Spatiotemporal Transfer of Source-Sink Landscape Ecological Risk in a Karst Lake Watershed Based on Sub-Watersheds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.3. Source-Sink Landscape Type Determination
2.4. Source–Sink Pollution Risk Load Index
2.5. Spatiotemporal Risk Evolution Scenario Simulation
3. Results
3.1. Spatial and Temporal Evolution of Land use Types in the Two Lakes’ Watershed
3.2. Spatial and Temporal Evolution of Vegetation Cover
3.3. Spatial and Temporal Patterns of Source–Sink Pollution Risk Loads
3.4. Evolution of Spatial and Temporal Patterns of Non-Point Source Pollution Risk
4. Discussion
4.1. Spatial and Temporal Migration of Ecological Risks
4.2. Influencing Factors of Ecological Risk in Karst Watersheds
4.3. Methodological Improvements
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Conley, J.M.; Evans, N.; Cardon, M.C.; Rosenblum, L.; Iwanowicz, L.R.; Hartig, P.C.; Schenck, K.M.; Bradley, P.M.; Wilson, V.S. Occurrence and in vitro bioactivity of estrogen, androgen, and glucocorticoid compounds in a nationwide screen of United States stream waters. Environ. Sci. Technol. 2017, 51, 4781–4791. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Dai, J.F.; Zhang, H.Y.; Wan, Z.P.; Xu, J.X. Potentially toxic elements in lake sediments in China: Spatial distribution, ecological risks, and influencing factors. Sci. Total Environ. 2023, 868, 161596. [Google Scholar] [CrossRef] [PubMed]
- Van den Brink, P.J.; Choung, C.B.; Landis, W.; Mayer-Pinto, M.; Pettigrove, V.; Scanes, P.; Smith, R.; Stauber, J. New approaches to the ecological risk assessment of multiple stressors. Mar. Freshw. Res. 2016, 67, 429–439. [Google Scholar] [CrossRef]
- Chen, S.Q.; Chen, B.; Fath, B.D. Ecological risk assessment on the system scale: A review of state-of-the-art models and future perspectives. Ecol. Modell. 2013, 250, 25–33. [Google Scholar] [CrossRef]
- Del Signore, A.; Hendriks, A.J.; Lenders, H.J.R.; Leuven, R.; Breure, A.M. Development and application of the SSD approach in scientific case studies for ecological risk assessment. Environ. Toxicol. Chem. 2016, 35, 2149–2161. [Google Scholar] [CrossRef]
- Haque, M.R.; Ali, M.M.; Ahmed, W.; Rahman, M.M. Assessment of metal(loid)s pollution in water and sediment from an urban river in Bangladesh: An ecological and health risk appraisals. Case Stud. Chem. Environ. 2022, 6, 100272. [Google Scholar] [CrossRef]
- How, C.M.; Kuo, Y.H.; Huang, M.L.; Liao, V.H.C. Assessing the ecological risk and ecotoxicity of the microbially mediated restoration of heavy metal-contaminated river sediment. Sci. Total Environ. 2023, 858, 159732. [Google Scholar] [CrossRef]
- Suter, G.W. Applicability of indicator monitoring to ecological risk assessment. Ecol. Indic. 2001, 1, 101–112. [Google Scholar] [CrossRef]
- Sergeant, A. Management objectives for ecological risk assessment-developments at US EPA. Environ. Sci. Policy 2000, 3, 295–298. [Google Scholar] [CrossRef]
- Jahandari, A.; Abbasnejad, A.; Jamasb, R. Concentration, likely sources, and ecological risk assessment of potentially toxic elements in urban soils of Shiraz City, SW Iran: A preliminary assessment. Arab. J. Geosci. 2020, 13, 936. [Google Scholar] [CrossRef]
- Ran, C.; Bai, X.Y.; Tan, Q.; Luo, G.J.; Cao, Y.; Wu, L.H.; Chen, F.; Li, C.J.; Luo, X.L.; Liu, M.; et al. Threat of soil formation rate to health of karst ecosystem. Sci. Total Environ. 2023, 887, 163911. [Google Scholar] [CrossRef]
- Kayumba, P.M.; Chen, Y.N.; Mind’je, R.; Mindje, M.; Li, X.Y.; Maniraho, A.P.; Umugwaneza, A.; Uwamahoro, S. Geospatial land surface-based thermal scenarios for wetland ecological risk assessment and its landscape dynamics simulation in Bayanbulak Wetland, Northwestern China. Landscape Ecol. 2021, 36, 1699–1723. [Google Scholar] [CrossRef]
- Watson, C.S.; Quincey, D.J.; Carrivick, J.L.; Smith, M.W. The dynamics of supraglacial ponds in the Everest region, central Himalaya. Glob. Planet. Change 2016, 142, 14–27. [Google Scholar] [CrossRef]
- Wangchuk, S.; Bolch, T.; Zawadzki, J. Towards automated mapping and monitoring of potentially dangerous glacial lakes in Bhutan Himalaya using Sentinel-1 Synthetic Aperture Radar data. Int. J. Remote Sens. 2019, 40, 4642–4667. [Google Scholar] [CrossRef]
- Li, C.J.; Bai, X.Y.; Tan, Q.; Luo, G.J.; Wu, L.H.; Chen, F.; Xi, H.P.; Luo, X.L.; Ran, C.; Chen, H.; et al. High-resolution mapping of the global silicate weathering carbon sink and its long-term changes. Glob. Change Biol. 2022, 28, 4377–4394. [Google Scholar] [CrossRef] [PubMed]
- Hobbie, S.E.; Finlay, J.C.; Janke, B.D.; Nidzgorski, D.A.; Millet, D.B.; Baker, L.A. Contrasting nitrogen and phosphorus budgets in urban watersheds and implications for managing urban water pollution. Proc. Natl. Acad. Sci. USA 2017, 114, 4177–4182. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.L.; Liu, Y.S.; Wang, Y.S.; Hu, X.D. Assessment and analysis of agricultural non-point source pollution loads in China: 1978–2017. J. Environ. Manag. 2020, 263, 110400. [Google Scholar] [CrossRef] [PubMed]
- Bouwman, L. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proc. Natl. Acad. Sci. USA 2013, 110, 20882–20887. [Google Scholar] [CrossRef]
- Ahmad, Z.U.; Shou, W.; Gang, D.D. Nonpoint source pollution. Water Environ. Res. 2017, 86, 1875–1894. [Google Scholar] [CrossRef] [Green Version]
- Jia, Z.; Tang, S.; Luo, W.; Hai, Y. Water quality improvement through five constructed serial wetland cells and its implications on nonpoint-source pollution control. Hydrol. Sci. J. 2016, 61, 2946–2956. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Yu, W.; Shi, J.; Wang, J.; Xu, F.; Shen, Z. Development of regional pollution export coefficients based on artificial rainfall experiments and its application in North China. Int. J. Environ. Sci. Technol. 2017, 14, 823–832. [Google Scholar] [CrossRef]
- Ongley, E.D.; Zhang, X.; Yu, T. Current status of agricultural and rural non-point source Pollution assessment in China. Environ. Pollut. 2010, 158, 1159–1168. [Google Scholar] [CrossRef] [PubMed]
- Collick, A.S.; Fuka, D.R.; Kleinman, P.J.A.; Buda, A.R.; Weld, J.L.; White, M.J.; Veith, T.L.; Bryant, R.B.; Bolster, C.H.; Easton, Z.M. Predicting phosphorus dynamics in complex terrains using a variable source area hydrology model. Hydrol. Process. 2015, 29, 588–601. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Dang, W.; Liu, Y.; Zong, M.; Hu, X. Review on landscape ecological risk assessment. Acta Geogr. Sin. 2015, 70, 664–677. [Google Scholar]
- Cao, C.; Wang, S.; Li, J.; Zhao, H.; Shen, W.; Xie, Y. MODIS-based monitoring of spatial distribution of trophic status in 144 key lakes and reservoirs of China in summer of 2018. J. Lake Sci. 2021, 33, 405–413. [Google Scholar]
- Ma, L.; Bo, J.; Li, X.; Fang, F.; Cheng, W. Identifying key landscape pattern indices influencing the ecological security of inland river basin: The middle and lower reaches of Shule River Basin as an example. Sci. Total Environ. 2019, 674, 424–438. [Google Scholar] [CrossRef]
- Bhattachan, A.; Emanuel, R.E.; Ardon, M.; Bernhardt, E.S.; Anderson, S.M.; Stillwagon, M.G.; Ury, E.A.; BenDor, T.K.; Wright, J.P. Evaluating the effects of and-use change and future climate change on vulnerability of coastal landscapes to saltwater intrusion. Elementa-Sci. Anthrop. 2018, 6, 62. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Chang, W.J.; Zhu, Z.C.; Hui, Z. Landscape ecological risk assessment of Chinese coastal cities based on land use change. Appl. Geogr. 2020, 117, 102174. [Google Scholar] [CrossRef]
- Xu, Y.; Tang, H.; Wang, B.; Chen, J. Effects of landscape patterns on soil erosion processes in a mountain-basin system in the North China. Nat. Hazards 2017, 87, 1567–1585. [Google Scholar] [CrossRef]
- Chen, L.; Sun, R.; Lu, Y. A conceptual model for a process-oriented landscape pattern analysis. Sci. China Earth Sci. 2019, 62, 2050–2057. [Google Scholar] [CrossRef]
- Jiang, Z.; Liu, H.; Wang, H.; Peng, J.; Meersmans, J.; Green, S.M.; Quine, T.A.; Wu, X.; Song, Z. Bedrock geochemistry influences vegetation growth by regulating the regolith water holding capacity. Nat. Commun. 2020, 11, 2392. [Google Scholar] [CrossRef]
- Kast, J.B.; Apostel, A.M.; Kalcic, M.M.; Muenich, R.L.; Dagnew, A.; Long, C.M.; Evenson, G.; Martin, J.F. Source contribution to phosphorus loads from the Maumee River watershed to Lake Erie. J. Environ. Manag. 2021, 279, 111803. [Google Scholar] [CrossRef]
- Ma, R.; Yang, G.; Duan, H.; Jiang, J.; Wang, S.; Feng, X.; Li, A.; Kong, F.; Xue, B.; Wu, J.; et al. China’s lakes at present: Number, area and spatial distribution. Sci. China Earth Sci. 2011, 54, 283–289. [Google Scholar] [CrossRef]
- Shi, K.; Zhang, Y.; Zhou, Y.; Liu, X.; Zhu, G.; Qin, B.; Gao, G. Long-term MODIS observations of cyanobacterial dynamics in Lake Taihu: Responses to nutrient enrichment and meteorological factors. Sci. Rep. 2017, 7, 40326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, Z.; Yu, Y.; Yi, Y. Spatial distribution of nutrient loads and thresholds in large shallow lakes: The case of Chaohu Lake, China. J. Hydrol. 2022, 613, 128466. [Google Scholar] [CrossRef]
- Xue, L.H.; Hou, P.F.; Zhang, Z.Y.; Shen, M.X.; Liu, F.X.; Yang, L.Z. Application of systematic strategy for agricultural non-point source pollution control in Yangtze River basin, China. Agric. Ecosyst. Environ. 2020, 304, 107148. [Google Scholar] [CrossRef]
- Xu, S.; Li, S.L.; Zhong, J.; Li, C. Spatial scale effects of the variable relationships between landscape pattern and water quality: Example from an agricultural karst river basin, Southwestern China. Agric. Ecosyst. Environ. 2020, 300, 106999. [Google Scholar] [CrossRef]
- Wei, S.; Pan, J.; Liu, X. Landscape ecological safety assessment and landscape pattern optimization in arid inland river basin: Take Ganzhou district as an example. Hum. Ecol. Risk Assess. 2020, 26, 782–806. [Google Scholar] [CrossRef]
- Bai, X.Y.; Shen, W.; Wang, P.; Chen, X.H.; He, Y.H. Response of Non-point Source Pollution Loads to Land Use Change under Different Precipitation Scenarios from a Future Perspective. Water Resour. Manag. 2020, 34, 3987–4002. [Google Scholar] [CrossRef]
- Hou, M.J.; Ge, J.; Gao, J.L.; Meng, B.P.; Li, Y.C.; Yin, J.P.; Liu, J.; Feng, Q.S.; Liang, T.G. Ecological Risk Assessment and Impact Factor Analysis of Alpine Wetland Ecosystem Based on LUCC and Boosted Regression Tree on the Zoige Plateau, China. Remote Sens. 2020, 12, 368. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.L.; Ni, J.P.; Chen, C.L.; Xie, D.T.; Shao, J.A.; Chen, F.X.; Lei, P. Source-sink landscape spatial characteristics and effect on non-point source pollution in a small catchment of the Three Gorge Reservoir Region. J. Mount. Sci. 2018, 15, 327–339. [Google Scholar] [CrossRef]
- Wang, R.J.; Wang, Y.; Sun, S.Y.; Cai, C.J.; Zhang, J.F. Discussing on “source-sink” landscape theory and phytoremediation for non-point source pollution control in China. Environ. Sci. Pollut. Res. 2020, 27, 44797–44806. [Google Scholar] [CrossRef]
- Haruna, A.J.; Biswajeet, P.; Azmin, S.W.N.; Rohaizah, J.N. Long-term runoff dynamics assessment measured through land use/cover (LULC) changes in a tropical complex catchment. Environ. Syst. Decis. 2018, 39, 16–33. [Google Scholar]
- Ortolani, V. Land use and its effects on water quality using the BASINS model. Environ. Earth Sci. 2014, 71, 2059–2063. [Google Scholar] [CrossRef]
- Lin, X.; Wang, Z. Landscape ecological risk assessment and its driving factors of multi-mountainous city. Ecol. Indic. 2023, 146, 109823. [Google Scholar] [CrossRef]
- Kaendler, M.; Blechinger, K.; Seidler, C.; Pavlu, V.; Sanda, M.; Dostal, T.; Krasa, J.; Vitvar, T.; Stich, M. Impact of land use on water quality in the upper Nisa catchment in the Czech Republic and in Germany. Sci. Total Environ. 2017, 586, 1316–1325. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Cheng, X.; Chen, L. A precipitation-weighted landscape structure model to predict potential pollution contributions at watershed scales. Landsc. Ecol. 2018, 33, 1603–1616. [Google Scholar] [CrossRef]
- Shen, Z.Y.; Zhong, Y.C.; Huang, Q.; Chen, L. Identifying non-point source priority management areas in watersheds with multiple functional zones. Water Res. 2015, 68, 563–571. [Google Scholar] [CrossRef]
- Rounce, D.R.; Watson, C.S.; McKinney, D.C. Identification of hazard and risk for glacial lakes in the Nepal Himalaya using satellite imagery from 2000–2015. Remote Sens. 2017, 9, 654. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Du, P.; Huang, H.; Ge, Y.; Li, X. Modeling agricultural non-point source pollution in a high-precipitation coastal area of China. Front. Environ. Sci. Eng. 2014, 8, 922–928. [Google Scholar] [CrossRef]
- Li, H.; Liu, L.; Ji, X. Modeling the relationship between landscape characteristics and water quality in a typical highly intensive agricultural small watershed, Dongting lake basin, south central China. Environ. Monit. Assess. 2015, 187, 129. [Google Scholar] [CrossRef]
- Wang, W.; Chen, L.; Shen, Z. Dynamic export coefficient model for evaluating the effects of environmental changes on non-point source pollution. Sci. Total Environ. 2020, 747, 141164. [Google Scholar] [CrossRef]
- Wang, J.L.; Chen, C.L.; Ni, J.P.; Xie, D.T.; Guo, X.; Luo, Z.J.; Zhao, Y. Assessing effects of “source-sink” landscape on non-point source pollution based on cell units of a small agricultural catchment. J. Mount. Sci. 2019, 16, 2048–2062. [Google Scholar] [CrossRef]
- Xu, F.; Zhou, X.; Meng, Q.; Zhang, Y. Remote sensing identification and evaluation of non-point source pollution risk of drinking water source based onsource-sinklandscape. Acta Geogr. Sin. 2020, 40, 2609–2620. (In Chinese) [Google Scholar]
- Zhang, B.L.; Cui, B.H.; Zhang, S.M.; Wu, Q.Y.; Yao, L. Source apportionment of nitrogen and phosphorus from non-point source pollution in Nansi Lake Basin, China. Environ. Sci. Pollut. Res. 2018, 25, 19101–19113. [Google Scholar] [CrossRef] [PubMed]
- Hao, G.R.; Li, J.K.; Li, S.; Li, K.B.; Zhang, Z.H.; Li, H.E. Quantitative assessment of non-point source pollution load of PN/PP based on RUSLE model: A case study in Beiluo River Basin in China. Environ. Sci. Pollut. Res. 2020, 27, 33975–33989. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Shao, J.a.; Wang, D.; Ni, J.; Xie, D. Identification of the “source” and “sink” patterns influencing non-point source pollution in the Three Gorges Reservoir Area. J. Geogr. Sci. 2016, 26, 1431–1448. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, S.; Zhao, C.; Bai, J.; Lou, H.; Chen, K.; Wu, L.; Dong, G.; Zhou, Q. Assessment of non-point source total phosphorus pollution from different land use and soil types in a mid-high latitude region of China. Water 2016, 8, 505. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Zhou, Z.; Zhao, Z.; Li, W.; Li, Q. Risk assessment of non-point source pollution in karst reservoirs based on ‘source-sink’ landscape theory. Water Supply 2022, 22, 6094–6110. [Google Scholar] [CrossRef]
- Ding, Y.L.; Zheng, X.M.; Zhao, K.; Xin, X.P.; Liu, H.J. Quantifying the impact of NDVIsoil determination methods and NDVIsoil variability on the estimation of fractional vegetation cover in northeast China. Remote Sens. 2016, 8, 29. [Google Scholar] [CrossRef] [Green Version]
- Xiao, B.Q.; Bai, X.Y.; Zhao, C.W.; Tan, Q.; Li, Y.B.; Luo, G.J.; Wu, L.H.; Chen, F.; Li, C.J.; Ran, C.; et al. Responses of carbon and water use efficiencies to climate and land use changes in China’s karst areas. J. Hydrol. 2023, 617, 128968. [Google Scholar] [CrossRef]
Data Type | Context | Source |
---|---|---|
Remote sensing data | Landsat5 (1990/09, 1994/10, 2002/08, 2007/05, 2009/11); Landsat8-OLI (2017/4, 2020/03, 2022/9) | http://www.gscloud.cn (accessed on 11 October 2022 |
Meteorological data | Annual rainfall (1990–2022) | Meteorological Bureau of Guizhou Province and references |
Topographic and soil data | DEM | http://www.gscloud.cn (accessed on 11 October 2022) |
Amount of fertilizer | Annual nitrogen and phosphorus inputs (1990–2022) | Guizhou Statistical Yearbook (1990–2022) and other references |
Landscape Type | Ratio of TN Discharge (Absorption) Coefficient | Ratio of TP Discharge (Absorption) Coefficient | Weight of TN Discharge (Absorption) | Weight of TP Discharge (Absorption) |
---|---|---|---|---|
Construction land | 7.13 | 1.32 | 1 | 1 |
Cultivated land | 0.84 | 0.25 | 0.12 | 0.19 |
Forest | 5.56 | 0.53 | 0.78 | 0.4 |
Grassland | 4.53 | 0.45 | 0.64 | 0.34 |
Water | 0 | 0 | 0.01 | 0.03 |
Unused land | 0 | 0 | 0.24 | 0.1 |
Landscape Type | 1990 | 1994 | 2002 | 2007 | 2011 | 2017 | 2022 |
---|---|---|---|---|---|---|---|
Cultivated land | 1107.56 | 1016.90 | 838.60 | 835.73 | 746.54 | 583.04 | 605.20 |
Forest | 672.80 | 715.11 | 907.06 | 921.86 | 826.90 | 915.65 | 853.04 |
Grassland | 35.90 | 45.36 | 35.77 | 13.01 | 11.68 | 101.56 | 95.68 |
Construction land | 43.39 | 55.25 | 50.56 | 91.95 | 242.57 | 250.68 | 285.57 |
Unused land | 0.10 | 0.02 | 0.15 | 1.74 | 8.63 | 0.01 | 1.49 |
Water | 55.27 | 82.36 | 82.87 | 50.72 | 78.68 | 64.08 | 74.04 |
Year | Risk Level | I | II | III | IV | V |
---|---|---|---|---|---|---|
1990 | Number of sub-watersheds | 103 | 267 | 106 | 12 | 7 |
Area | 380.34 | 1038.82 | 437.55 | 38.52 | 19.78 | |
1994 | Number of sub-watersheds | 105 | 272 | 102 | 10 | 6 |
Area | 403.55 | 1073.74 | 387.50 | 32.24 | 17.99 | |
2002 | Number of sub-watersheds | 94 | 330 | 63 | 3 | 5 |
Area | 391.03 | 1277.09 | 224.08 | 9.53 | 13.27 | |
2007 | Number of sub-watersheds | 156 | 242 | 74 | 15 | 8 |
Area | 639.94 | 905.92 | 286.57 | 56.59 | 25.99 | |
2011 | Number of sub-watersheds | 71 | 245 | 118 | 27 | 34 |
Area | 261.1050 | 960.79 | 445.08 | 124.28 | 123.76 | |
2017 | Number of sub-watersheds | 98 | 275 | 85 | 10 | 27 |
Area | 397.99 | 1089.58 | 295.08 | 34.18 | 98.17 | |
2022 | Number of sub-watersheds | 20 | 315 | 124 | 13 | 23 |
Area | 74.79 | 1248.56 | 457.23 | 50.18 | 84.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Zhao, W.; Lv, S.; Huang, D.; Zhao, Z.; Sun, Y. Spatiotemporal Transfer of Source-Sink Landscape Ecological Risk in a Karst Lake Watershed Based on Sub-Watersheds. Land 2023, 12, 1330. https://doi.org/10.3390/land12071330
Zhou Z, Zhao W, Lv S, Huang D, Zhao Z, Sun Y. Spatiotemporal Transfer of Source-Sink Landscape Ecological Risk in a Karst Lake Watershed Based on Sub-Watersheds. Land. 2023; 12(7):1330. https://doi.org/10.3390/land12071330
Chicago/Turabian StyleZhou, Zhongfa, Weiquan Zhao, Sisi Lv, Denghong Huang, Zulun Zhao, and Yaopeng Sun. 2023. "Spatiotemporal Transfer of Source-Sink Landscape Ecological Risk in a Karst Lake Watershed Based on Sub-Watersheds" Land 12, no. 7: 1330. https://doi.org/10.3390/land12071330
APA StyleZhou, Z., Zhao, W., Lv, S., Huang, D., Zhao, Z., & Sun, Y. (2023). Spatiotemporal Transfer of Source-Sink Landscape Ecological Risk in a Karst Lake Watershed Based on Sub-Watersheds. Land, 12(7), 1330. https://doi.org/10.3390/land12071330