A GIS-Based Index of Physical Susceptibility to Flooding as a Tool for Flood Risk Management
Abstract
:1. Introduction
2. Literature Review
2.1. Flood Risk Management
2.2. Types of Floods
2.3. GIS and MCDM in Flood Risk Management
2.4. Climate Change Impacts
3. Materials and Methods
3.1. PhySFI Formulation
- EX and cY are weights assigned to indicators;
- IIMP—Imperviousness Indicator;
- IPROX—Proximity to Drainage Network Indicator;
- IE—Elevation Indicator;
- IS—Slope Indicator;
3.2. Case Study: Rio de Janeiro City
3.3. Formulation of the PhySFI Indicators
3.3.1. IS—Slope Indicator
3.3.2. IE—Elevation Indicator
3.3.3. IPROX—Proximity to Drainage Network Indicator
3.3.4. IIMP—Imperviousness Indicator
3.4. Climate Change Scenario Adaptation
4. Results
4.1. Canal de Sernambetiba Basin
4.2. Guerenguê Basin
4.3. Canal Do Mangue Basin
4.4. Acari Basin
4.5. PhySFI Final Formulation
4.6. Overview
4.7. Climate Change Scenario
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Merz, B.; Kreibich, H.; Schwarze, R.; Thieken, A. Review article “assessment of economic flood damage”. Nat. Hazards Earth Syst. Sci. 2010, 10, 1697–1724. [Google Scholar] [CrossRef]
- Whitfield, P. Floods in future climates: A review. J. Flood Risk Manag. 2012, 5, 336–365. [Google Scholar] [CrossRef]
- CRED. EM-DAT Public Database [WWW Document]. Centre for Research on the Epidemiology of Disasters. 2022. Available online: https://reliefweb.int/ (accessed on 4 May 2023).
- Wannous, C.; Velasquez, G. United Nations Office for Disaster Risk Reduction (UNISDR)—UNISDR’s Contribution to Science and Technology for Disaster Risk Reduction and the Role of the International Consortium on Landslides (ICL). Adv. Cult. Living Landslides 2017, 2017, 109–115. [Google Scholar] [CrossRef]
- World Bank. Urban Population (% of Total Population) [WWW Document]. United Nations Population Division. World Urbanization Prospects: 2018 Revision. 2022. Available online: https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS (accessed on 10 May 2023).
- Scheuler, T.R. Controlling Urban Runoff: A Practical Manual for Planning and Designing Urban BMPs; Metropolitan Washington Council of Governments: Washington, DC, USA, 1987.
- Hooke, J. Variations in flood magnitude–effect relations and the implications for flood risk assessment and river management. Geomorphology 2015, 251, 91–107. [Google Scholar] [CrossRef]
- De Oliveira, A.K.B.; Battemarco, B.P.; Barbaro, G.; Gomes, M.V.R.; Cabral, F.M.; Bezerra, R.d.O.P.; Rutigliani, V.D.A.; Lourenço, I.B.; Machado, R.K.; Rezende, O.M.; et al. Evaluating the Role of Urban Drainage Flaws in Triggering Cascading Effects on Critical Infrastructure, Affecting Urban Resilience. Infrastructures 2022, 7, 153. [Google Scholar] [CrossRef]
- Guimarães, L.; Battemarco, B.; Oliveira, A.; Miguez, M. A new approach to assess cascading effects of urban floods. Energy Rep. 2021, 7, 8357–8367. [Google Scholar] [CrossRef]
- Sayers, P.; Li, Y.; Galloway, G.; Penning-Rowsell, E.; Shen, F.; Kang, W.; Yiwei, C.; Le Quesne, T. Flood Risk Management: A Strategic Approach; Asian Development Bank: Metro Manila, Philippines, 2013; ISBN 9789230011598. [Google Scholar]
- Correia, F.N.; Da Graça Saraiva, M.; Nunes, F.; Silva, D.A.; Ramos, I. Floodplain Management in Urban Developing Areas. Part I. Urban Growth Scenarios and Land-Use Controls, Water Resources Management. Water Resour. Manag. 1999, 13, 1–21. [Google Scholar] [CrossRef]
- Shinde, S.; Pande, C.B.; Barai, V.N.; Gorantiwar, S.D.; Atre, A.A. Flood impact and damage assessment based on the sentitnel-1 SAR data using google earth engine. In Climate Change Impacts on Natural Resources, Ecosystems and Agricultural Systems; Springer International Publishing: Cham, Switzerland, 2023; pp. 483–502. [Google Scholar]
- Mudashiru, R.B.; Sabtu, N.; Abustan, I. Quantitative and semi-quantitative methods in flood hazard/susceptibility mapping: A review. Arab. J. Geosci. 2021, 14, 941. [Google Scholar] [CrossRef]
- Nguyen, N.-M.; Bahramloo, R.; Sadeghian, J.; Sepehri, M.; Nazaripouya, H.; Dinh, V.N.; Ghahramani, A.; Talebi, A.; Elkhrachy, I.; Pande, C.B.; et al. Ranking Sub-Watersheds for Flood Hazard Mapping: A Multi-Criteria Decision-Making Approach. Water 2023, 15, 2128. [Google Scholar] [CrossRef]
- Climate Change Adaptation Strategy for the City of Rio de Janeiro. Rio de Janeiro, RJ. 2016. Available online: http://www.rio.rj.gov.br/dlstatic/10112/9857523/4243336/ClimateChangeAdaptationStrategyfortheCityofRiodeJaneiro.pdf (accessed on 15 April 2023).
- Kobiyama, M.; Goerl, R.F. Quantitative method to distinguish flood and flash flood as disasters. SUISUI Hydrol. Res. Lett. 2007, 1, 11–14. [Google Scholar] [CrossRef] [Green Version]
- Silva, G.; Miguez, M.; Di Gregorio, L.T.; Veról, A.P. Vulnerability Index—Application and suitability of different methodologies applied to the municipality of Cuiabá, Mato Grosso-Brazil. E3S Web Conf. 2016, 7, 08013. [Google Scholar] [CrossRef]
- Rezende, O.M.; Miranda, F.M.; Haddad, A.N.; Miguez, M.G. A Framework to Evaluate Urban Flood Resilience of Design Alternatives for Flood Defence Considering Future Adverse Scenarios. Water 2019, 11, 1485. [Google Scholar] [CrossRef] [Green Version]
- Bertilsson, L.; Wiklund, K.; de Moura Tebaldi, I.; Rezende, O.M.; Veról, A.P.; Miguez, M.G. Urban flood resilience—A multi-criteria index to integrate flood resilience into urban planning. J. Hydrol. 2019, 573, 970–982. [Google Scholar] [CrossRef]
- European Parliament. Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the assessment and management of flood risks (Text with EEA relevance), 6.11.2007. Off. J. Eur. Union 2007, L288, 27–34. [Google Scholar]
- Merz, R.; Blöschl, G. A process typology of regional floods. Water Resour. Res. 2003, 39, 1340. [Google Scholar] [CrossRef]
- Cloutier, C.-A.; Buffin-Bélanger, T.; Larocque, M. Controls of groundwater floodwave propagation in a gravelly floodplain. J. Hydrol. 2014, 511, 423–431. [Google Scholar] [CrossRef] [Green Version]
- Zain, A.; Legono, D.; Rahardjo, A.P.; Jayadi, R. Review on Co-factors Triggering Flash Flood Occurrences in Indonesian Small Catchments. IOP Conf. Ser. Earth Environ. Sci. 2021, 930, 012087. [Google Scholar] [CrossRef]
- Correia, F.N.; Rego, F.C.; Saraiva, M.D.G.; Ramos, I. Coupling GIS with Hydrologic and Hydraulic Flood Modelling. Water Resour. Manag. 1998, 12, 229–249. [Google Scholar] [CrossRef]
- Malczewski, J. GIS-based multicriteria decision analysis: A survey of the literature. Int. J. Geogr. Inf. Sci. 2006, 20, 703–726. [Google Scholar] [CrossRef]
- Jacinto, R.; Grosso, N.; Reis, E.; Dias, L.; Santos, F.D.; Garrett, P. Continental Portuguese Territory Flood Susceptibility Index—Contribution to a vulnerability index. Nat. Hazards Earth Syst. Sci. 2015, 15, 1907–1919. [Google Scholar] [CrossRef] [Green Version]
- Kazakis, N.; Kougias, I.; Patsialis, T. Assessment of flood hazard areas at a regional scale using an index-based approach and Analytical Hierarchy Process: Application in Rhodope–Evros region, Greece. Sci. Total. Environ. 2015, 538, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. J. Hydrol. 2013, 504, 69–79. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Lee, M.-J.; Pradhan, B.; Jebur, M.N.; Lee, S. Flood susceptibility mapping using integrated bivariate and multivariate statistical models. Environ. Earth Sci. 2014, 72, 4001–4015. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Pradhan, B.; Mansor, S.; Ahmad, N. Flood susceptibility assessment using GIS-based support vector machine model with different kernel types. Catena 2015, 125, 91–101. [Google Scholar] [CrossRef]
- Cian, F.; Marconcini, M.; Ceccato, P. Normalized Difference Flood Index for rapid flood mapping: Taking advantage of EO big data Flood mapping. Remote Sens. Environ. 2018, 209, 712–730. [Google Scholar] [CrossRef]
- Bhattacharya, B.; Islam, T.; Masud, S.; Suman, A.; Solomatine, D. The use of a flood index to characterise flooding in the north-eastern region of Bangladesh. In Proceedings of the 3rd European Conference on Flood Risk Management, Lyon, France, 17–21 October 2016; Volume 10003, pp. 4–8. [Google Scholar]
- Zonensein, J.; Gomes Miguez, M.; Cesar, F.; Mascarenhas, B. Flood Risk Index as an Urban Management Tool. In Proceedings of the 11th International Conference on Urban Drainage, Edinburgh, UK, 31 August–5 September 2008. [Google Scholar]
- Zaharia, L.; Costache, R.; Prăvălie, R.; Ioana-Toroimac, G. Mapping flood and flooding potential indices: A methodological approach to identifying areas susceptible to flood and flooding risk. Case study: The Prahova catchment (Romania). Front. Earth Sci. 2017, 11, 229–247. [Google Scholar] [CrossRef]
- Miguez, M.G.; Raupp, I.P.; Veról, A.P. An integrated quantitative framework to support design of resilient alternatives to manage urban flood risks. J. Flood Risk Manag. 2018, 12, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Tebaldi, I.; Miguez, M.; Battemarco, B.O.; Rezende, O.M.; Veról, A.P. Resilience index for flood events: Joana river catchment study case. In Proceedings of the XXI Simpósio Brasileiro de Recursos Hídricos, Rio de Janeiro, Brazil, 22 November 2015; pp. 1–8. [Google Scholar]
- Batica, J.; Gourbesville, P. Flood Resilience Index-Methodology and Application Flood Resilience Index-Methodology and Application. 2014. Available online: https://academicworks.cuny.edu/cc_conf_hic/433Discoveradditionalworksat:https://academicworks.cuny.edu (accessed on 11 April 2023).
- Schwarz, I.; Ziegelaar, M.; Kelly, M.; Watkins, A.B.; Kuleshov, Y. Flood Resilience Assessment and Mapping: A Case Study from Australia’s Hawkesbury-Nepean Catchment. Climate 2023, 11, 39. [Google Scholar] [CrossRef]
- Mahmoud, S.H.; Gan, T.Y. Multi-criteria approach to develop flood susceptibility maps in arid regions of Middle East. J. Clean. Prod. 2018, 196, 216–229. [Google Scholar] [CrossRef]
- Campolo, M.; Soldati, A.; Andreussi, P. Artificial neural network approach to flood forecasting in the River Arno. Hydrol. Sci. J. 2003, 48, 381–398. [Google Scholar] [CrossRef]
- Pham, B.T.; Avand, M.; Janizadeh, S.; Van Phong, T.; Al-Ansari, N.; Ho, L.S.; Das, S.; Van Le, H.; Amini, A.; Bozchaloei, S.K.; et al. GIS Based Hybrid Computational Approaches for Flash Flood Susceptibility Assessment. Water 2020, 12, 683. [Google Scholar] [CrossRef] [Green Version]
- Rahmati, O.; Zeinivand, H.; Besharat, M. Flood hazard zoning in Yasooj region, Iran, using GIS and multi-criteria decision analysis. Geomat. Nat. Hazards Risk 2016, 7, 1000–1017. [Google Scholar] [CrossRef] [Green Version]
- Toye, J. Poverty reduction. Dev. Pract. 2007, 17, 505–510. [Google Scholar] [CrossRef]
- Viessman, W., Jr. Integrated water management. J. Contemp. Water Res. Educ. 2011, 106, 2. [Google Scholar] [CrossRef]
- Pörtner, H.-O.; Roberts, D.C.; Tignor, M.; Poloczanska, E.S.; Mintenbeck, K.; Alegría, A.; Craig, M.; Langsdorf, S.; Löschke, S.; Möller, V.; et al. IPCC, 2022: Climate Change 2022: Impacts, Adaptation, and Vulnerability. In Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar]
- Saito, N. Challenges for adapting Bangkok’s flood management systems to climate change. Urban Clim. 2014, 9, 89–100. [Google Scholar] [CrossRef]
- Cunge, J.A. Advances in Hydroinformatics; Springer: Berlin, Germany, 2014; pp. 5–18. [Google Scholar] [CrossRef]
- De Sousa, M.M.; de Oliveira, A.K.B.; Rezende, O.M.; de Magalhães, P.M.C.; Jacob, A.C.P.; de Magalhães, P.C.; Miguez, M.G. Highlighting the role of the model user and physical interpretation in urban flooding simulation. J. Hydroinform. 2022, 24, 976–991. [Google Scholar] [CrossRef]
- Kötter, T.; Vafeidis, A.; Moghadas, M.; Asadzadeh, A.; Fekete, A. A multi-criteria approach for assessing urban flood resilience in Tehran, Iran. Int. J. Disaster Risk Reduct. 2019, 35, 101069. [Google Scholar] [CrossRef]
- Miguez, M.G.; Battemarco, B.P.; De Sousa, M.M.; Rezende, O.M.; Veról, A.P.; Gusmaroli, G. Urban Flood Simulation Using MODCEL—An Alternative Quasi-2D Conceptual Model. Water 2017, 9, 445. [Google Scholar] [CrossRef] [Green Version]
- Miguez, M.G.; Mascarenhas, F.C.B.; Veról, A.P. MODCEL: A Mathematical Model for Urban Flood Simulation and Integrated Flood Control Design. In Proceedings of the Convegno Nazionale Di Idraulica Urbana, Venezia, Italy, 21–24 June 2011; pp. 1–17. [Google Scholar]
- Ouma, Y.O.; Tateishi, R. Urban Flood Vulnerability and Risk Mapping Using Integrated Multi-Parametric AHP and GIS: Methodological Overview and Case Study Assessment. Water 2014, 6, 1515–1545. [Google Scholar] [CrossRef] [Green Version]
- Boulomytis, V.T.G.; Zuffo, A.C.; Alam Imteaz, M. Assessment of flood susceptibility in coastal peri- urban areas: An alternative MCDA approach for ungauged catchments approach for ungauged catchments. Urban Water J. 2022, 1–13. [Google Scholar] [CrossRef]
- De Morisson Valeriano, M.; de Fátima Rossetti, D. Topodata: Brazilian full coverage refinement of SRTM data. Appl. Geogr. 2011, 32, 300–309. [Google Scholar] [CrossRef]
- Farr, T.G.; Kobrick, M. Shuttle radar topography mission produces a wealth of data. Eos Trans. Am. Geophys. Union 2000, 81, 583–585. [Google Scholar] [CrossRef]
- IBGE. Censo 2010. Brazilian Institute of Geography and Statistics. 2010. Available online: https://censo2010.ibge.gov.br/ (accessed on 10 April 2023).
- IBGE. Grade Estatística. Brazilian Institute of Geography and Statistics: Statistic Grid. 2016. Available online: https://geoftp.ibge.gov.br/recortes_para_fins_estatisticos/grade_estatistica/censo_2010/grade_estatistica.pdf (accessed on 22 June 2023).
- Burrough, P.A.; McDonell, R.A. Principles of Geographical Information Systems; Oxford University Press: Oxford, UK, 1998; p. 190. [Google Scholar]
- Nobre, A.D.; Cuartas, L.A.; Hodnett, M.; Rennó, C.D.; Rodrigues, G.; Silveira, A.; Waterloo, M.; Saleska, S. Height Above the Nearest Drainage—A hydrologically relevant new terrain model. J. Hydrol. 2011, 404, 13–29. [Google Scholar] [CrossRef] [Green Version]
- Wilken, P.S. Surface Drainage Engineering, 1st ed.; CETESB: São Paulo, Brazil, 1978. [Google Scholar]
- Horton, B.P.; Khan, N.S.; Cahill, N.; Lee, J.S.H.; Shaw, T.A.; Garner, A.J.; Kemp, A.C.; Engelhart, S.E.; Rahmstorf, S. Estimating global mean sea-level rise and its uncertainties by 2100 and 2300 from an expert survey. NPJ Clim. Atmos. Sci. 2020, 3, 18. [Google Scholar] [CrossRef]
- World Bank. Climate Change Knowledge Portal [WWW Document]. Proj. Sea Lev. Rise. 2022. Available online: https://climateknowledgeportal.worldbank.org/country/brazil/impacts-sea-level-rise (accessed on 8 May 2023).
- Tebaldi, C.; Ranasinghe, R.; Vousdoukas, M.; Rasmussen, D.J.; Vega-Westhoff, B.; Kirezci, E.; Kopp, R.E.; Sriver, R.; Mentaschi, L. Extreme sea levels at different global warming levels. Nat. Clim. Chang. 2021, 11, 746–751. [Google Scholar] [CrossRef]
- Luiz-Silva, W.; Oscar-Júnior, A.C. Climate extremes related with rainfall in the State of Rio de Janeiro, Brazil: A review of climatological characteristics and recorded trends. Nat. Hazards 2022, 114, 713–732. [Google Scholar] [CrossRef]
- Dereczynski, C.; Silva, W.L.; Marengo, J. Detection and Projections of Climate Change in Rio de Janeiro, Brazil. Am. J. Clim. Chang. 2013, 2, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Mascarenhas, F.C.B.; Miguez, M.G. Urban Flood Control through a Mathematical Cell Model. Water Int. 2002, 27, 208–218. [Google Scholar] [CrossRef]
- Miguez, M.G.; de Magalhães, L.P.C.; Dearaújo, F.F. Stepping towards sustainable urban drainage practices at Acari River basin in Rio de Janeiro. WIT Trans. Ecol. Environ. 2009, 122, 305–316. [Google Scholar] [CrossRef] [Green Version]
- Miguez, M.G.; de Magalhães, L.P.C. Urban Flood Control, Simulation and—An Integrated Approach. Intech Open 2010, 2, 64. [Google Scholar] [CrossRef] [Green Version]
- Miguez, M.G.; Veról, A.P.; Battemarco, B.P.; Yamamoto, L.M.T.; de Brito, F.A.; Fernandez, F.F.; Merlo, M.L.; Rego, A.Q. A framework to support the urbanization process on lowland coastal areas: Exploring the case of Vargem Grande—Rio de Janeiro, Brazil. J. Clean. Prod. 2019, 231, 1281–1293. [Google Scholar] [CrossRef]
- Rezende, O.M.; de Franco, A.B.R.; Oliveira, A.K.B.; Jacob, A.C.P.; Miguez, M.G. A Framework to Assess Urban Floods Resilience. In New Trends in Urban Drainage Modelling: UDM 2018; Mannina, G., Ed.; Springer: Cham, Switzerland, 2018; pp. 533–538. [Google Scholar] [CrossRef]
Slope for Drainage Categories | Slope Ranges (%) | Slope Indicator Value |
---|---|---|
Critical | ≤1.5 | 100 |
Acceptable | 1.5 < % ≤ 3.0 | 75 |
Adequate | 3.0 < % ≤ 5.0 | 50 |
Good | 5.0 < % ≤ 8.0 | 25 |
Very good | >8 | 0 |
Elevation (m) | Elevation Indicator Value |
---|---|
≤2.0 | 100 |
2.0 < E ≤ 3.0 | 75 |
3.0 < E ≤ 4.0 | 50 |
4.0 < E ≤ 5.0 | 25 |
>5 | 0 |
Distance (D) from Main River Network (m) | Slope (%) | ||||
---|---|---|---|---|---|
<1.5 | 1.5 < % < 3.0 | 3.0 < % < 5.0 | 5.0 < % < 8.0 | 5.0 < % < 8.0 | |
≤100 | 100 | 100 | 75 | 50 | 25 |
100 < D ≤ 200 | 100 | 75 | 50 | 25 | 0 |
200 < D ≤ 300 | 75 | 50 | 25 | 0 | 0 |
300 < D ≤ 400 | 50 | 25 | 0 | 0 | 0 |
400 < D ≤ 500 | 25 | 0 | 0 | 0 | 0 |
>500 | 0 | 0 | 0 | 0 | 0 |
Land Use | Runoff Coefficient/IIMP Values |
---|---|
Agricultural areas | 20 |
Services and business areas | 90 |
Education and health areas | 70 |
Mineral exploitation areas | 70 |
Recreational areas | 40 |
Transportation areas | 90 |
Non-built areas | 30 |
Public infrastructure and institutional areas | 70 |
Industrial areas | 90 |
Wetlands | 90 |
Exposed rocks | 90 |
Canopy | 10 |
Grass cover | 20 |
Water bodies | 100 |
Residential Areas (formal and slums) | |
Low density | 50 |
Medium density | 70 |
High density | 90 |
Elevation Ranges | Elevation Indicator Value | |
---|---|---|
Current Situation | Future Scenario (Sea Level Rise 1 m) | |
≤2.0 | ≤3.0 | 100 |
2.0 < E ≤ 3.0 | 3.0 < E ≤ 4.0 | 75 |
3.0 < E ≤ 4.0 | 4.0 < E ≤ 5.0 | 50 |
4.0 < E ≤ 5.0 | 5.0 < E ≤ 6.0 | 25 |
>5 | >6 | 0 |
Land Use | IIMP Values | |
---|---|---|
Current Situation | Future Scenario | |
Agricultural areas | 20 | 24 |
Services and business areas | 90 | 100 |
Education and health areas | 70 | 84 |
Mineral exploitation areas | 70 | 84 |
Recreational areas | 40 | 48 |
Transportation areas | 90 | 100 |
Non-built areas | 30 | 100 |
Public infrastructure and institutional areas | 70 | 84 |
Industrial areas | 90 | 36 |
Wetlands | 90 | 100 |
Exposed rocks | 90 | 100 |
Canopy | 10 | 12 |
Grass cover | 20 | 18 |
Water bodies | 100 | 100 |
Residential Areas (formal and slums) | ||
Low density | 50 | 60 |
Medium density | 70 | 84 |
High density | 90 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miranda, F.; Franco, A.B.; Rezende, O.; da Costa, B.B.F.; Najjar, M.; Haddad, A.N.; Miguez, M. A GIS-Based Index of Physical Susceptibility to Flooding as a Tool for Flood Risk Management. Land 2023, 12, 1408. https://doi.org/10.3390/land12071408
Miranda F, Franco AB, Rezende O, da Costa BBF, Najjar M, Haddad AN, Miguez M. A GIS-Based Index of Physical Susceptibility to Flooding as a Tool for Flood Risk Management. Land. 2023; 12(7):1408. https://doi.org/10.3390/land12071408
Chicago/Turabian StyleMiranda, Francis, Anna Beatriz Franco, Osvaldo Rezende, Bruno B. F. da Costa, Mohammad Najjar, Assed N. Haddad, and Marcelo Miguez. 2023. "A GIS-Based Index of Physical Susceptibility to Flooding as a Tool for Flood Risk Management" Land 12, no. 7: 1408. https://doi.org/10.3390/land12071408
APA StyleMiranda, F., Franco, A. B., Rezende, O., da Costa, B. B. F., Najjar, M., Haddad, A. N., & Miguez, M. (2023). A GIS-Based Index of Physical Susceptibility to Flooding as a Tool for Flood Risk Management. Land, 12(7), 1408. https://doi.org/10.3390/land12071408