The Impact of Wildfires on Soil CO2 Emission in Middle Taiga Forests in Central Siberia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites Description
2.2. Soil Measurements
3. Results
3.1. Seasonal Meteorological Characteristics
3.2. Fire Impact on the Soil CO2 Emission and Environmental Factors
3.2.1. Soil Temperature and Moisture
3.2.2. Soil Carbon Emissions
3.3. Soil Emission and Soil Physical Properties
3.4. Soil Emission and Organic Matter
4. Discussion
4.1. Soil Emission and Times Since Fire
4.2. Soil Properties in Different Stages of Fire Succession
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, Y.; Tanaka, N. Effect of forest fire on the fluxes of CO2, CH4 and N2O in boreal forest soils, interior Alaska. J. Geophys. Res. 2003, 108, 10–12. [Google Scholar] [CrossRef]
- Conard, S.G.; Sukhinin, A.I.; Stocks, B.J.; Cahoon, D.R.; Davidenko, E.P.; Ivanova, G.A. Determining effects of area burned and fire severity on carbon cycling and emissions in Siberia. Clim. Chang. 2002, 55, 197–211. [Google Scholar] [CrossRef]
- Deluca, T.H.; Boisvenue, C. Boreal forest soil carbon: Distribution, function and modelling. Forestry 2012, 85, 161–184. [Google Scholar] [CrossRef]
- Kasishcke, E.S.; Stocks, J.B. Fire, Climate Change, and Carbon Cycling in the Boreal Forest. In Ecological Studies; Springer: New York, NY, USA, 2000; Volume 138, p. 461. [Google Scholar]
- Kasischke, E.S.; Christensen, N.L., Jr.; Stocks, B.J. Fire, global warming, and the carbon balance of boreal forests. Ecol. Appl. 1995, 5, 437–451. [Google Scholar] [CrossRef]
- Kim, Y.-S. Soil-atmosphere exchange of CO2, CH4 and N2O in northern temperate forests: Effects of elevated CO2 concentration, N deposition and forest fire. Eurasian J. For Res. 2013, 16, 1–43. [Google Scholar]
- Friedlingstein, P.; Jones, M.W.; O’Sullivan, M.; Andrew, R.M.; Bakker, D.C.E.; Hauck, J.; Le Quéré, C.; Peters, G.P.; Peters, W.; Pongratz, J. Global Carbon Budget 2021. Earth Syst. Sci. Data 2022, 14, 1917–2005. [Google Scholar] [CrossRef]
- FAO. Global Forest Resources Assessment 2020 Main Report. Rome. 2020. Available online: https://www.fao.org/documents/card/en/c/ca9825en (accessed on 20 April 2022).
- Fan, S.; Gloor, M.; Mahlman, J.; Pacala, S.; Sarmiento, J.; Takashi, T.; Peng, T. A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science 1998, 282, 442–446. [Google Scholar] [CrossRef]
- Thom, D.; Rammer, W.; Dirnböck, T.; Müller, J.; Kobler, J.; Katzensteiner, K.; Helm, N.; Seidl, R.; Mori, A. The impacts of climate change and disturbance on spatio-temporal trajectories of biodiversity in a temperate forest landscape. J. Appl. Ecol. 2017, 54, 28–38. [Google Scholar] [CrossRef] [Green Version]
- Thom, D.; Seidl, R. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol. Rev. Camb. Philos. Soc. 2016, 91, 760–781. [Google Scholar] [CrossRef]
- Romeiro, J.M.; Eid, T.; Antón-Fernández, C.; Kangas, A.; Trømborg, E. Natural disturbances risks in European Boreal and Temperate forests and their links to climate change—A review of modelling approaches. For. Ecol. Manag. 2022, 509, 120071. [Google Scholar] [CrossRef]
- Whitman, E.; Parisien, M.A.; Thompson, D.K.; Hall, R.J.; Skakun, R.S.; Flannigan, M.D. Variability and drivers of burn severity in the northwestern Canadian boreal forest. Ecosphere 2018, 9, e02128. [Google Scholar] [CrossRef] [Green Version]
- Boucher, J.; Beaudoin, A.; Hébert, C.; Guindon, L.; Bauce, É. Assessing the potential of the differenced Normalized Burn Ratio (dNBR) for estimating burn severity in eastern Canadian boreal forests. Int. J. Wildland Fire 2017, 26, 32–45. [Google Scholar] [CrossRef]
- Lafleur, B.; Cazal, A.; Leduc, A.; Bergeron, Y. Soil organic layer thickness influences the establishment and growth of trembling aspen (Populus tremuloides) in boreal forests. For. Ecol. Manag. 2015, 347, 209–216. [Google Scholar] [CrossRef]
- de Groot, W.J.; Flannigan, M.D.; Cantin, A.S. Climate change impacts on future boreal fire regimes. For. Ecol. Manag. 2013, 294, 35–44. [Google Scholar] [CrossRef]
- Kashian, D.M.; Romme, W.H.; Tinker, D.B.; Turner, M.G.; Ryan, M.G. Carbon storage on landscapes with stand-replacing fires. Bioscience 2006, 56, 598–606. [Google Scholar] [CrossRef]
- van der Werf, G.R.; Randerson, J.T.; Giglio, L.; Collatz, G.J.; Mu, M.; Kasibhatla, P.S.; Morton, D.C.; DeFries, R.S.; Jin, Y.; van Leeuwen, T.T. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 2010, 10, 11707–11735. [Google Scholar] [CrossRef] [Green Version]
- Amiro, B.D.; Cantin, A.; Flannigan, M.D.; de Groot, W.J. Future emissions from Canadian boreal forest fires. Can. J. For. Res. 2009, 39, 383–395. [Google Scholar] [CrossRef]
- Dore, S.; Kolb, T.E.; Montes-Helu, M.; Sullivan, B.W.; Winslow, W.D.; Hart, S.C.; Kaye, J.P.; Koch, G.W.; Hungate, B.A. Long-termimpact of a stand replacing fire on ecosystem CO2 exchange of a ponderosa pine forest. Glob. Chang. Biol. 2008, 14, 1801–1820. [Google Scholar] [CrossRef]
- Sullivan, B.W.; Kolb, T.E.; Hart, S.C.; Kaye, J.P.; Hungate, B.A.; Dore, S.; Montes-Helu, M. Wildfire reduces carbon dioxide efflux and increases methane uptake in ponderosa pine forest soils of southwestern USA. Biogeochemistry 2011, 104, 251–265. [Google Scholar] [CrossRef]
- Nakano, T. Changes in Surface Methane Flux after a Forest Fire in West Siberia. In Symptom of Environmental Change in Siberian Permafrost Region; Hatano, R., Guggenberger, G., Eds.; Hokkaido University Press: Sapporo, Japan, 2006; pp. 55–63. [Google Scholar]
- Hart, S.C.; DeLuca, T.H.; Newman, G.S.; MacKenzie, M.D.; Boyle, S.I. Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils. For. Ecol. Manag. 2005, 220, 166–184. [Google Scholar] [CrossRef]
- Cairney, J.W.G.; Bastias, B.A. Influences of fire on forest soil fungal communities. Can. J. For. Res. 2007, 37, 207–215. [Google Scholar] [CrossRef]
- Köster, E.; Köster, K.; Berninger, F.; Pumpanen, J. Carbon dioxide, methane and nitrous oxide fluxes from podzols of a fire chronosequence in the boreal forests in Värriö, Finnish Lapland. Geoderma Reg. 2015, 5, 181–187. [Google Scholar] [CrossRef]
- Meigs, G.W.; Donato, D.C.; Campbell, J.L.; Martin, J.G.; Law, B.E. Forest fire impacts on carbon uptake, storage, and emission: The role of burn severity in the eastern cascades, Oregon. Ecosystems 2009, 12, 1246–1267. [Google Scholar] [CrossRef]
- Wear, D.N.; Coulston, J.W. From sink to source: Regional variation in U.S. forest carbon futures. Sci. Rep. 2015, 5, 16518. [Google Scholar] [CrossRef] [Green Version]
- Holden, S.R.; Berhe, A.A.; Treseder, K. Decreases in soil moisture and organic matter quality suppress microbial decomposition following a boreal forest fire. Soil Biol. Biochem. 2015, 87, 1–9. [Google Scholar] [CrossRef]
- Sutanto, S.J.; Vitolo, C.; Di Napoli, C.; D’Andrea, M.; Van Lanen, H.A.J. Heatwaves, droughts, and fires: Exploring compound and cascading dry hazards at the pan-European scale. Environ. Int. 2020, 134, 105276. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.S., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Calvo Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize, S., Osako, A., Pyrozhenko, Y., Shermanau, P., Federici, S., Eds.; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Ribeiro-Kumara, C.; Köster, E.; Aaltonen, H.; Köster, K. How do forest fires affect soil greenhouse gas emissions in upland boreal forests? A review. Environ. Res. 2020, 184, 109328. [Google Scholar] [CrossRef]
- Vogel, J.G.; Bronson, D.; Gower, S.T.; Schuur, E.A. The response of root and microbial respiration to the experimental warming of a boreal black spruce forest. Can. J. For. Res. 2014, 44, 986–993. [Google Scholar] [CrossRef]
- Russian GOST 26213-2021 (Russian): Soils. Methods for Determination of Organic Matter. Available online: https://www.dokipedia.ru/document/5374625 (accessed on 15 May 2023).
- Aaltonen, H.; Palviainen, M.; Zhou, X.; Köster, E.; Berninger, F.; Pumpanen, J.; Köster, K. Temperature sensitivity of soil organic matter decomposition after forest fire in Canadian permafrost region. J. Environ. Manag. 2019, 241, 637–644. [Google Scholar] [CrossRef]
- Ribeiro-Kumara, C.; Pumpanen, J.; Heinonsalo, J.; Metslaid, M.; Orumaa, A.; Jõgiste, K.; Berninger, F.; Köster, K. Long-term effects of forest fires on soil greenhouse gas emissions and extracellular enzyme activities in a hemiboreal forest. Sci. Total Environ. 2020, 718, 135291. [Google Scholar] [CrossRef]
- Hu, T.; Sun, L.; Hu, H.; Weise, D.R.; Guo, F. Soil respiration of the Dahurian larch (Larix gmelinii) forest and the response to fire disturbance in Da Xing’an Mountains, China. Sci. Rep. 2017, 7, 2967. [Google Scholar] [CrossRef] [Green Version]
- O’Donnell, J.A.; Turetsky, M.R.; Harden, J.W. Interactive effects of fire, soil climate, and moss on CO2 fluxes in black spruce ecosystems of interior Alaska. Ecosystems 2009, 12, 57–72. [Google Scholar] [CrossRef]
- Köster, E.; Köster, K.; Berninger, F.; Prokushkin, A.; Aaltonen, H.; Zhou, X.; Pumpanen, J. Changes in fluxes of carbon dioxide and methane caused by fire in Siberian boreal forest with continuous permafrost. J. Environ. Manag. 2018, 228, 405–415. [Google Scholar] [CrossRef] [Green Version]
- Makhnykina, A.V.; Prokushkin, A.S.; Menyailo, O.V.; Verkhovets, S.V.; Tychkov, I.I.; Urban, A.V.; Rubtsov, A.V.; Koshurnikova, N.N.; Vaganov, E.A. The impact of climatic factors on CO2 emissions from soils of middle-taiga forests in Central Siberia: Emission as a function of soil temperature and moisture. Russ. J. Ecol. 2020, 51, 46–56. [Google Scholar] [CrossRef]
- Smith, D.R.; Kaduk, J.D.; Balzter, H.; Wooster, M.J.G.; Mottram, N.; Hartley, G.; Lynham, T.J.; Studens, J.; Curry, B.J.; Stocks, J. Soil surface CO2 flux increases with successional time in a fire scar chronosequence of Canadian boreal jack pine forest. Biogeosciences 2010, 7, 1375–1381. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Jiang, C.; Bai, Y.; Wang, H.; Jiang, C.; Huang, K.; Guo, L.; Zeng, S.; Wang, S. Effects of Forest Gap on Soil Microbial Communities in an Evergreen Broad-Leaved Secondary Forest. Forests 2022, 13, 2015. [Google Scholar] [CrossRef]
- Tsuyuzaki, S.; Kushida, K.; Kodama, Y. Recovery of surface albedo and plant cover after wildfire in a Picea mariana forest in interior Alaska. Clim. Chang. 2008, 93, 517. [Google Scholar] [CrossRef]
- Wirth, C.; Czimczik, C.I.; Schulze, E.-D. Beyond annual budgets: Carbon flux at different temporal scales in fire-prone Siberian Scots pine forests. Tellus 2002, 54B, 611–630. [Google Scholar] [CrossRef]
- Narita, K.; Harada, K.; Saito, K.; Sawada, Y.; Fukuda, M.; Tsuyuzaki, S. Vegetation and permafrost thaw depth 10 years after a tundra fire in 2002, Seward Peninsula, Alaska. Arct. Antarct. Alp. Res. 2015, 47, 547–559. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Zhang, F.; Luo, Z.; Badreldin, N.; Benoy, G.; Xing, Z. Soil and water conservation effects of different types of vegetation cover on runoff and erosion driven by climate and underlying surface conditions. Catena 2023, 231, 107347. [Google Scholar] [CrossRef]
- Lu, B.-Q.; Zang, S.-Y.; Song, L.-Q.; Sun, L.; Li, M.; Bing, D. Cooling and wetting of soil decelerated ground freezing–thawing processes of the active layer in Xing’an permafrost regions in Northeast China. Adv. Clim. Chang. Res. 2022, 14, 126–135. [Google Scholar] [CrossRef]
- Birch, H.F. Mineralisation of plant nitrogen following alternate wet and dry conditions. Plant Soil 1964, 20, 43–49. [Google Scholar] [CrossRef]
- Huxman, T.E.; Snyder, K.A.; Tissue, D.; Leffler, A.J.; Ogle, K.; Pockman, W.T.; Sandquist, D.R.; Potts, D.L.; Schwinning, S. Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia 2004, 141, 254–268. [Google Scholar] [CrossRef]
- Barron-Gafford, G.A.; Scott, R.L.; Jenerette, G.D.; Huxman, T.E. The relative controls of temperature, soil moisture, and plant functional group on soil CO2 efflux at diel, seasonal, and annual scales. J. Geophys. Res. 2011, 116, G01023. [Google Scholar] [CrossRef] [Green Version]
Site | Elevation, m a.s.l. | Forest Type | Ground Cover | Tree Species | Stand Density, Trees per Ha |
---|---|---|---|---|---|
1898 | 77 | 10P | Cladonia stellaris, Cladonia rangiferina | Pinus sylvestris L. | 1703 |
1973 | 94 | 10P | Cladonia stellaris, Cladonia rangiferina, Pleurozium schreberi, Vaccinium vitis-idaea | Pinus sylvestris L. | 2212 |
1996 | 62 | 10P | Cladonia stellaris, Cladonia rangiferina, Polytrichum commune, Cetraria islandica, Vaccinium vitis-idaea | Pinus sylvestris L. | 1625 |
2005 | 97 | 10P | Cladonia stellaris, Cladonia rangiferina, Polytrichum commune, Cetraria islandica, Vaccinium vitis-idaea, Arctostaphylos uva-ursi | Pinus sylvestris L. | - |
2018 | 96 | 10P | - | Pinus sylvestris L. | 1448 |
Fraction | Years after Fire | ||||
---|---|---|---|---|---|
1 | 14 | 23 | 46 | 121 | |
Lichen | 0.18 ± 0.20 | 0.90 ± 0.64 | 1.34 ± 0.73 | 0.90 ± 0.51 | 1.52 ± 0.93 |
O-horizon | 1.74 ± 1.44 | 2.23 ± 0.81 | 2.29 ± 1.47 | 1.95 ± 1.09 | 3.73 ± 1.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makhnykina, A.; Panov, A.; Prokushkin, A. The Impact of Wildfires on Soil CO2 Emission in Middle Taiga Forests in Central Siberia. Land 2023, 12, 1544. https://doi.org/10.3390/land12081544
Makhnykina A, Panov A, Prokushkin A. The Impact of Wildfires on Soil CO2 Emission in Middle Taiga Forests in Central Siberia. Land. 2023; 12(8):1544. https://doi.org/10.3390/land12081544
Chicago/Turabian StyleMakhnykina, Anastasia, Alexey Panov, and Anatoly Prokushkin. 2023. "The Impact of Wildfires on Soil CO2 Emission in Middle Taiga Forests in Central Siberia" Land 12, no. 8: 1544. https://doi.org/10.3390/land12081544
APA StyleMakhnykina, A., Panov, A., & Prokushkin, A. (2023). The Impact of Wildfires on Soil CO2 Emission in Middle Taiga Forests in Central Siberia. Land, 12(8), 1544. https://doi.org/10.3390/land12081544