habitat heterogeneity on green roofs increases seedling survival but not plant species diversity. J. Appl. Ecol. 2018, 55, 694–704. [Google Scholar] [CrossRef]
- Farrell, C.; Szota, C.; Williams Nicholas, S.G.; Arndt Stefan, K. High water users can be drought tolerant: Using physiological traits for green roof plant selection. Plant Soil 2013, 372, 177–193. [Google Scholar] [CrossRef]
- Van Mechelen, C.; Dutoit, T.; Kattge, J.; Hermy, M. Plant trait analysis delivers an extensive list of potential green roof species for Mediterranean France. Ecol. Eng. 2014, 67, 48–59. [Google Scholar] [CrossRef]
- Lundholm, J. Green Roofs and Facades: A Habitat Template Approach. Urban Habitats 2006, 4, 87–101. [Google Scholar]
- Gravatt, D.A.; Martin, C.E. Comparative ecophysiology of five species of Sedum (Crassulaceae) under well-watered and drought-stressed conditions. Oecologia 2004, 92, 532–541. [Google Scholar] [CrossRef]
- Monterusso, M.A.; Rowe, D.B.; Rugh, C.L. Establishment and Persistence of Sedum spp. and Native Taxa for Green Roof Applications. Hortscience 2005, 40, 391–396. [Google Scholar] [CrossRef]
- Snodgrass, E.C.; Snodgrass, L.L. Green Roof Plants: A Resource and Planting Guide; Timber Press: Portland, OR, USA, 2006. [Google Scholar]
- Pérez, G.; Chocarro, C.; Juárez, A.; Coma, J. Evaluation of the development of five Sedum species on extensive green roofs in a continental Mediterranean climate. Urban For. Urban Green. 2020, 48, 126566. [Google Scholar] [CrossRef]
- Nektarios, P.; Kokkinou, I.; Ntoulas, N. The effects of substrate depth and irrigation regime, on seeded Sedum species grown on urban extensive green roof systems under semi-arid Mediterranean climatic conditions. J. Environ. Manag. 2021, 279, 111067. [Google Scholar] [CrossRef]
- Catalano, C.; Marcenò, C.; Laudicina, V.A.; Guarino, R. Thirty years unmanaged green roofs: Ecological research and design implications. Landsc. Urban Plan. 2016, 149, 11–19. [Google Scholar] [CrossRef]
- Grant, G. Extensive green roofs in London. Urban Habitats 2006, 4, 51–65. [Google Scholar]
- Ishimatsu, K.; Ito, K. Brown/biodiverse roofs: A conservation action for threatened brownfields to support urban biodiversity. Landsc. Ecol. Eng. 2013, 9, 299–304. [Google Scholar] [CrossRef]
- Harper, J.L.; Clatworthy, J.N.; McNaughton, I.H.; Sagar, G.R. The Evolution and Ecology of Closely Related Species Living in the Same Area. Evolution 1961, 15, 209–227. [Google Scholar] [CrossRef]
- Vanstockem, J.; Somers, B.; Hermy, M. Weeds and gaps on extensive green roofs: Ecological insights and recommendations for design and maintenance. Urban For. Urban Green. 2019, 46, 126484. [Google Scholar] [CrossRef]
- Van Mechelen, C.; Dutoit, T.; Hermy, M. Vegetation development on different extensive green roof types in a Mediterranean and temperate maritime climate. Ecol. Eng. 2015, 82, 571–582. [Google Scholar] [CrossRef]
- Nagase, A.; Dunnett, N. Establishment of an annual meadow on extensive green roofs in the UK. Landsc. Urban Plan. 2013, 112, 50–62. [Google Scholar] [CrossRef]
- Bertness, M.D.; Callaway, R. Positive interactions in communities. Trends Ecol. Evol. 1994, 9, 191–193. [Google Scholar] [CrossRef]
- Holmgren, M.; Scheffer, M.; Huston, M.A. The Interplay of Facilitation and Competition in Plant Communities. Ecol. Soc. Am. 1997, 78, 1966–1975. [Google Scholar] [CrossRef]
- Ampim, P.A.Y.; Sloan, J.J.; Cabrera, R.I.; Harp, D.A.; Jaber, F.H. Green Roof Growing Substrates: Types, Ingredients, Composition and Properties. J. Environ. Hortic. 2010, 28, 244–252. [Google Scholar] [CrossRef]
- Farrell, C.; Cao, C.T.N.; Ang, X.Q.; Rayner, J.P. Use of water-retention additives to improve performance of green roof substrates. Acta Hortic. 2016, 1108, 271–278. [Google Scholar] [CrossRef]
- Rayner, J.P.; Farrell, C.; Raynor, K.J.; Murphy, S.M.; Williams, N.S.G. Plant establishment on a green roof under extreme hot and dry conditions: The importance of leaf succulence in plant selection. Urban For. Urban Green. 2016, 15, 6–14. [Google Scholar] [CrossRef]
- Price, J.G.; Watts, S.A.; Wright, A.N.; Peters, R.W.; Kirby, J.T. Irrigation Lowers Substrate Temperature and Enhances Survival of Plants on Green Roofs in the Southeastern United States. Horttechnology 2011, 21, 586–592. [Google Scholar] [CrossRef] [Green Version]
- Williams, N.S.; Bathgate, R.S.; Farrell, C.; Lee, K.E.; Szota, C.; Bush, J.; Johnson, K.A.; Miller, R.E.; Pianella, A.; Sargent, L.D.; et al. Ten years of greening a wide brown land: A synthesis of Australian green roof research and roadmap forward. Urban For. Urban Green. 2021, 62, 127179. [Google Scholar] [CrossRef]
- Köhler, M. Long-term vegetation research on two extensive green roofs in Berlin. Urban Habitats 2006, 4, 3–26. [Google Scholar]
- Lönnqvist, J.; Hanslin, H.M.; Johannessen, B.G.; Muthanna, T.M.; Viklander, M.; Blecken, G. Temperatures and precipitation affect vegetation dynamics on Scandinavian extensive green roofs. Int. J. Biometeorol. 2021, 65, 837–849. [Google Scholar] [CrossRef]
- Brooker, R.W.; Maestre, F.T.; Callaway, R.M.; Lortie, C.L.; Cavieres, L.A.; Kunstler, G.; Liancourt, P.; Tielbörger, K.; Travis, J.M.J.; Anthelme, F.; et al. Facilitation in Plant Communities: The Past, the Present, and the Future. J. Ecol. 2008, 96, 18–34. [Google Scholar] [CrossRef] [Green Version]
- Lortie, C.J.; Brooker, R.W.; Choler, P.; Kikvidze, Z.; Michalet, R.; Pugnaire, F.I.; Callaway, R.M. Rethinking plant community theory. Oikos 2004, 107, 433–438. [Google Scholar] [CrossRef]
- Butler, C.; Orians, C. Sedum facilitates the growth of neighboring plants on a green roof under water limited conditions. Session 3.3: Natives vs. non-natives, the debate on the merits of each continues. In Proceedings of the Seventh Annual Greening Rooftops for Sustainable Communities Conference, Awards and Trade Show, Atlanta, CA, USA, 3–5 June 2009. [Google Scholar]
- Ricklefs, R.E.; Schluter, D. Species Diversity in Ecological Communities: Historical and Geographical Perspectives; University of Chicago Press: Chicago, LA, USA, 1993. [Google Scholar]
- Butler, C. Ecology and Physiology of Green Roof Plant Communities. Ph.D. Thesis, Tufts University, Medford, MA, USA, 2011. [Google Scholar]
- Voyde, E.; Fassman, E.; Simcock, R.; Wells, J. Quantifying Evapotranspiration Rates for New Zealand Green Roofs. J. Hydrol. Eng. 2010, 15, 395–403. [Google Scholar] [CrossRef]
- Schrieke, D.; Farrell, C. Trait-based green roof plant selection: Water use and drought response of nine common spontaneous plants. Urban For. Urban Green. 2021, 65, 127368. [Google Scholar] [CrossRef]
- Emilsson, T. Vegetation development on extensive vegetated green roofs: Influence of substrate composition, establishment method and species mix. Ecol. Eng. 2008, 33, 265–277. [Google Scholar] [CrossRef] [Green Version]
- Grime, J.P. Vegetation classification by reference to strategies. Nature 1974, 250, 26–31. [Google Scholar] [CrossRef]
- Violle, C.; Navas, M.-L.; Vile, D.; Kazakou, E.; Fortunel, C.; Hummel, I.; Garnier, E. Let the concept of trait be functional! Oikos 2007, 116, 882–892. [Google Scholar] [CrossRef]
- Reich, P.B. The world-wide ‘fast-slow’ plant economics spectrum: A traits manifesto. J. Ecol. 2014, 102, 275–301. [Google Scholar] [CrossRef]
- Wright, I.J.; Reich, P.B.; Cornelissen, J.H.C.; Falster, D.S.; Groom, P.K.; Hikosaka, K.; Lee, W.; Lusk, C.H.; Niinemets, Ü.; Oleksyn, J.; et al. Modulation of leaf economic traits and trait relationships by climate. Glob. Ecol. Biogeogr. 2005, 14, 411–421. [Google Scholar] [CrossRef]
- Wright, I.J.; Westoby, M. Leaves at low versus high rainfall: Coordination of structure, lifespan and physiology. New Phytol. 2002, 155, 403–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaves, M.M.; Pereira, J.S.; Marôco, J.; Rodrigues, M.L.; Ricardo, C.P.P.; Osório, M.L.; Carvalho, I.; Faria, T.; Pinheiro, C. How Plants Cope with Water Stress in the Field? Photosynthesis and Growth. Ann. Bot. 2002, 89, 907–916. [Google Scholar] [CrossRef] [Green Version]
- Ackerly, D. Functional Strategies of Chaparral shrubs in relation to seasonal water deficit and distrubance. Ecol. Monogr. 2004, 74, 25–44. [Google Scholar] [CrossRef]
- Chu, H.; Farrell, C. Fast plants have water-use and drought strategies that balance rainfall retention and drought survival on green roofs. Ecol. Appl. 2021, 32, e02486. [Google Scholar] [CrossRef] [PubMed]
- Du, P.; Arndt, S.K.; Farrell, C. Relationships between plant drought response, traits, and climate of origin for green roof plant selection. Ecol. Appl. 2018, 28, 1370–1371. [Google Scholar] [CrossRef] [PubMed]
- Reich, P.B.; Ellsworth, D.S.; Walters, M.B.; Vose, J.M.; Gresham, C.; Volin, J.C.; Bowman, W.D. Generality of leaf trait relationships: A test across six biomes. Ecology 1999, 80, 1955–1969. [Google Scholar] [CrossRef]
- Xie, G.; Lundholm, J.T.; Scott MacIvor, J. Phylogenetic diversity and plant trait composition predict multiple ecosystem functions in green roofs. Sci. Total Environ. 2018, 628–629, 1017–1026. [Google Scholar] [CrossRef]
- Hoffmann, W.A.; Poorter, H. Avoiding bias in calculations of relative growth rate. Ann. Bot. 2002, 90, 37–42. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Harguindeguy, N.; Díaz, S.; Garnier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Bret-Harte, M.S.; Cornwell, W.K.; Craine, J.M.; Gurvich, D.E.; et al. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 2013, 61, 167–234. [Google Scholar] [CrossRef]
- Cornelissen, J.H.C.; Lavorel, S.; Garnier, E.; Díaz, S.; Buchmann, N.; Gurvich, D.E.; Reich, P.B.; ter Steege, H.; Morgan, H.D.; van der Heijden, M.G.A.; et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 2003, 51, 335–380. [Google Scholar] [CrossRef] [Green Version]
- Abràmoff, M.D.; Magalhães, P.J.; Ram, S.J. Image processing with ImageJ. Biophotonics Int. 2004, 11, 36–42. [Google Scholar]
- Laliberté, E.; Legendre, P.; Shipley, B. FD: Measuring Functional Diversity from Multiple Traits, and Other Tools for Functional Ecology. R Package Version 1.0-12. 2014. Available online: https://cran.r-project.org/web/packages/FD/FD.pdf (accessed on 6 March 2022).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 6 March 2022).
- Durhman, A.K.; Rowe, D.B.; Rugh, C.L. Effect of Watering Regimen on Chlorophyll Fluorescence and Growth of Selected Green Roof Plant Taxa. Hortscience 2006, 41, 1623–1628. [Google Scholar] [CrossRef] [Green Version]
- Wolf, D.; Lundholm, J.T. Water uptake in green roof microcosms: Effects of plant species and water availability. Ecol. Eng. 2008, 33, 179–186. [Google Scholar] [CrossRef]
- Dunnett, N.; Nolan, A. The effect of substrate depth and supplementary watering on the growth of nine herbaceous perennials in a semi-extensive green roof, International Conference on Urban Horticulture. Acta Hortic. 2002, 643, 305–309. [Google Scholar] [CrossRef] [Green Version]
- Farrell, C.; Mitchell, R.; Szota, C.; Rayner, J.; Williams, N. Green roofs for hot and dry climates: Interacting effects of plant water use, succulence and substrate. Ecol. Eng. 2012, 49, 270–276. [Google Scholar] [CrossRef]
- Lane, L.A.; Ayres, J.F.; Lovett, J.V. The pastoral significance, adaptive characteristics, and grazing value of white clover (Trifolium repens L.) in dryland environments in Australia: A review. Aust. J. Exp. Agric. 2000, 40, 1033–1046. [Google Scholar] [CrossRef]
- Caradus, J.R.; Forde, M.B.; Wewala, S.; Mackay, A.C. Description and classification of a white clover (Trifolium repens L.) germplasm collection from southwest Europe. N. Z. J. Agric. Res. 1990, 33, 367–375. [Google Scholar] [CrossRef]
- Anton, D.; Cristescu, I. Investigations regarding the rooting of the cuttings belonging to some species of succulents, flowery plants. J. Hortic. For. Biotechnol. 2009, 13, 255–259. [Google Scholar]
- Macarthur, R.; Levins, R. The Limiting Similarity, Convergence, and Divergence of Coexisting Species. Am. Nat. 1967, 101, 377–385. [Google Scholar] [CrossRef]
- Turnbull, L.A.; Rahm, S.; Baudois, O.; Eichenberger-Glinz, S.; Wacker, L.; Schmid, B. Experimental invasion by legumes reveals non-random assembly rules in grassland communities. J. Ecol. 2005, 93, 1062–1070. [Google Scholar] [CrossRef] [Green Version]
- Violle, C.; Nemergut, D.R.; Pu, Z.; Jiang, L. Phylogenetic limiting similarity and competitive exclusion. Ecol. Lett. 2011, 14, 782–787. [Google Scholar] [CrossRef]
- Batanouny, K.H.; Stichler, W.; Ziegler, H. Photosynthetic Pathways and Ecological Distribution of Euphorbia Species in Egypt. Oecologia 1991, 87, 565–569. [Google Scholar] [CrossRef]
- Chesson, P. Mechanisms of Maintenance of Species Diversity. Annu. Rev. Ecol. Syst. 2000, 31, 343–366. [Google Scholar] [CrossRef] [Green Version]
- MacDougall, A.S.; Gilbert, B.; Levine, J.M. Plant invasions and the niche. J. Ecol. 2009, 97, 609–615. [Google Scholar] [CrossRef]
- Wright, I.J.; Westoby, M. Differences in seedling growth behaviour among species: Trait correlations across species, and trait shifts along nutrient compared to rainfall gradients. J. Ecol. 1999, 87, 85–97. [Google Scholar] [CrossRef]
- Durhman, A.K.; Rowe, D.B.; Rugh, C.L. Effect of Substrate Depth on Initial Growth, Coverage, and Survival of 25 Succulent Green Roof Plant Taxa. Hortscience 2007, 42, 588–595. [Google Scholar] [CrossRef] [Green Version]
- VanWoert, N.D.; Rowe, D.B.; Andresen, J.A.; Rugh, C.L.; Fernandez, R.T.; Xiao, L. Green Roof Stormwater Retention. J. Environ. Qual. 2005, 34, 1036–1044. [Google Scholar] [CrossRef] [PubMed]
- Archibold, O.W.; Wagner, L. Volunteer vascular plant establishment on roofs at the University of Saskatchewan. Landsc. Urban Plan. 2007, 79, 20–28. [Google Scholar] [CrossRef]
- Dunnett, N.; Nagase, A.; Hallam, A. The dynamics of planted and colonising species on a green roof over six growing seasons 2001–2006: Influence of substrate depth. Urban Ecosyst. 2008, 11, 373–384. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schrieke, D.; Williams, N.S.G.; Farrell, C. Response of Spontaneous Plant Communities to Sedum mexicanum Cover and Water Availability in Green Roof Microcosms. Land 2023, 12, 1239. https://doi.org/10.3390/land12061239
Schrieke D, Williams NSG, Farrell C. Response of Spontaneous Plant Communities to Sedum mexicanum Cover and Water Availability in Green Roof Microcosms. Land. 2023; 12(6):1239. https://doi.org/10.3390/land12061239
Chicago/Turabian StyleSchrieke, Dean, Nicholas S. G. Williams, and Claire Farrell. 2023. "Response of Spontaneous Plant Communities to Sedum mexicanum Cover and Water Availability in Green Roof Microcosms" Land 12, no. 6: 1239. https://doi.org/10.3390/land12061239
APA StyleSchrieke, D., Williams, N. S. G., & Farrell, C. (2023). Response of Spontaneous Plant Communities to Sedum mexicanum Cover and Water Availability in Green Roof Microcosms. Land, 12(6), 1239. https://doi.org/10.3390/land12061239