Landslide Susceptibility Assessment for Maragheh County, Iran, Using the Logistic Regression Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Studied Case Location
2.2. Principle of Logistic Regression
2.3. Logistic Regression Verification
2.4. Comparative Justifications
2.5. Model Implementation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lombardo, L.; Mai, P.M. Presenting logistic regression-based landslide susceptibility results. Eng. Geol. 2018, 244, 14–24. [Google Scholar] [CrossRef]
- Aditian, A.; Kubota, T.; Shinohara, Y. Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia. Geomorphology 2018, 318, 101–111. [Google Scholar] [CrossRef]
- Sevgen, E.; Kocaman, S.; Nefeslioglu, H.A.; Gokceoglu, C. A novel performance assessment approach using photogrammetric techniques for landslide susceptibility mapping with logistic regression, ANN and random forest. Sensors 2019, 19, 3940. [Google Scholar] [CrossRef] [Green Version]
- Nhu, V.H.; Shirzadi, A.; Shahabi, H.; Singh, S.K.; Al-Ansari, N.; Clague, J.J.; Ahmad, B.B. Shallow landslide susceptibility mapping: A comparison between logistic model tree, logistic regression, naïve bayes tree, artificial neural network, and support vector machine algorithms. Int. J. Environ. Res. Public Health 2020, 17, 2749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrara, A. Multivariate methods for landslide hazard evaluation. Math. Geol. 1983, 15, 403–426. [Google Scholar] [CrossRef]
- Abeysiriwardana, H.D.; Gomes, P.I. Integrating vegetation indices and geo-environmental factors in GIS-based landslide-susceptibility mapping: Using logistic regression. J. Mount. Sci. 2022, 19, 477–492. [Google Scholar] [CrossRef]
- Oehorst, B.A.N.; Kjekstad, O.; Patel, D.; Lubkowski, Z.; Knoeff, J.G.; Akkerman, G.J. Workpackage, Determination of Socio-Economic Impact of Natural Disasters. J. Assess. Socio-Econ. Impact Eur. 2005, 173, 1–14. [Google Scholar]
- Guzzetti, F.; Carrarra, A.; Cardinali, M.; Reichenbach, P. Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 1999, 31, 181–216. [Google Scholar] [CrossRef]
- Azarafza, M.; Azarafza, M.; Akgün, H.; Atkinson, P.M.; Derakhshani, R. Deep learning-based landslide susceptibility mapping. Sci. Rep. 2021, 11, 24112. [Google Scholar] [CrossRef]
- Ayalew, L.; Yamagishi, H. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 2005, 65, 15–31. [Google Scholar] [CrossRef]
- Lee, S.; Pradhan, B. Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 2007, 4, 33–41. [Google Scholar] [CrossRef]
- Budimir, M.E.A.; Atkinson, P.M.; Lewis, H.G. A systematic review of landslide probability mapping using logistic regression. Landslides 2015, 12, 419–436. [Google Scholar] [CrossRef] [Green Version]
- Nanehkaran, Y.A.; Mao, Y.; Azarafza, M.; Kockar, M.K.; Zhu, H.H. Fuzzy-based multiple decision method for landslide susceptibility and hazard assessment: A case study of Tabriz, Iran. Geomech. Eng. 2021, 24, 407–418. [Google Scholar]
- Nikoobakht, S.; Azarafza, M.; Akgün, H.; Derakhshani, R. Landslide Susceptibility Assessment by Using Convolutional Neural Network. Appl. Sci. 2022, 12, 5992. [Google Scholar] [CrossRef]
- Nefeslioglu, H.A.; Duman, T.Y.; Durmaz, S. Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Easten Black Sea Region of Turkey). Geomorphology 2008, 94, 401–418. [Google Scholar] [CrossRef]
- Bai, S.B.; Wang, J.; Lü, G.N.; Zhou, P.G.; Hou, S.S.; Xu, S.N. GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China. Geomorphology 2010, 115, 23–31. [Google Scholar] [CrossRef]
- Bui, D.T.; Tuan, T.A.; Klempe, H.; Pradhan, B.; Revhaug, I. Spatial prediction models for shallow landslide hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 2016, 13, 361–378. [Google Scholar]
- Bui, D.T.; Lofman, O.; Revhaug, I.; Dick, O. Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression. Nat. Hazards 2011, 59, 1413–1444. [Google Scholar] [CrossRef]
- Ebrahimi, Z. Investigating the causes of landslides in the west of Mazandaran province. In Proceedings of the First International Congress of Earth, Space and Clean Energy, Ardabil, Iran, 5 November 2015. [Google Scholar]
- Raja, N.B.; Çiçek, I.; Türkoğlu, N.; Aydin, O.; Kawasaki, A. Landslide susceptibility mapping of the Sera River Basin using logistic regression model. Nat. Hazards 2017, 85, 1323–1346. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Lin, Q.; Wang, Y. Landslide susceptibility mapping on a global scale using the method of logistic regression. Nat. Hazards Earth Syst. Sci. 2017, 17, 1411–1424. [Google Scholar] [CrossRef] [Green Version]
- Leoni, G.; Barchiesi, F.; Catallo, F.; Dramis, F.; Fubelli, G.; Lucifora, S.; Mattei, M.; Pezzo, G.; Puglisi, C. GIS methodology to assess landslide susceptibility: Application to a river catchment of Central Italy. J. Maps 2009, 5, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Ercanoğlu, M.; Gökçeoğlu, C. Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey). Eng. Geol. 2004, 75, 229–250. [Google Scholar] [CrossRef]
- Othman, A.N.; Naim, W.M.; Noraini, S. GIS based multi-criteria decision making for landslide hazard zonation. Proc. Soc. Behav. Sci. 2012, 35, 595–602. [Google Scholar] [CrossRef] [Green Version]
- Vahidnia, M.H.; Alesheikh, A.A.; Alimohammadi, A.; Hosseinali, F. A GIS-based neurofuzzy procedure for integrating knowledge and data in landslide susceptibility mapping. Comput. Geosci. 2010, 36, 1101–1114. [Google Scholar] [CrossRef]
- Okalp, K.; Akgün, H. National level landslide susceptibility assessment of Turkey utilizing public domain dataset. Environ. Earth Sci. 2016, 75, 847. [Google Scholar] [CrossRef]
- Zêzere, J.L.; Pereira, S.; Melo, R.; Oliveira, S.C.; Garcia, R.A.C. Mapping landslide susceptibility using data-driven methods. Sci. Total Environ. 2017, 589, 250–267. [Google Scholar] [CrossRef]
- Azarafza, M.; Ghazifard, A.; Akgün, H.; Asghari-Kaljahi, E. Landslide susceptibility assessment of South Pars Special Zone, southwest Iran. Environ. Earth Sci. 2018, 77, 805. [Google Scholar] [CrossRef]
- Trigila, A.; Iadanza, C.; Esposito, C.; Scarascia-Mugnozza, G. Comparison of Logistic Regression and Random Forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy). Geomorphology 2015, 249, 119–136. [Google Scholar] [CrossRef]
- Chen, W.; Shahabi, H.; Zhang, S.; Khosravi, K.; Shirzadi, A.; Chapi, K.; Pham, B.T.; Zhang, T.; Zhang, L.; Chai, H.; et al. Landslide Susceptibility Modeling Based on GIS and Novel Bagging-Based Kernel Logistic Regression. Appl. Sci. 2018, 8, 2540. [Google Scholar] [CrossRef] [Green Version]
- Abedini, M.; Ghasemian, B.; Shirzadi, A.; Shahabi, H.; Chapi, K.; Pham, B.T.; Bui, D.T. A novel hybrid approach of bayesian logistic regression and its ensembles for landslide susceptibility assessment. Geocarto Int. 2019, 34, 1427–1457. [Google Scholar] [CrossRef]
- Sujatha, E.R.; Sridhar, V. Landslide susceptibility analysis: A logistic regression model case study in Coonoor, India. Hydrology 2021, 8, 41. [Google Scholar] [CrossRef]
- Shan, Y.; Chen, S.; Zhong, Q. Rapid prediction of landslide dam stability using the logistic regression method. Landslides 2020, 17, 2931–2956. [Google Scholar] [CrossRef]
- Hosmer, D.W.; Lemeshow, J.S.; Sturdivant, R.X. Applied Logistic Regression, 3rd ed.; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- Lee, S.; Choi, J.; Min, K. Probabilistic landslide hazard mapping using GIS and remote sensing data at Boun, Korea. Int. J. Rem. Sens. 2004, 25, 2037–2052. [Google Scholar] [CrossRef]
- Ayalew, L.; Ymagishi, H.; Marui, H.; Kanno, T. GIS-based susceptibility mapping with comparisons of result from methods and verifications. J. Eng. Geol. 2005, 81, 432–445. [Google Scholar] [CrossRef]
- Lee, S.; Sambath, T. Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models. J. Environ. Geol. 2006, 50, 847–855. [Google Scholar] [CrossRef]
- Yalcin, A. A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena 2011, 85, 274–287. [Google Scholar] [CrossRef]
- Ozdemir, A. GIS-based groundwater spring potential mapping in the Sultan Mountains (Konya, Turkey) using frequency ratio, weights of evidence and logistic regression methods and their comparison. J. Hydrol. 2011, 411, 290–308. [Google Scholar] [CrossRef]
- Shahabi, H.; Hashim, M.; Ahmad, B.B. Remote sensing and GIS-based landslide susceptibility mapping using frequency ratio, logistic regression, and fuzzy logic methods at the central Zab basin, Iran. Environ. Earth Sci. 2015, 73, 8647–8668. [Google Scholar] [CrossRef]
- Tekin, S. Completeness of landslide inventory and landslide susceptibility mapping using logistic regression method in Ceyhan Watershed (southern Turkey). Arab. J. Geosci. 2021, 14, 1706. [Google Scholar] [CrossRef]
- Nwazelibe, V.E.; Unigwe, C.O.; Egbueri, J.C. Integration and comparison of algorithmic weight of evidence and logistic regression in landslide susceptibility mapping of the Orumba North erosion-prone region, Nigeria. Model. Earth Syst. Environ. 2023, 9, 967–986. [Google Scholar] [CrossRef]
- Gu, T.; Li, J.; Wang, M.; Duan, P. Landslide susceptibility assessment in Zhenxiong County of China based on geographically weighted logistic regression model. Geocarto Int. 2022, 37, 4952–4973. [Google Scholar] [CrossRef]
- Azarafza, M.; Mokhtari, M.H. Evaluation of drought effect on Urmia Lake salinity changes using remote sensing techniques. Arid Biome Sci. Res. J. 2013, 3, 1–14. [Google Scholar]
- Iran Meteorological Organization (IMO). Climatological Data from Maragheh Station; The Iran Meteorological Organization: Tehran, Iran, 2022; Available online: http://www.irimo.ir/ (accessed on 5 October 2022).
- Geological Survey of Iran (GSI). Geological Map of Maragheh City in Scale: 1:100000 (Map Sheet); Geological Survey of Iran Press, Maps Unit: Tehran, Iran, 2009. [Google Scholar]
- Reichenbach, P.; Rossi, M.; Malamud, B.D.; Mihir, M.; Guzzetti, F. A review of statistically-based landslide susceptibility models. Earth-Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Fox, J. An R Companion to Applied Regression; SAGE Publications: Thousand Oaks, CA, USA, 2011. [Google Scholar]
- Adnan, M.S.G.; Rahman, M.S.; Ahmed, N.; Ahmed, B.; Rabbi, M.F.; Rahman, R.M. Improving spatial agreement in machine learning-based landslide susceptibility mapping. Rem. Sens. 2020, 12, 3347. [Google Scholar] [CrossRef]
- Huang, F.; Teng, Z.; Guo, Z.; Catani, F.; Huang, J. Uncertainties of landslide susceptibility prediction: Influences of different spatial resolutions, machine learning models and proportions of training and testing dataset. Rock Mech. Bull. 2023, 2, 100028. [Google Scholar] [CrossRef]
- Discacciati, A.; Orsini, N.; Greenland, S. Approximate Bayesian logistic regression via penalized likelihood by data augmentation. Stata J. 2015, 15, 712–736. [Google Scholar] [CrossRef] [Green Version]
- O’brien, S.M.; Dunson, D.B. Bayesian multivariate logistic regression. Biometrics 2004, 60, 739–746. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Blaschke, T.; Gholamnia, K.; Meena, S.R.; Tiede, D.; Aryal, J. Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection. Rem. Sens. 2019, 11, 196. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Fam, P.S.; Tay, L.T.; Low, H.C. Three oversampling methods applied in a comparative landslide spatial research in Penang Island, Malaysia. SN Appl. Sci. 2020, 2, 1512. [Google Scholar] [CrossRef]
- Soma, A.S.; Kubota, T.; Mizuno, H. Optimization of causative factors using logistic regression and artificial neural network models for landslide susceptibility assessment in Ujung Loe Watershed, South Sulawesi Indonesia. J. Mount. Sci. 2019, 16, 383–401. [Google Scholar] [CrossRef]
- Feby, B.; Achu, A.L.; Jimnisha, K.; Ayisha, V.A.; Reghunath, P. Landslide susceptibility modelling using integrated evidential belief function based logistic regression method: A study from Southern Western Ghats, India. Remote Sens. Appl. Soc. Environ. 2020, 20, 100411. [Google Scholar] [CrossRef]
- Dai, F.C.; Lee, C.F. Landslide characteristics and slope instability modeling using GIS, Lantau, Hong Kong. Geomorphology 2002, 42, 213–228. [Google Scholar] [CrossRef]
- Aggarwal, C.C. Neural Networks and Deep Learning: A Textbook; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Müller, A.C.; Guido, S. Introduction to Machine Learning with Python: A Guide for Data Scientists; O’Reilly Media: Sevastopol, CA, USA, 2016. [Google Scholar]
- Mondal, B.; Koner, C.; Chakraborty, M.; Gupta, S. Detection and investigation of DDoS attacks in network traffic using machine learning algorithms. Int. J. Innov. Technol. Explor. Eng. 2022, 11, 1–6. [Google Scholar] [CrossRef]
- Luo, X.; Lin, F.; Chen, Y.; Zhu, S.; Xu, Z.; Huo, Z.; Peng, J. Coupling logistic model tree and random subspace to predict the landslide susceptibility areas with considering the uncertainty of environmental features. Sci. Rep. 2019, 9, 15369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Class | Predisposing Factors | Resolution | Variables | Data Source |
---|---|---|---|---|
Morphologic | Elevation | ±30 m | Continuous | DEM |
Slope aspect | ±30 m | Continuous | DEM | |
Slope angle | ±30 m | Continuous | DEM | |
Climatologic | Rainfall | ±30 m | Continuous | IMO * |
Geologic | Land use | ±30 m | Discrete | Geological data |
Lithology | ±30 m | Discrete | Geological data | |
Weathering | ±30 m | Discrete | Landsat TM, ETM+ | |
distance from faults | ±30 m | Continuous | DEM, Google Map | |
distance from river | ±30 m | Continuous | DEM, Google Map | |
Human related | distance from road | ±30 m | Continuous | DEM, Google Map |
distance from cities | ±30 m | Continuous | DEM, Google Map |
Model | AUC | Standard Error | Reliability | Expert Opinion |
---|---|---|---|---|
SVM | 0.862 | 0.0291 | Reliable | Reliable |
NB | 0.655 | 0.0445 | Need attention | Need attention |
DT | 0.591 | 0.0639 | Need attention | Need attention |
RF | 0.730 | 0.0308 | Reliable | Reliable |
LR | 0.885 | 0.0278 | Reliable | Reliable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cemiloglu, A.; Zhu, L.; Mohammednour, A.B.; Azarafza, M.; Nanehkaran, Y.A. Landslide Susceptibility Assessment for Maragheh County, Iran, Using the Logistic Regression Algorithm. Land 2023, 12, 1397. https://doi.org/10.3390/land12071397
Cemiloglu A, Zhu L, Mohammednour AB, Azarafza M, Nanehkaran YA. Landslide Susceptibility Assessment for Maragheh County, Iran, Using the Logistic Regression Algorithm. Land. 2023; 12(7):1397. https://doi.org/10.3390/land12071397
Chicago/Turabian StyleCemiloglu, Ahmed, Licai Zhu, Agab Bakheet Mohammednour, Mohammad Azarafza, and Yaser Ahangari Nanehkaran. 2023. "Landslide Susceptibility Assessment for Maragheh County, Iran, Using the Logistic Regression Algorithm" Land 12, no. 7: 1397. https://doi.org/10.3390/land12071397
APA StyleCemiloglu, A., Zhu, L., Mohammednour, A. B., Azarafza, M., & Nanehkaran, Y. A. (2023). Landslide Susceptibility Assessment for Maragheh County, Iran, Using the Logistic Regression Algorithm. Land, 12(7), 1397. https://doi.org/10.3390/land12071397