The Filtering Effect of Oil Palm Plantations on Potential Insect Pollinator Assemblages from Remnant Forest Patches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Insect Sampling
2.3. Habitat Complexity and Physiognomy
2.4. Bee and Fly Functional Diversity
2.5. Data Analysis
3. Results
3.1. Habitat Complexity and Physiognomy
3.2. Comparison of Insect Abundance, Diversity and Richness between Habitats
3.3. Comparison of Community Assemblages between Oil Palm and Forest
3.4. Species Richness Gradients across the Forest—Plantation Ecotone
3.5. Changes in Abundance across the Forest—Plantation Ecotone
3.6. Potential Native Pollinators of Oil Palm
3.7. Functional Diversity of Potential Bee and Fly Pollinator Species
4. Discussion
4.1. Comparing Forest and Plantation Insect Assemblages
4.2. Plantation Boundary Effect on Insect Assemblages
4.3. Potential Native Oil Palm Pollinators
4.4. Functional Diversity of Potential Pollinator Taxa
4.5. Do Forest Refugia Benefit Oil Palm?
5. Conclusions
- While insect diversity in oil palms is generally lower than in forests, the differences in richness reported in other studies were not observed. In this study, this may be due to sampling insects in oil palms in relative proximity (within 300 m) to forests. Nevertheless, the value of retaining forest fragments within oil palm-dominated landscapes is indicated by the high proportion of species (72%, 346 species) recorded in both habitat types.
- Insect assemblage composition differed between forest and oil palm and to a lesser extent between the forests examined in this study. Clearly, not all forests are the same and community dynamics may differ among fragments dependent on their area and isolation characteristics and history. Optimizing the retention of forest fragments with different characteristics and history on oil palm landscapes is recommended, but the larger and less linear (except for riparian forests) the better.
- While species richness was slightly less and potentially different (see Point 2) in oil palm from forests, species evenness in oil palm was low and dominated by a few species, especially among the Coleoptera, Hymenoptera and Diptera. These dominant species are likely generalists [24,25,26], capable of persisting in oil palm and should be more closely investigated for their potential as native pollinators of oil palm.
- Identifying orders and related species, such as Lepidoptera, for whom oil palm presents a softer and more permeable boundary is an essential step in managing oil palm for both environmental and economic viability. Retaining riparian forests is important for retaining native species, especially moths in the genus Pyroderces, that may have the potential to pollinate oil palm [81,95].
- The abundance of the oil palm weevils (Elaedobius kamerunicus) was low compared to the native dominants, but similar to levels displayed by native thrips that may be pollinators of oil palm. In addition, the weevil was more abundant further into oil palm. Previous studies show no decline in oil palm yield with proximity to the boundary, suggesting that either the low abundance of the weevil is sufficient for the economic viability of oil palm, or that native species assume the role of pollinators near forest fragments. It is likely a combination of the latter, but further species-focused research is required [96,97], especially thrip species [76,98] and moths in the genus Pyroderces [95,99].
- The functional diversity of well-known pollinator guilds—bees and flies—was similar in forest and oil palm, suggesting that potential pollinators may yet exist among native orders of insects. Ongoing reviews of potential pollinators are advised, as the functional diversity of potential native pollinators suggests sufficient phenotypic plasticity to adapt to pollinating oil palms.
- The estate management policy of planting non-native flowering plants along roadsides, and its effect on potential insect pollinator diversity in oil palm, needs to be reviewed for its effectiveness. Management of the moss- and fern-dominated understorey in oil palm to increase the abundance of flowering plants is recommended.
- Finally, conserving and including forest fragments in an oil palm-dominated landscape has mainly positive benefits for the environment and oil palm productivity. Some have argued that these benefits are outweighed by the benefits of focusing on protecting remaining continuous forests through a large-scale land-sparing approach [4,22,77,100]. However, where oil palm establishment has occurred or is inevitable, as much native forest habitat should be included on estates as possible, especially well-buffered (wide) riparian forests [45,60].
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdullah, S.A.; Nakagoshi, N. Forest fragmentation and its correlation to human land use change in the state of Selangor, peninsular Malaysia. For. Ecol. Manag. 2007, 241, 39–48. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Koh, L.P.; Wilcove, D.S. Cashing in palm oil for conservation. Nature 2007, 448, 993–994. [Google Scholar] [CrossRef] [PubMed]
- Fitzherbert, E.B.; Struebig, M.J.; Morel, A.; Danielsen, F.; Brulh, C.A.; Donald, P.F.; Phalan, B. How will oil palm expansion affect biodiversity? Trends Ecol. Evol. 2008, 23, 538–545. [Google Scholar] [CrossRef]
- Schrier-Uijl, A.P.; Silvius, M.; Parish, F.; Lim, K.; Rosediana, S.; Anshari, G. Environmental and Social Impacts of Oil Palm Cultivation on Tropical Peat—A Scientific Review; Roundtable for Sustainable Palm Oil (RSPO). 2013. Available online: www.rspo.org (accessed on 22 November 2022).
- Wielaard, N. Impact of Oil Palm Plantations on Peatland Conversion in Sarawak 2005–2010; DOEN Foundation, Wetlands International, Solidaridad, and the Netherlands Space Office (SarVision): Wageningen, The Netherlands, 2011. [Google Scholar]
- Tan, K.; Lee, K.; Mohamed, A.; Bhatia, S. Palm oil: Addressing issues and towards sustainable development. Renew. Sustain. Energy Rev. 2009, 13, 420–427. [Google Scholar] [CrossRef]
- Malaysian Palm Oil Board. Overview of the Malaysian Oil Palm Industry 2014. Review, pp. 11–15. MPOB, 2014. Available online: https://bepi.mpob.gov.my/images/overview/Overview_of_Industry_2014.pdf (accessed on 16 February 2023).
- Basiron, Y. Palm oil production through sustainable plantations. Eur. J. Lipid Sci. Technol. 2007, 109, 289–295. [Google Scholar] [CrossRef]
- Corley, R. How much palm oil do we need? Environ. Sci. Policy 2009, 12, 134–139. [Google Scholar] [CrossRef]
- Tylianakis, J.M.; Didham, R.K.; Bascompte, J.; Wardle, D.A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 2008, 11, 1351–1363. [Google Scholar] [CrossRef]
- Cardinale, B.J.; Duffy, J.E.; Gonzalez, A.; Hooper, D.U.; Perrings, C.; Venail, P.; Narwani, A.; Mace, G.M.; Tilman, D.; Wardle, D.A.; et al. Biodiversity loss and its impact on humanity. Nature 2012, 486, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Reid, W.V.; Mooney, H.A.; Cropper, A.; Capistrano, D.; Carpenter, S.R.; Chopra, K.; Dasgupta, P.; Dietz, T.; Duraiappah, A.K.; Hassan, R.; et al. Ecosystems and Human Well-Being—Synthesis: A Report of the Millennium Ecosystem Assessment; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Estes, J.A.; Terborgh, J.; Brashares, J.S.; Power, M.E.; Berger, J.; Bond, W.J.; Carpenter, S.R.; Essington, T.E.; Holt, R.D.; Jackson, J.B.C.; et al. Trophic Downgrading of Planet Earth. Science 2011, 333, 301–306. [Google Scholar] [CrossRef] [Green Version]
- Butchart, S.H.M.; Stattersfield, A.J.; Bennun, L.A.; Shutes, S.M.; Akçakaya, H.R.; Baillie, J.E.M.; Stuart, S.N.; Hilton-Taylor, C.; Mace, G. Measuring Global Trends in the Status of Biodiversity: Red List Indices for Birds. PLoS Biol. 2004, 2, e383. [Google Scholar] [CrossRef] [Green Version]
- Hamer, K.C.; Hill, J.K.; Benedick, S.; Mustaffa, N.; Sherratt, T.N.; Maryati, M.K.C.V. Ecology of butterflies in natural and selectively logged forests of northern Borneo: The importance of habitat heterogeneity. J. Appl. Ecol. 2003, 40, 150–162. [Google Scholar] [CrossRef] [Green Version]
- Gray, M.A.; Baldauf, S.L.; Mayhew, P.J.; Hill, J.K. The Response of Avian Feeding Guilds to Tropical Forest Disturbance. Conserv. Biol. 2007, 21, 133–141. [Google Scholar] [CrossRef]
- Mohd-Azlan, J.; Fang VA, M.; Kaicheen, S.S.; Lok, L.; Lawes, M.J. The diversity of understorey birds in forest fragments and oil palm plantation, Sarawak, Borneo. J. Oil Palm Res. 2019, 31, 437–447. [Google Scholar] [CrossRef]
- Mohd-Azlan, J. The role of forest fragments in small mammal conservation in an oil palm plantation in northern Sarawak, Borneo. J. Oil Palm Res. 2019, 31, 422–436. [Google Scholar] [CrossRef]
- Danielsen, F.; Heegaard, M. Impact of Logging and Plantation Development on Species Diversity: A Case Study from Sumatra. In Management of Tropical Forests: Towards an Integrated Perspective; Sandbukt, Ø., Ed.; University of Oslo: Oslo, Norway, 1995; pp. 73–92. [Google Scholar]
- Fayle, T.M.; Turner, E.C.; Snaddon, J.L.; Chey, V.K.; Chung, A.Y.; Eggleton, P.; Foster, W.A. Oil palm expansion into rain forest greatly reduces ant biodiversity in canopy, epiphytes and leaf-litter. Basic Appl. Ecol. 2010, 11, 337–345. [Google Scholar] [CrossRef]
- Foster, W.A.; Snaddon, J.L.; Turner, E.C.; Fayle, T.M.; Cockerill, T.D.; Ellwood, M.D.F.; Broad, G.R.; Chung, A.Y.C.; Eggleton, P.; Khen, C.V.; et al. Establishing the evidence base for maintaining biodiversity and ecosystem function in the oil palm landscapes of South East Asia. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 3277–3291. [Google Scholar] [CrossRef] [Green Version]
- Turner, E.C.; Foster, W.A. The impact of forest conversion to oil palm on arthropod abundance and biomass in Sabah, Malaysia. J. Trop. Ecol. 2009, 25, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Chey, V. Impacts of forest conversion on biodiversity as indicated by moths. Malay. Nat. J. 2006, 57, 383–418. [Google Scholar]
- Aratrakorn, S.; Thunhikorn, S.; Donald, P.F. Changes in bird communities following conversion of lowland forest to oil palm and rubber plantations in southern Thailand. Bird Conserv. Int. 2006, 16, 71–82. [Google Scholar] [CrossRef] [Green Version]
- Chung, A.; Eggleton, P.; Speight, M.; Hammond, P.; Chey, V. The diversity of beetle assemblages in different habitat types in Sabah, Malaysia. Bull. Èntomol. Res. 2000, 90, 475–496. [Google Scholar] [CrossRef] [PubMed]
- Liow, L.H.; Sodhi, N.S.; Elmqvist, T. Bee diversity along a disturbance gradient in tropical lowland forests of south-east Asia. J. Appl. Ecol. 2001, 38, 180–192. [Google Scholar] [CrossRef] [Green Version]
- Proctor, M.; Yeo, P.; Lack, A. Breeding Systems: How Important is Cross-Pollination? In The Natural History of Pollination; Harper Collins Publishes: New York, NY, USA, 1996; pp. 321–349. [Google Scholar]
- Klein, A.M.; Vaissiere, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B-Biol. Sci. 2007, 274, 303–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bawa, K.S. Plant-Pollinator Interactions in Tropical Rain Forests. Annu. Rev. Ecol. Syst. 1990, 21, 399–422. [Google Scholar] [CrossRef]
- Renner, S.S.; Feil, J.P. Pollinators of tropical dioecious angiosperms. Am. J. Bot. 1993, 80, 1100–1107. [Google Scholar] [CrossRef] [Green Version]
- Inoue, T.; Salmah, S.; Sakagami, S.F.; Yamane, S.; Kato, M. An Analysis of Anthophilous Insects in Central Sumatra. In Natural History of Social Wasps and Bees in Equatorial Sumatra; Sakagami, S.F., Ohgushi, R.-I., Roubik, D.W., Eds.; Hokkaido University Press: Sapporo, Japan, 1990; pp. 201–218. [Google Scholar]
- Koh, L.P.; Wilcove, D.S. Is oil palm production really destroying tropical biodiversity? Conserv. Lett. 2008, 1, 60–64. [Google Scholar] [CrossRef]
- Savilaakso, S.; Garcia, C.; Garcia-Ulloa, J.; Ghazoul, J.; Groom, M.; Guariguata, M.R.; Laumonier, Y.; Nasi, R.; Petrokofsky, G.; Snaddon, J.; et al. Systematic review of effects on biodiversity from oil palm production. Environ. Evid. 2014, 3, 4. [Google Scholar] [CrossRef] [Green Version]
- Room, P. Diversity and Organization of the Ground Foraging Ant Faunas of Forest, Grassland and Tree Crops in Papua New Guinea. Aust. J. Zool. 1975, 23, 71–89. [Google Scholar] [CrossRef] [Green Version]
- Davis, A.L.V.; Philips, T.K. Effect of deforestation on a southwest Ghana dung beetle assemblage (Coleoptera: Scarabaeidae) at the periphery of Ankasa conservation area. Environ. Entomol. 2005, 34, 1081–1088. [Google Scholar] [CrossRef]
- Chung, A.Y.C.; Hammond, P.M.; Eggleton, P.; Speight, M.R.; Chey, V.K. A general survey of the Staphylinidae (Insecta: Coleoptera) assemblage in Sabah, Malaysia. Malay. Nat. J. 2000, 54, 355–367. [Google Scholar]
- Hassall, M.; Jones, D.; Taiti, S.; Latipi, Z.; Sutton, S.; Mohammed, M. Biodiversity and abundance of terrestrial isopods along a gradient of disturbance in Sabah, East Malaysia. Eur. J. Soil Biol. 2006, 42, S197–S207. [Google Scholar] [CrossRef]
- Chang, M.; Hii, J.; Buttner, P.; Mansoor, F. Changes in abundance and behaviour of vector mosquitoes induced by land use during the development of an oil palm plantation in Sarawak. Trans. R. Soc. Trop. Med. Hyg. 1997, 91, 382–386. [Google Scholar] [CrossRef]
- Lucey, J.M.; Hill, J.K. Spillover of Insects from Rain Forest into Adjacent Oil Palm Plantations. Biotropica 2012, 44, 368–377. [Google Scholar] [CrossRef]
- Glor, R.E.; Flecker, A.S.; Benard, M.F.; Power, A.G. Lizard diversity and agricultural disturbance in a Caribbean forest landscape. Biodivers. Conserv. 2001, 10, 711–723. [Google Scholar] [CrossRef]
- Bernard, H.; Fjeldså, J.; Mohamed, M. A Case Study on the Effects of Disturbance and Conversion of Tropical Lowland Rain Forest on the Non-Volant Small Mammals in North Borneo: Management Implications. Mammal Study 2009, 34, 85–96. [Google Scholar] [CrossRef]
- Denmead, L.H.; Darras, K.; Clough, Y.; Diaz, P.; Grass, I.; Hoffmann, M.P.; Nurdiansyah, F.; Fardiansah, R.; Tscharntke, T. The role of ants, birds and bats for ecosystem functions and yield in oil palm plantations. Ecology 2017, 98, 1945–1956. [Google Scholar] [CrossRef]
- Pfeiffer, M.; Tuck, H.C.; Lay, T.C. Exploring arboreal ant community composition and co-occurrence patterns in plantations of oil palm Elaeis guineensis in Borneo and Peninsular Malaysia. Ecography 2008, 31, 21–32. [Google Scholar] [CrossRef]
- Benedick, S.; Hill, J.K.; Mustaffa, N.; Chey, V.K.; Maryati, M.; Searle, J.B.; Schilthuizen, M.; Hamer, K.C. Impacts of rain forest fragmentation on butterflies in northern Borneo: Species richness, turnover and the value of small fragments. J. Appl. Ecol. 2006, 43, 967–977. [Google Scholar] [CrossRef]
- Bickel, T.O.; Brühl, C.A.; Gadau, J.R.; Hölldobler, B.; Linsenmair, K.E. Influence of Habitat Fragmentation on the Genetic Variability in Leaf Litter Ant Populations in Tropical Rainforests of Sabah, Borneo. Biodivers. Conserv. 2006, 15, 157–175. [Google Scholar] [CrossRef]
- Dhileepan, K. Variation in populations of the introduced pollinating weevil (Elaeidobius kamerunicus) (Coleoptera: Curculionidae) and its impact on fruitset of oil palm (Elaeis guineensis) in India. Bull. Èntomol. Res. 1994, 84, 477–485. [Google Scholar] [CrossRef]
- Syed, R.A. Studies on oil palm pollination by insects. Bull. Èntomol. Res. 1979, 69, 213–224. [Google Scholar] [CrossRef]
- Greathead, D.J. The multi-million dollar weevil that pollinates oil palms. Antenna 1983, 7, 105–107. [Google Scholar]
- Caudwell, R.W.; Hunt, D.; Reid, A.; Mensah, B.A.; Chinchilla, C. Insect pollination of oil palm—A comparison of the long term viability and sustainability of Elaeidobious kamerunicus in Papua New Guinea, Indonesia, Costa Rica and Ghana. ASD Oil Palm Pap. 2003, 25, 29–46. [Google Scholar]
- Jackson, L.; van Noordwijk, M.; Bengtsson, J.; Foster, W.; Lipper, L.; Pulleman, M.; Said, M.; Snaddon, J.L.; Vodouhe, R. Biodiversity and agricultural sustainagility: From assessment to adaptive management. Curr. Opin. Environ. Sustain. 2010, 2, 80–87. [Google Scholar] [CrossRef]
- Bulgarelli-Mora, J.M.; Chinchilla-López, C.M.; Rodríguez, R. Male inflorescences, population of Elaeidobious kamerunicus (Curculionidae) and pollination in a young commercial oil palm plantation in a dry area of Costa Rica. ASD Oil Palm Pap. 2002, 32–37. [Google Scholar]
- Poinar, G.O.; Jackson, T.A.; Bell, N.L.; Wahid, M.-A. Elaeolenchus parthenonema n. g., n. sp. (Nematoda: Sphaerularioidea: Anandranematidae n. fam.) parasitic in the palm-pollinating weevil Elaeidobius kamerunicus Faust, with a phylogenetic synopsis of the Sphaerularioidea Lubbock, 1861. Syst. Parasitol. 2002, 52, 219–225. [Google Scholar] [CrossRef]
- Yachi, S.; Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proc. Natl. Acad. Sci. USA 1999, 96, 1463–1468. [Google Scholar] [CrossRef] [Green Version]
- Cottingham, K.L.; Brown, B.L.; Lennon, J.T. Biodiversity may regulate the temporal variability of ecological systems. Ecol. Lett. 2001, 4, 72–85. [Google Scholar] [CrossRef]
- Brittain, C.; Kremen, C.; Klein, A.-M. Biodiversity buffers pollination from changes in environmental conditions. Glob. Chang. Biol. 2013, 19, 540–547. [Google Scholar] [CrossRef] [Green Version]
- Mayfield, M.M. The importance of nearby forest to known and potential pollinators of oil palm (Elaeis guineensis Jacq.; Areceaceae) in southern Costa Rica. Econ. Bot. 2005, 59, 190–196. [Google Scholar] [CrossRef]
- RSPO. Principles and Criteria for the Production of Sustainable Palm Oil 2018: Revised 01 February 2020 with Updated Supply Chain Requirements for Mills; Roundtable on Sustainable Palm Oil: Kuala Lumpur, Malaysia, 2020. [Google Scholar]
- Wilmar. Proforest. In Best Management Practices Manual for Growers on Forest Conservation and Community Collaboration; Wilmar International Ltd.: Singapore, 2021. [Google Scholar]
- Gray, C.L.; Lewis, O.T. Do riparian forest fragments provide ecosystem services or disservices in surrounding oil palm plantations? Basic Appl. Ecol. 2014, 15, 693–700. [Google Scholar] [CrossRef] [Green Version]
- Edwards, F.; Edwards, D.P.; Sloan, S.; Hamer, K.C. Sustainable Management in Crop Monocultures: The Impact of Retaining Forest on Oil Palm Yield. PLoS ONE 2014, 9, e91695. [Google Scholar] [CrossRef] [PubMed]
- Tawatao, N.; Lucey, J.M.; Senior, M.; Benedick, S.; Khen, C.V.; Hill, J.K.; Hamer, K.C. Biodiversity of leaf-litter ants in fragmented tropical rainforests of Borneo: The value of publically and privately managed forest fragments. Biodivers. Conserv. 2014, 23, 3113–3126. [Google Scholar] [CrossRef] [Green Version]
- Laurance, W.F. Theory meets reality: How habitat fragmentation research has transcended island biogeographic theory. Biol. Conserv. 2008, 141, 1731–1744. [Google Scholar] [CrossRef]
- Lucey, J.M.; Tawatao, N.; Senior, M.J.; Chey, V.K.; Benedick, S.; Hamer, K.C.; Woodcock, P.; Newton, R.J.; Bottrell, S.H.; Hill, J.K. Tropical forest fragments contribute to species richness in adjacent oil palm plantations. Biol. Conserv. 2014, 169, 268–276. [Google Scholar] [CrossRef] [Green Version]
- Samways, M.J. Insect Diversity Conservation; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Leather, S.R. Insect Sampling in Forest Ecosystems; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Oliver, I.; Beattie, A.J. A Possible Method for the Rapid Assessment of Biodiversity. Conserv. Biol. 1993, 7, 562–568. [Google Scholar] [CrossRef]
- Hespenheide, H.A. Ecological Inferences from Morphological Data. Annu. Rev. Ecol. Syst. 1973, 4, 213–229. [Google Scholar] [CrossRef]
- Agosta, S.J.; Janzen, D.H. Body size distributions of large Costa Rican dry forest moths and the underlying relationship between plant and pollinator morphology. Oikos 2005, 108, 183–193. [Google Scholar] [CrossRef]
- Cane, J.H. Estimation of bee size using intertegular span (Apoidea). J. Kans. Entomol. Soc. 1987, 60, 145–147. [Google Scholar]
- Schleuter, D.; Daufresne, M.; Massol, F.; Argillier, C. A user’s guide to functional diversity indices. Ecol. Monogr. 2010, 80, 469–484. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; Version 4.2.2.; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 16 February 2023).
- Oksanen, J.; Blanchet, F.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.; O’Hara, R.; Simpson, G.; Solymos, P. Vegan: Community Ecology Package, Version 2.6-4. 2022. Available online: https://CRAN.R-project.org/package=vegan (accessed on 16 February 2023).
- Faith, D.P.; Minchin, P.R.; Belbin, L. Compositional dissimilarity as a robust measure of ecological distance. Plant Ecol. 1987, 69, 57–68. [Google Scholar] [CrossRef]
- McArdle, B.H.; Anderson, M.J. Fitting Multivariate Models to Community Data: A Comment on Distance-Based Redundancy Analysis. Ecology 2001, 82, 290–297. [Google Scholar] [CrossRef]
- Lumentut, N.; Alouw, J.; Santosa, B. The Role Several Types of Pollinator Insects in Pollination to Improve Fruit Setting in Oil Palm (Elaeis Guineensis) in the Province of Central Sulawesi and North Sulawesi. IOP Conf. Ser. Earth Environ. Sci. 2022, 974, 012083. [Google Scholar] [CrossRef]
- Edwards, D.P.; Hodgson, J.; Hamer, K.C.; Mitchell, S.L.; Ahmad, A.H.; Cornell, S.J.; Wilcove, D.S. Wildlife-friendly oil palm plantations fail to protect biodiversity effectively. Conserv. Lett. 2010, 3, 236–242. [Google Scholar] [CrossRef]
- Edwards, F.A.; Edwards, D.P.; Larsen, T.H.; Hsu, W.W.; Benedick, S.; Chung, A.; Khen, C.V.; Wilcove, D.S.; Hamer, K.C. Does logging and forest conversion to oil palm agriculture alter functional diversity in a biodiversity hotspot? Anim. Conserv. 2014, 17, 163–173. [Google Scholar] [CrossRef]
- Luke, S.H.; Fayle, T.M.; Eggleton, P.; Turner, E.C.; Davies, R.G. Functional structure of ant and termite assemblages in old growth forest, logged forest and oil palm plantation in Malaysian Borneo. Biodivers. Conserv. 2014, 23, 2817–2832. [Google Scholar] [CrossRef] [Green Version]
- Edwards, F.A.; Edwards, D.P.; Hamer, K.C.; Davies, R.G. Impacts of logging and conversion of rainforest to oil palm on the functional diversity of birds in Sundaland. IBIS 2013, 155, 313–326. [Google Scholar] [CrossRef]
- Koh, L.P. Can oil palm plantations be made more hospitable for forest butterflies and birds? J. Appl. Ecol. 2008, 45, 1002–1009. [Google Scholar] [CrossRef]
- MacArthur, R.H.; Wilson, E.O. The Theory of Island Biogeography; Princeton University Press: Princeton, NJ, USA, 1967. [Google Scholar]
- Senior, M.J.M.; Hamer, K.C.; Bottrell, S.; Edwards, D.P.; Fayle, T.M.; Lucey, J.M.; Mayhew, P.J.; Newton, R.; Peh, K.S.-H.; Sheldon, F.H.; et al. Trait-dependent declines of species following conversion of rain forest to oil palm plantations. Biodivers. Conserv. 2013, 22, 253–268. [Google Scholar] [CrossRef]
- Zhang, W.; Ricketts, T.H.; Kremen, C.; Carney, K.; Swinton, S.M. Ecosystem services and dis-services to agriculture. Ecol. Econ. 2007, 64, 253–260. [Google Scholar] [CrossRef] [Green Version]
- Klein, A.; Steffan-Dewenter, I.; Tscharntke, T. Fruit set of highland coffee increases with the diversity of pollinating bees. Proc. R. Soc. B Boil. Sci. 2003, 270, 955–961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricketts, T.H. Tropical Forest Fragments Enhance Pollinator Activity in Nearby Coffee Crops. Conserv. Biol. 2004, 18, 1262–1271. [Google Scholar] [CrossRef]
- Steffan-Dewenter, I.; Kessler, M.; Barkmann, J.; Bos, M.M.; Buchori, D.; Erasmi, S.; Faust, H.; Gerold, G.; Glenk, K.; Gradstein, S.R.; et al. Tradeoffs between income, biodiversity, and ecosystem functioning during tropical rainforest conversion and agroforestry intensification. Proc. Natl. Acad. Sci. USA 2007, 104, 4973–4978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murcia, C. Edge effects in fragmented forests: Implications for conservation. Trends Ecol. Evol. 1995, 10, 58–62. [Google Scholar] [CrossRef]
- Li, K.; Grass, I.; Fung, T.-Y.; Fardiansah, R.; Rohlfs, M.; Buchori, D.; Tscharntke, T. Adjacent forest moderates insect pollination of oil palm. Agric. Ecosyst. Environ. 2022, 338, 108108. [Google Scholar] [CrossRef]
- Holland, R.A.; Wikelski, M.; Wilcove, D.S. How and Why Do Insects Migrate? Science 2006, 313, 794–796. [Google Scholar] [CrossRef] [Green Version]
- Chapman, J.W.; Nesbit, R.L.; Burgin, L.E.; Reynolds, D.R.; Smith, A.D.; Middleton, D.R.; Hill, J.K. Flight Orientation Behaviors Promote Optimal Migration Trajectories in High-Flying Insects. Science 2010, 327, 682–685. [Google Scholar] [CrossRef]
- Thompson, R.M.; Brose, U.; Dunne, J.A.; Hall, R.O., Jr.; Hladyz, S.; Kitching, R.L.; Martinez, N.D.; Rantala, H.; Romanuk, T.N.; Stouffer, D.B.; et al. Food webs: Reconciling the structure and function of biodiversity. Trends Ecol. Evol. 2012, 27, 689–697. [Google Scholar] [CrossRef] [Green Version]
- Tylianakis, J.M.; Tscharntke, T.; Lewis, O.T. Habitat modification alters the structure of tropical host–parasitoid food webs. Nature 2007, 445, 202–205. [Google Scholar] [CrossRef]
- Li, K.; Tscharntke, T.; Saintes, B.; Buchori, D.; Grass, I. Critical factors limiting pollination success in oil palm: A systematic review. Agric. Ecosyst. Environ. 2019, 280, 152–160. [Google Scholar] [CrossRef]
- Gray, R.E.J.; Slade, E.M.; Chung, A.Y.C.; Lewis, O.T. Movement of Moths Through Riparian Reserves Within Oil Palm Plantations. Front. For. Glob. Chang. 2019, 2, 68. [Google Scholar] [CrossRef] [Green Version]
- Rizali, A.; Rahardjo, B.T.; Karindah, S.; Wahyuningtyas, F.R.; Nurindah; Sahari, B.; Clough, Y. Communities of oil palm flower-visiting insects: Investigating the covariation of Elaeidobius kamerunicus and other dominant species. PeerJ 2019, 7, e7464. [Google Scholar] [CrossRef] [Green Version]
- Riley, S.O.; Dery, S.K.; Afreh-Nuamah, K.; Agyei-Dwarko, D.; Ayizannon, R.G. Pollinators of oil palm and relationship to fruitset and yield in two fruit forms in Ghana. OCL-Oilseeds Fats Crops Lipids 2022, 29, 17. [Google Scholar] [CrossRef]
- Soh, A.C. 2—Breeding and Genetics of the Oil Palm. In Palm Oil; Lai, O.-M., Tan, C.-P., Akoh, C.C., Eds.; AOCS Press: Urbana, IL, USA, 2012; pp. 31–58. [Google Scholar]
- Wahid, M.B.; Kamarudin, N. Role and effectiveness of Elaeidobius kamerunicus, Thrips hawaiiensis and Pyroderces sp. in pollination of mature oil palm in peninsular Malaysia. J. Oil Palm Res. 1997, 9, 1–16. [Google Scholar]
- Koh, L.P.; Ghazoul, J.; Butler, R.A.; Laurance, W.F.; Sodhi, N.S.; Mateo-Vega, J.; Bradshaw, C.J.A. Wash and Spin Cycle Threats to Tropical Biodiversity. Biotropica 2009, 42, 67–71. [Google Scholar] [CrossRef]
Order | Adj.R2 | df | MSE | F Value | p Value |
---|---|---|---|---|---|
Blattodea | −0.030 | 1/33 | 0.5 | 0.002 | 0.963 |
Coleoptera | −0.005 | 1/33 | 0.3 | 0.8 | 0.371 |
Diptera | 0.682 | 1/33 | 0.291 | 73.8 | <0.005 |
Hemiptera Patch 1 | 0.000 | 1/15 | 0.1 | 1.0 | 0.334 |
Hemiptera Patch 2 | 0.506 | 1/15 | 0.3 | 18.4 | 0.001 |
Hymenoptera | 0.111 | 1/33 | 0.3 | 5.3 | 0.029 |
Lepidoptera | 0.021 | 1/33 | 0.5 | 1.7 | 0.195 |
Order | Diversity Index | Forest | Plantation | ||
---|---|---|---|---|---|
Patch 1 | Patch 2 | Patch 1 | Patch 2 | ||
Blattodea | Chao 1 | 38 | 62 | 30 | 59 |
Exp (H’) | 14 | 14 | 10 | 12 | |
Simpson’s index | 0.908 | 0.895 | 0.808 | 0.848 | |
Rarefied SR | 21 | 28 | 22 | 20 | |
Observed SR | 25 | 31 | 22 | 28 | |
Abundance | 219 | 154 | 178 | 231 | |
Coleoptera | Chao 1 | 239 | 279 | 184 | 171 |
Exp (H’) | 57 | 63 | 22 | 36 | |
Simpson’s index | 0.966 | 0.961 | 0.825 | 0.944 | |
Rarefied SR | 131 | 153 | 115 | 100 | |
Observed SR | 159 | 171 | 131 | 103 | |
Abundance | 1029 | 900 | 913 | 745 | |
Diptera | Chao 1 | 52 | 57 | 100 | 38 |
Exp (H’) | 14 | 18 | 8 | 8 | |
Simpson’s index | 0.848 | 0.925 | 0.775 | 0.739 | |
Rarefied SR | 22 | 24 | 14 | 16 | |
Observed SR | 31 | 25 | 37 | 31 | |
Abundance | 100 | 54 | 312 | 307 | |
Hemiptera | Chao 1 | 76 | 84 | 40 | 58 |
Exp (H’) | 27 | 21 | 20 | 25 | |
Simpson’s index | 0.952 | 0.847 | 0.931 | 0.948 | |
Rarefied SR | 31 | 29 | 31 | 27 | |
Observed SR | 37 | 55 | 29 | 33 | |
Abundance | 86 | 273 | 93 | 67 | |
Hymenoptera | Chao 1 | 125 | 96 | 147 | 110 |
Exp (H’) | 25 | 21 | 19 | 24 | |
Simpson’s index | 0.878 | 0.847 | 0.861 | 0.900 | |
Rarefied SR | 81 | 72 | 69 | 68 | |
Observed SR | 94 | 73 | 89 | 85 | |
Abundance | 567 | 409 | 840 | 708 | |
Lepidoptera | Chao 1 | 63 | 78 | 54 | 60 |
Exp (H’) | 28 | 33 | 22 | 24 | |
Simpson’s index | 0.946 | 0.956 | 0.934 | 0.924 | |
Rarefied SR | 41 | 41 | 34 | 29 | |
Observed SR | 42 | 52 | 39 | 51 | |
Abundance | 103 | 158 | 186 | 285 | |
Total species | 391 | 404 | 349 | 320 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohd-Azlan, J.; Conway, S.; Travers, T.J.P.; Lawes, M.J. The Filtering Effect of Oil Palm Plantations on Potential Insect Pollinator Assemblages from Remnant Forest Patches. Land 2023, 12, 1256. https://doi.org/10.3390/land12061256
Mohd-Azlan J, Conway S, Travers TJP, Lawes MJ. The Filtering Effect of Oil Palm Plantations on Potential Insect Pollinator Assemblages from Remnant Forest Patches. Land. 2023; 12(6):1256. https://doi.org/10.3390/land12061256
Chicago/Turabian StyleMohd-Azlan, J., S. Conway, T. J. P. Travers, and M. J. Lawes. 2023. "The Filtering Effect of Oil Palm Plantations on Potential Insect Pollinator Assemblages from Remnant Forest Patches" Land 12, no. 6: 1256. https://doi.org/10.3390/land12061256
APA StyleMohd-Azlan, J., Conway, S., Travers, T. J. P., & Lawes, M. J. (2023). The Filtering Effect of Oil Palm Plantations on Potential Insect Pollinator Assemblages from Remnant Forest Patches. Land, 12(6), 1256. https://doi.org/10.3390/land12061256